1
|
Ma R, Zhou D, Zhang Q, Zhang B, Zhang Y, Chen F, Guo N, Wang L. Crystallization-induced formation of two-dimensional carbon nanosheets derived from sodium lignosulfonate for fast lithium storage. Int J Biol Macromol 2024; 260:129570. [PMID: 38246456 DOI: 10.1016/j.ijbiomac.2024.129570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sodium lignosulfonate, an abundant natural resource, is regarded as an ideal precursor for the synthesis of hard carbon. The development of high-performance, low-cost and sustainable anode materials is a significant challenge facing lithium-ion batteries (LIBs). The modulation of morphology and defect structure during thermal transformation is crucial to improve Li+ storage behavior. Synthesized using sodium lignosulfonate as a precursor, two-dimensional carbon nanosheets with a high density of defects were produced. The synergistic influence of ice templates and KCl was leveraged, where the ice prevented clumping of potassium chloride during drying, and the latter served as a skeletal support during pyrolysis. This resulted in the formation of an interconnected two-dimensional nanosheet structure through the combined action of both templates. The optimized sample has a charging capacity of 712.4 mA h g-1 at 0.1 A g-1, which is contributed by the slope region. After 200 cycles at 0.2 A g-1, the specific charge capacity remains 514.4 mA h g-1, and a high specific charge capacity of 333.8 mA h g-1 after 800 cycles at 2 A g-1. The proposed investigation offers a promising approach for developing high-performance, low-cost carbon-based anode materials that could be used in advanced lithium-ion batteries.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Doudou Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Qing Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Binyuan Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Yanzhe Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Feifei Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China.
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China.
| |
Collapse
|
2
|
Castañeda LF, Walsh FC, Nava JL, Ponce de León C. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.165] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
ToxChip and its applications. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf02900676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|