1
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Davis KM, Ryan JL, Aaron VD, Sims JB. PET and SPECT Imaging of the Brain: History, Technical Considerations, Applications, and Radiotracers. Semin Ultrasound CT MR 2020; 41:521-529. [PMID: 33308491 DOI: 10.1053/j.sult.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Advances in nuclear medicine have revolutionized our ability to accurately diagnose patients with a wide array of neurologic pathologies and provide appropriate therapy. The development of new radiopharmaceuticals has made possible the identification of regional differences in brain tissue composition and metabolism. In addition, the evolution of 3-dimensional molecular imaging followed by fusion with computed tomography and magnetic resonance imaging have allowed for more precise localization of pathologies. This review will introduce single photon emission computed tomography and positron emission tomographic imaging of the brain, including the history of their development, technical considerations, and a brief overview of pertinent radiopharmaceuticals and their applications.
Collapse
Affiliation(s)
- Korbin M Davis
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN.
| | - Joshua L Ryan
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN
| | - Vasantha D Aaron
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN
| | - Justin B Sims
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN
| |
Collapse
|
3
|
Tadesse GF, Geramifar P, Tegaw EM, Ay MR. Techniques for generating attenuation map using cardiac SPECT emission data only: a systematic review. Ann Nucl Med 2018; 33:1-13. [DOI: 10.1007/s12149-018-1311-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
|
4
|
Abstract
The synergy of functional and anatomic information in hybrid systems has undoubtedly enhanced the diagnostic potential of radionuclide imaging in recent years, contributing to the advancement of SPECT/CT in clinical practice. Since the introduction of commercial SPECT/CT in the late 1990 s, the field has seen rapid expansion and development toward multidetector CT subsystems, establishing the role of SPECT/CT as a routine imaging tool. It is, however, important to discuss possible challenges and technical limitations of such systems and how these influence imaging outcomes. In particular, the issues of patient motion and spatial misalignment of the SPECT and CT modalities, data corrections such as those for photon attenuation, and the choice of CT acquisition protocols in relation to radiation exposure are discussed in the article.
Collapse
Affiliation(s)
- Lefteris Livieratos
- Nuclear Medicine Department, Guy's & St Thomas' Hospitals, London, UK; Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
5
|
Abstract
OBJECTIVES Decreases in apical and apex activities - namely, 'apical thinning' - are a well-known phenomenon in attenuation-corrected (AC) myocardial perfusion. The aim of this study was to compare actual myocardial thickness derived from a multidetector-row computed tomography with AC myocardial perfusion count from a hybrid single-photon emission computed tomography/computed tomography to investigate the cause of apical thinning. METHODS We enrolled 21 participants with a low likelihood of coronary artery disease (mean age 65 ± 21 years, 13 men) from 185 consecutive patients and 11 healthy volunteers, who independently underwent ⁹⁹mTc-sestamibi single-photon emission computed tomography/computed tomography and 64-slice multidetector-row computed tomography scans. AC and non-AC myocardial perfusion counts and thickness were measured on the basis of a 17-segment model and averaged at the apex, apical, mid, and basal walls. RESULTS Myocardial thickness at the apex was significantly thinner than that at the apical and mid walls (5.1 ± 1.3, 7.3 ± 1.3, and 9.9 ± 2.4 mm, respectively; P<0.005). AC count at the apex was significantly lower than that at the apical and mid regions (76.0 ± 5.5, 82.8 ± 4.7, and 85.6 ± 3.8, respectively; P<0.002). Moderate relationship was observed between myocardial thickness and AC count (y=-10.5 + 0.22x, r=0.54, P<0.0001. No relationship was found between thickness and non-AC count (r=0.16, P=0.263). CONCLUSION The low apex and apical counts were caused by anatomical thinning of the myocardium in AC myocardial perfusion imaging. Attenuation correction provided an accurate relationship between myocardial count and thickness because of the partial volume effect.
Collapse
|
6
|
Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study. Eur J Nucl Med Mol Imaging 2011; 38:1890-8. [DOI: 10.1007/s00259-011-1855-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
7
|
|
8
|
Perez KL, Mann SD, Pachon JH, Madhav P, Tornai MP. Is SPECT or CT Based Attenuation Correction More Quantitatively Accurate for Dedicated Breast SPECT Acquired with Non-Traditional Trajectories? IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD. NUCLEAR SCIENCE SYMPOSIUM 2010; 2010:2319-2324. [PMID: 25999683 PMCID: PMC4437574 DOI: 10.1109/nssmic.2010.5874198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Attenuation correction is necessary for SPECT quantification. There are a variety of methods to create attenuation maps. For dedicated breast SPECT imaging, it is unclear if either SPECT- or CT-based attenuation map would provide the most accurate quantification and whether or not segmenting the different tissue types will have an effect on the qunatification. For these experiments, 99mTc diluted in methanol and water was filled into geometric and anthropomorphic breast phantoms and was imaged with a dedicated dual-modality SPECT-CT scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical and 30° tilted parallel beam, and complex sinusoidal trajectories. CT images were acquired using a quasi-monochromatic x-ray source and CsI(T1) flat panel digital detector in a half-cone beam geometry. Measured scatter correction for SPECT and CT were implemented. To compare photon attenuation correction in the reconstructed SPECT images, various volumetric attenuation matrices were derived from 1) uniform SPECT, 2) uniform CT, and 3) segmented CT, populated with different attenuation coefficient values. Comparisons between attenuation masks using phantoms consisting of materials with different attenuation values show that at 140 keV the differences in the attenuation between materials do not affect the quantification as much as the size and alignment of the attenuation map. The CT-based attenuation maps give quantitative values 30% below the actual value, but are consistent. While the SPECT-based attenuation maps can provide within 10% accurate quantitative values, but are less consistent.
Collapse
Affiliation(s)
- Kristy L. Perez
- Medical Physics Program and Radiology Department, Duke University, Durham, NC 27710 USA (telephone: 919-684-7943)
| | - Steve D. Mann
- Medical Physics Program and Radiology Department, Duke University, Durham, NC 27710 USA (telephone: 919-684-7943)
| | - Jan H. Pachon
- Medical Physics Program and Radiology Department, Duke University, Durham, NC 27710 USA (telephone: 919-684-7943); Biomedical Engineering and Radiology Departments, Duke University, Durham, NC 27710 USA
| | - Priti Madhav
- Biomedical Engineering and Radiology Departments, Duke University, Durham, NC 27710 USA
| | - Martin P. Tornai
- Medical Physics Program and Radiology Department, Duke University, Durham, NC 27710 USA (telephone: 919-684-7943); Biomedical Engineering and Radiology Departments, Duke University, Durham, NC 27710 USA
| |
Collapse
|
9
|
Kennedy JA, Israel O, Frenkel A. Directions and Magnitudes of Misregistration of CT Attenuation-Corrected Myocardial Perfusion Studies: Incidence, Impact on Image Quality, and Guidance for Reregistration. J Nucl Med 2009; 50:1471-8. [DOI: 10.2967/jnumed.109.062141] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Takahashi Y, Murase K, Mochizuki T, Higashino H, Sugawara Y, Kinda A. Evaluation of the number of SPECT projections in the ordered subsets-expectation maximization image reconstruction method. Ann Nucl Med 2008; 17:525-30. [PMID: 14651350 DOI: 10.1007/bf03006664] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Filtered back projection (FBP) method, maximum likelihood-expectation maximization(ML-EM) method, and ordered subsets-expectation maximization (OS-EM) method are currently used for reconstruction of SPECT images in clinical studies. In the ML-EM method, images of good quality can be reconstructed even with a small sampling number of projection data, when compared with FBP. Shorter acquisition time and less radionuclide dose are preferable in the clinical setting if image quality is the same. In this study, we attempted to find optimal conditions for reconstruction of OS-EM images with commonly used sampling numbers of 30, 60 and 120 (step angles: 12 degrees, 6 degrees, and 3 degrees, respectively), with acquisition counts/projection of 30, 60, 120 and 240 each. We adjusted the pixel counts of reconstructed images to be constant, by setting combination of sampling number and counts/projection (120 sampling number for 30 counts/projection, 60 for 60, and 30 for 120). Among the 3 acquisition conditions, the small sampling number of 30 had large acquisition counts per direction, resulting in low signal to noise ratio. Under this condition, the resolution was slightly low, but the uniformity of images was high. The combination of OS-EM and smaller sampling projection number may be clinically useful with reduction of the examination time, which is also beneficial to reduce dead time for gamma-camera rotation.
Collapse
Affiliation(s)
- Yasuyuki Takahashi
- Department of Medical Engineering, Division of Allied Health Sciences, Osaka University Graduate School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008; 38:177-98. [PMID: 18396178 DOI: 10.1053/j.semnuclmed.2008.01.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single-photon emission computed tomography/computed tomography (SPECT/CT) has emerged during the past decade as a means of correlating anatomical information from CT with functional information from SPECT. The integration of SPECT and CT in a single imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate physiological uptake from that associated with disease and patient-specific attenuation correction to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically available SPECT/CT systems performed emission-transmission imaging using a dual-headed SPECT camera and a low-power x-ray CT subsystem. Newer SPECT/CT systems are available with high-power CT subsystems suitable for detailed anatomical diagnosis, including CT coronary angiography and coronary calcification that can be correlated with myocardial perfusion measurements. The high-performance CT capabilities also offer the potential to improve compensation of partial volume errors for more accurate quantitation of radionuclide measurement of myocardial blood flow and other physiological processes and for radiation dosimetry for radionuclide therapy. In addition, new SPECT technologies are being developed that significantly improve the detection efficiency and spatial resolution for radionuclide imaging of small organs including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT imaging in these important clinical applications.
Collapse
Affiliation(s)
- Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
12
|
Abstract
Molecular imaging using PET has evolved from a vigorous academic field into the clinical arena. Considerable advances have been made in the design of high-resolution standalone PET and combined PET/CT units dedicated to clinical whole-body scanning. Likewise, much worthwhile research focused on the development of quantitative imaging protocols incorporating accurate data correction techniques and sophisticated image reconstruction algorithms. Since its inception, photon attenuation in biological tissues has been identified as the most important physical degrading factor affecting PET image quality and quantitative accuracy. Various strategies have been devised to determine an accurate attenuation map to enable correction for nonlinear photon attenuation in whole-body PET studies. This article presents the physical and methodological basis of photon attenuation and summarizes state-of-the-art developments in algorithms used to derive the attenuation map aiming at accurate attenuation compensation of PET data. Future prospects, research trends, and challenges are identified, and directions for future research are discussed.
Collapse
Affiliation(s)
- Habib Zaidi
- Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva 4, Switzerland.
| | | | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Singh B, Bateman TM, Case JA, Heller G. Attenuation artifact, attenuation correction, and the future of myocardial perfusion SPECT. J Nucl Cardiol 2007; 14:153-64. [PMID: 17386377 DOI: 10.1016/j.nuclcard.2007.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zaidi H. Optimisation of whole-body PET/CT scanning protocols. Biomed Imaging Interv J 2007; 3:e36. [PMID: 21614277 PMCID: PMC3097669 DOI: 10.2349/biij.3.2.e36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/05/2007] [Indexed: 11/17/2022] Open
Abstract
Positron emission tomography (PET) has become one of the major tools for the in vivo localisation of positron-emitting tracers and now is performed routinely using (18)F-fluorodeoxyglucose (FDG) to answer important clinical questions including those in cardiology, neurology, psychiatry, and oncology. The latter application contributed largely to the wide acceptance of this imaging modality and its use in clinical diagnosis, staging, restaging, and assessment of tumour response to treatment. Dual-modality PET/CT systems have been operational for almost a decade since their inception. The complementarity between anatomic (CT) and functional or metabolic (PET) information provided in a "one-stop shop" has been the driving force of this technology. Although combined anato-metabolic imaging is an obvious choice, the way to perform imaging is still an open issue. The tracers or combinations of tracers to be used, how the imaging should be done, when contrast-enhanced CT should be performed, what are the optimal acquisition and processing protocols, are all unanswered questions. Moreover, each data acquisition-processing combination may need to be independently optimised and validated. This paper briefly reviews the basic principles of dual-modality imaging and addresses some of the practical issues involved in optimising PET/CT scanning protocols in a clinical environment.
Collapse
Affiliation(s)
- H Zaidi
- Division of Nuclear Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
15
|
Tonge CM, Ellul G, Pandit M, Lawson RS, Shields RA, Arumugam P, Prescott MC. The value of registration correction in the attenuation correction of myocardial SPECT studies using low resolution computed tomography images. Nucl Med Commun 2006; 27:843-52. [PMID: 17021423 DOI: 10.1097/01.mnm.0000239483.69027.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Artifacts caused by tissue attenuation create problems in the interpretation of myocardial perfusion studies. In a previous study we evaluated attenuation correction using 'Hawkeye' and noted that the incidence of anterior/apical defects increased after attenuation correction. This increased incidence appeared to be associated with mis-registration between emission and transmission images. The main aim of this study was to determine whether correction of mis-registration between emission and transmission scans reduced the incidence of these anterior/apical defects. METHODS Ninety-four patients (64 men, 30 women) underwent stress/rest myocardial perfusion imaging using (99m)Tc-tetrofosmin (188 studies). Bull's-eye perfusion plots were created using proprietary software (QPS). RESULTS The marked reduction in defect size, particularly obvious in male patients, in the inferior wall after attenuation correction was not significantly changed by the addition of registration correction. In the anterior and apical walls attenuation correction produced a confusing pattern particularly in females with an overall tendency to increase the defect size. After registration correction fewer anterior/apical defects were created. CONCLUSION Attenuation correction using 'Hawkeye' reduces the incidence of inferior myocardial perfusion defects but can create anterior and/or apical artifacts. It is essential to evaluate registration carefully in three dimensions before reporting the images. Correction of mis-registration reduces the incidence of anterior/apical defects and can restore the appearance of the anterior/apical area to pre-correction levels.
Collapse
Affiliation(s)
- Christine M Tonge
- Department of Nuclear Medicine, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Nuclear cardiology has made significant advances since the first reports of planar scintigraphy for the evaluation of left ventricular perfusion and function. While the current "state of the art" of gated myocardial perfusion single-photon emission computed tomographic (SPECT) imaging offers invaluable diagnostic and prognostic information for the evaluation of patients with suspected or known coronary artery disease (CAD), advances in the cellular and molecular biology of the cardiovascular system have helped to usher in a new modality in nuclear cardiology, namely, molecular imaging. In this review, we will discuss the current state of the art in nuclear cardiology, which includes SPECT and positron emission tomographic evaluation of myocardial perfusion, evaluation of left ventricular function by gated myocardial perfusion SPECT and gated blood pool SPECT, and the evaluation of myocardial viability with PET and SPECT methods. In addition, we will discuss the future of nuclear cardiology and the role that molecular imaging will play in the early detection of CAD at the level of the vulnerable plaque, the evaluation of cardiac remodeling, and monitoring of important new therapies including gene therapy and stem cell therapy.
Collapse
|
17
|
Utsunomiya D, Tomiguchi S, Awai K, Shiraishi S, Nakaura T, Yamashita Y. Mutidetector-row CT and quantitative gated SPECT for the assessment of left ventricular function in small hearts: the cardiac physical phantom study using a combined SPECT/CT system. Eur Radiol 2006; 16:1818-25. [PMID: 16456651 DOI: 10.1007/s00330-005-0102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/15/2005] [Accepted: 11/25/2005] [Indexed: 01/08/2023]
Abstract
UNLABELLED The aim of this study was to compare results of left ventricular (LV) function obtained by quantitative gated single-photon emission tomography (QGS) and multidetector-row spiral computed tomography (MDCT) with reference parameters using an electrocardiogram-gated cardiac physical phantom. The phantom study was performed using a combined SPECT/CT system. Flexible membranes formed the inner and outer walls of the simulated LV. The stroke volume was adjusted (45 mL or 58 mL) and the fixed 42-mL end-systolic volume (ESV) produced two different volume combinations. The LV function parameters were estimated by means of MDCT and QGS. Differences in true and measured volumes were compared among CT with a reconstructed image thickness of 2.5 mm and 5.0 mm and QGS volumetric values. Each scan was repeated three-times. The estimation of LV volumes using both QGS and MDCT analyses were reproducible very well. QGS overestimated ejection fraction (EF) by approximately 20%; MDCT volumetry overestimated EF by approximately 5% in each volume setting. The differences in true and measured values for EF and ESV obtained with QGS were significantly greater than obtained with MDCT. CONCLUSION MDCT provides a reliable estimation of functional LV parameters, whereas QGS tends to significantly overestimate the EF in small hearts.
Collapse
Affiliation(s)
- Daisuke Utsunomiya
- Diagnostic Imaging Center, Saiseikai Kumamoto Hospital, 5-3-1 Chikami, Kumamoto-shi, Kumamoto, 861-4101, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Utsunomiya D, Tomiguchi S, Shiraishi S, Yamada K, Honda T, Kawanaka K, Kojima A, Awai K, Yamashita Y. Initial experience with X-ray CT based attenuation correction in myocardial perfusion SPECT imaging using a combined SPECT/CT system. Ann Nucl Med 2005; 19:485-9. [PMID: 16248385 DOI: 10.1007/bf02985576] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Attenuation artifacts adversely affect the diagnostic accuracy of myocardial perfusion imaging. We assessed the clinical usefulness of X-ray CT based attenuation correction (AC) in patients undergoing myocardial perfusion imaging by comparing their myocardial AC- and non-corrected (NC) SPECT images with the coronary angiography (CAG). METHODS We retrospectively reviewed the myocardial SPECT images of 30 patients (18 men, 12 women; mean age 68 years). Thirteen of 30 patients with coronary artery disease (CAD) and 17 without CAD were confirmed by CAG. They underwent sequential CT and myocardial SPECT imaging with thallium-201 (111 MBq) under an exercise or pharmacological stress protocol using our combined SPECT/ CT system. Two readers reviewed the myocardial SPECT images for the presence of CAD on a 4-point scale where 1 = normal, 2 = probably normal, 3 = probably abnormal, and 4 = abnormal. Two reading sessions were held. First, non-corrected (NC)-SPECT and second, AC-SPECT images using X-ray CT images were interpreted. Interobserver variability was assessed with kappa statistics. Diagnostic performance (accuracy) of coronary arterial stenosis was compared between AC- and NC-images. RESULTS Interobserver agreement for visual assessment was substantial or almost perfect. For AC-images, the observer consensus for analysis was 0.84 for the LAD-, 0.87 for the LCX-, and 0.71 for the RCA-territory. For NC-images, it was 0.91, 0.71, and 0.78. AC resulted in statistically significant improvements in overall diagnostic accuracy (sensitivity/ specificity/accuracy = 76%/93%/89%, 67%/86%/81%, respectively, for AC- and NC-images). CONCLUSIONS Because of an increase in the specificity, diagnostic accuracy was significantly increased on AC-images. These preliminary data suggest that X-ray CT based AC in myocardial SPECT imaging has the potential to develop into a reliable clinical technique.
Collapse
Affiliation(s)
- Daisuke Utsunomiya
- Diagnostic Imaging Center, Saiseikai Kumamoto Hospital, 5-3-1 Chikami, Kumamoto 861-4193, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Utsunomiya D, Nakaura T, Honda T, Shiraishi S, Tomiguchi S, Kawanaka K, Morishita S, Awai K, Ogawa H, Yamashita Y. Object-specific Attenuation Correction at SPECT/CT in Thorax: Optimization of Respiratory Protocol for Image Registration. Radiology 2005; 237:662-9. [PMID: 16170014 DOI: 10.1148/radiol.2372041387] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Institutional review board approval was obtained for multiple imaging examinations in healthy volunteers and patients and for the analysis of images. The purpose of the study, and the risks associated with radiation exposure with regard to stochastic effects that might result in cancer and/or genetic mutations, were explained to all subjects, and all questions from subjects were answered. Each subject provided written informed consent. The purpose of the study was to prospectively determine the respiratory protocol at computed tomography (CT) that results in the best registration of CT images with images acquired at single photon emission computed tomography (SPECT) in the thorax. Errors of registration between myocardial SPECT images and CT images obtained with different respiratory protocols (postinhalation breath hold, postexhalation breath hold, and free breathing) in 13 healthy subjects were compared. CT scans obtained with free breathing and postexhalation breath hold better matched SPECT images than did those obtained with postinhalation breath hold (one-way analysis of variance, P < .01). Fewer SPECT/CT images showed artifacts with registration performed by using internal landmarks (four, two, and one of 13 images with postinhalation breath-hold, postexhalation breath-hold, and free-breathing protocols, respectively) than with registration performed by using external markers (nine, four, and two of 13 images). CT data acquisition with a free-breathing or postexhalation breath-hold protocol and image registration by using internal landmarks are recommended for attenuation correction.
Collapse
Affiliation(s)
- Daisuke Utsunomiya
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yokoi T, Soma T, Shinohara H, Matsuda H. Accuracy and reproducibility of co-registration techniques based on mutual information and normalized mutual information for MRI and SPECT brain images. Ann Nucl Med 2004; 18:659-67. [PMID: 15682846 DOI: 10.1007/bf02985959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We implemented a 3D co-registration technique based on mutual information (MI) including 2D image matching as a coarse pre-registration. The 2D coarse pre-registration was performed in the transverse, sagittal and coronal planes sequentially, and all six parameters were then optimized as fine registration. Normalized mutual information (NMI) was also examined as another entropy-based measure that was invariant to the overlapped area of two images. In order to compare accuracy and precision of the present method with a conventional two-level multiresolution approach, simulation was performed by 100 trials with the random initial mismatch of +/-10 degrees and +/-17.92 mm (Type-I) and +/-20 degrees and +/-40.32 mm (Type-II). For Type-I, no significant differences were found between registration errors of the multiresolution approach and the present method with the MI criterion. No biases were observed (< or =0.13 degrees and < or =0.57 mm for the multiresolution approach; < or =0.12 degrees and < or =0.57 mm for the present method) and the SDs were very small (< or =0.18 degrees and < or =0.12 mm for the multiresolution approach; < or =0.11 degrees and < or =0.11 mm for the present method). For Type-II, SDs for the multiresolution approach (< or =1.8 degrees and < or =0.88 mm) were markedly larger than those for the present method (< or =0.64 degrees and < or =0.20 mm) with MI. Success rate for the present method was 99.9%, which was higher than 97.6% for the multiresolution approach. Simulation also revealed that MI and NMI performance were almost equivalent. The choice of optimization strategy more affected accuracy and reproducibility than the choice of the registration criterion (MI or NMI) in our simulation condition. The present method is sufficiently accurate and reproducible for MRI-SPECT registration in clinical use.
Collapse
Affiliation(s)
- Takashi Yokoi
- Image Processing Division, Bioimaging Laboratory, Inc., Kyoto, Japan.
| | | | | | | |
Collapse
|
21
|
Abstract
The task of single photon emission CT (SPECT) is to visualize the physiological function of various organs with the help of radiopharmaceuticals. But the projection data used for image reconstruction are distorted by several factors, making the reconstruction of a quantitative SPECT image very difficult in most cases. These factors include the attenuation and scattering of gamma rays, collimator aperture, data acquisition method, movement of organs, and washout of radiopharmaceuticals. This review article classifies the causes of the distortion in SPECT images and describes correction methods.
Collapse
Affiliation(s)
- Koichi Ogawa
- Department of Electronic Informatics, Faculty of Engineering, Hosei University, Koganei, Tokyo, Japan.
| |
Collapse
|
22
|
Takahashi Y, Murase K, Mochizuki T, Higashino H, Sugawara Y, Kinda A. Segmented attenuation correction for myocardial SPECT. Ann Nucl Med 2004; 18:137-43. [PMID: 15195761 DOI: 10.1007/bf02985104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE One of the main factors contributing to the accuracy of attenuation correction for SPECT imaging using transmission computed tomography (TCT) with an external gamma-ray source is the radionuclide count. To reduce deterioration of TCT images due to inadequate radionuclide counts, a correction method, segmented attenuation correction (SAC), in which TCT data are transformed into several components (segments) such as water, lungs and spine, providing a satisfactory attenuation correction map with less counts, has been developed. The purpose of this study was to examine the usefulness of SAC for myocardial SPECT with attenuation correction. METHODS A myocardial phantom filled with Tc-99m was scanned with a triple headed SPECT system, equipped with one cardiac fan beam collimator for TCT and two parallel hole collimators for ECT. As an external gamma-ray source for TCT, 740 MBq of Tc-99m was also used. Since Tc-99m was also used for ECT, the TCT and ECT data were acquired separately. To make radionuclide counts, the TCT data were acquired in the sequential repetition mode, in which a 3-min-rotation was repeated 7 times followed by a 10-min-rotation 4 times (a total of 61 minutes). The TCT data were reconstructed by adding some of these rotations to make TCT maps with various radionuclide counts. Three types of SAC were used: (a) 1-segment SAC in which the body structure was regarded as water, (b) 2-segment SAC, in which the body structure was regarded as water and lungs, and (c) 3-segment SAC, in which the body structure was regarded as water, lungs and spine. We compared corrected images obtained with non-segmentation methods, and with 1- to 3-segment SACs. We also investigated the influence of radionuclide counts of TCT (3, 6, 9, 12, 15, 18, 21, 31, 41, 51, 61 min acquisition) on the accuracy of the attenuation correction. RESULTS Either 1-segment or 2-segment SAC was sufficient to correct the attenuation. When non-segmentation TCT attenuation methods were used, rotations of at least 31 minutes were required to obtain sufficiently large counts for TCT. When the 3-segment SAC was used, the minimal acquisition time for a satisfactory TCT map was 7 min. CONCLUSION The 3-segment SAC was effective for attenuation correction, requiring fewer counts (about 1/5 of the value for non-segmentation TCT), or less radiation for TCT.
Collapse
Affiliation(s)
- Yasuyuki Takahashi
- Department of Medical Engineering, Division of Allied Health Sciences, Osaka University Graduate School of Medicine.
| | | | | | | | | | | |
Collapse
|