1
|
Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, Simard JM. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 2017; 66:108-125. [PMID: 28906027 DOI: 10.1002/glia.23231] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/23/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
Astrocyte swelling occurs after central nervous system injury and contributes to brain swelling, which can increase mortality. Mechanisms proffered to explain astrocyte swelling emphasize the importance of either aquaporin-4 (AQP4), an astrocyte water channel, or of Na+ -permeable channels, which mediate cellular osmolyte influx. However, the spatio-temporal functional interactions between AQP4 and Na+ -permeable channels that drive swelling are poorly understood. We hypothesized that astrocyte swelling after injury is linked to an interaction between AQP4 and Na+ -permeable channels that are newly upregulated. Here, using co-immunoprecipitation and Förster resonance energy transfer, we report that AQP4 physically co-assembles with the sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) monovalent cation channel to form a novel heteromultimeric water/ion channel complex. In vitro cell-swelling studies using calcein fluorescence imaging of COS-7 cells expressing various combinations of AQP4, SUR1, and TRPM4 showed that the full tripartite complex, comprised of SUR1-TRPM4-AQP4, was required for fast, high-capacity transmembrane water transport that drives cell swelling, with these findings corroborated in cultured primary astrocytes. In a murine model of brain edema involving cold-injury to the cerebellum, we found that astrocytes newly upregulate SUR1-TRPM4, that AQP4 co-associates with SUR1-TRPM4, and that genetic inactivation of the solute pore of the SUR1-TRPM4-AQP4 complex blocked in vivo astrocyte swelling measured by diolistic labeling, thereby corroborating our in vitro functional studies. Together, these findings demonstrate a novel molecular mechanism involving the SUR1-TRPM4-AQP4 complex to account for bulk water influx during astrocyte swelling. These findings have broad implications for the understanding and treatment of AQP4-mediated pathological conditions.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Min S Kwon
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Seung K Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Rudi Vennekens
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| |
Collapse
|
2
|
Xu Z, Zhu Q, Wang LV. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066020. [PMID: 21721821 PMCID: PMC3124533 DOI: 10.1117/1.3584847] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/09/2011] [Accepted: 04/12/2011] [Indexed: 05/18/2023]
Abstract
For the first time, we have implemented photoacoustic tomography (PAT) to image the water content of an edema in vivo. We produced and imaged a cold-induced cerebral edema transcranially, then obtained blood vessel and water accumulation images at 610 and 975 nm, respectively. We tracked the changes at 12, 24, and 36 h after the cold injury. The blood volume decreased after the cold injury, and the maximum area of edema was observed 24 h after the cold injury. We validated PAT of the water content of the edema through magnetic Resonance Imaging and the water spectrum from the spectrophotometric measurement.
Collapse
Affiliation(s)
- Zhun Xu
- Washington University, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
3
|
Tsurubuchi T, Zaboronok A, Yamamoto T, Nakai K, Yoshida F, Shirakawa M, Matsuda M, Matsumura A. The optimization of fluorescence imaging of brain tumor tissue differentiated from brain edema—In vivo kinetic study of 5-aminolevulinic acid and talaporfin sodium. Photodiagnosis Photodyn Ther 2009; 6:19-27. [DOI: 10.1016/j.pdpdt.2009.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 11/17/2022]
|