1
|
Qin S, Gao K, Tian Z. Comprehensive characterization of differential glycation in hepatocellular carcinoma using tissue proteomics with stable isotopic labeling. Anal Bioanal Chem 2024; 416:4531-4541. [PMID: 38922433 DOI: 10.1007/s00216-024-05392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Glycation is a non-enzymatic posttranslational modification coming from the reaction between reducing sugars and free amino groups in proteins, where early glycation products (fructosyl-lysine, FL) and advanced glycation end products (AGEs) are formed. The occurrence of glycation and accumulation of AGEs have been closely associated with hepatocellular carcinoma (HCC). Here, we reported the characterization of differential glycation in HCC using tissue proteomics with stable isotopic labeling; early glycation-modified peptides were enriched with boronate affinity chromatography (BAC), and AGEs-modified peptides were fractionated with basic reversed-phase separation. By this integrated approach, 3717 and 1137 early and advanced glycated peptides corresponding to 4007 sites on 1484 proteins were identified with a false discovery rate (FDR) of no more than 1%. One hundred fifty-five sites were modified with both early and advanced end glycation products. Five early and 7 advanced glycated peptides were quantified to be differentially expressed in HCC tissues relative to paired adjacent tissues. Most (8 out of 10) of the proteins corresponding to the differential glycated peptides have previously been reported with dysregulation in HCC. The results together may deepen our knowledge of glycation as well as provide insights for therapeutics.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
GRP78 protects CHO cells from ribosylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:629-637. [DOI: 10.1016/j.bbamcr.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
|
3
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
4
|
Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. MASS SPECTROMETRY REVIEWS 2014; 33:49-77. [PMID: 24114996 DOI: 10.1002/mas.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/09/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The Maillard reaction includes a complex network of processes affecting food and biopharmaceutical products; it also occurs in living organisms and has been strictly related to cell aging, to the pathogenesis of several (chronic) diseases, such as diabetes, uremia, cataract, liver cirrhosis and various neurodegenerative pathologies, as well as to peritoneal dialysis treatment. Dozens of compounds are involved in this process, among which a number of protein-adducted derivatives that have been simplistically defined as early, intermediate and advanced glycation end-products. In the last decade, various bottom-up proteomic approaches have been successfully used for the identification of glycation/glycoxidation protein targets as well as for the characterization of the corresponding adducts, including assignment of the modified amino acids. This article provides an updated overview of the mass spectrometry-based procedures developed to this purpose, emphasizing their partial limits with respect to current proteomic approaches for the analysis of other post-translational modifications. These limitations are mainly related to the concomitant sheer diversity, chemical complexity, and variable abundance of the various derivatives to be characterized. Some challenges to scientists are finally proposed for future proteomic investigations to solve main drawbacks in this research field.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | | | | | | | | |
Collapse
|
5
|
Holik AK, Rohm B, Somoza MM, Somoza V. N(ε)-Carboxymethyllysine (CML), a Maillard reaction product, stimulates serotonin release and activates the receptor for advanced glycation end products (RAGE) in SH-SY5Y cells. Food Funct 2013; 4:1111-20. [PMID: 23759926 DOI: 10.1039/c3fo60097a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maillard reaction products, which are formed in highly thermally treated foods, are commonly consumed in a Western diet. In this study, we investigated the impact of N(ε)-carboxymethyllysine (CML), a well-characterized product of the Maillard reaction, on the gene regulation of the human neuroblastoma cell line SH-SY5Y. Pathway analysis of data generated from customized DNA microarrays revealed 3 h incubation with 50 μM and 500 μM CML to affect serotonin receptor expression. Further experiments employing qRT-PCR showed an up-regulation of serotonin receptors 2A, 1A and 1B after 0.25 h and 3 h. In addition, 500 μM CML increased serotonin release, thus showing effects of CML not only at a genetic, but also at a functional level. Intracellular calcium mobilization, which mediates serotonin release, was increased by CML at concentrations of 0.05-500 μM. Since calcium mobilization has been linked to the activation of the receptor for advanced glycation end products (RAGE), we further investigated the effects of CML on RAGE expression. RAGE was found to be up-regulated after incubation with 500 μM CML for 0.25 h. Co-incubation with the calcium blocker neomycin for 0.25 h blocked the up-regulation of RAGE and the serotonin receptors 2A, 1A and 1B. These results indicate a possible link between a CML-induced calcium-mediated serotonin release and RAGE.
Collapse
Affiliation(s)
- Ann-Katrin Holik
- Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstraße 14, Vienna, Austria
| | | | | | | |
Collapse
|
6
|
Bhonsle HS, Korwar AM, Kesavan SK, Bhosale SD, Bansode SB, Kulkarni MJ. "Zoom-ln"--A targeted database search for identification of glycation modifications analyzed by untargeted tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:475-481. [PMID: 23654192 DOI: 10.1255/ejms.1203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Post-translational modifications (PTMs) are very important to biological function, however their identification and characterization is technically challenging. In this study, we have identified glycation modifications by nano LC-MSE, a data independent acquisition work flow, followed by database search using the Protein Lynx Global Server (PLGSJ). PLGS search with a complete human protein database hardly identified glycation modifications in a glycated human serum albumin (HSA), which was detected to be glycated by western blotting with advanced glycation end products (AGE) antibody and fluorescence spectroscopy. To overcome this difficulty, "Zoom-In" approach, a targeted database search was used to identify glycation modifications in a glycated HSA, which were further manually validated. This approach was useful for identification of glycation modifications from untargeted tandem mass spectrometryworkflow such as MSE, but may require the development of a new algorithm or an upgrade of the existing software.
Collapse
Affiliation(s)
- Hemangi S Bhonsle
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | | | | | | | | |
Collapse
|
7
|
Sierant M, Kubiak K, Kazmierczak-Baranska J, Warashina M, Kuwabara T, Nawrot B. Evaluation of BACE1 Silencing in Cellular Models. Int J Alzheimers Dis 2009; 2009. [PMID: 20721293 PMCID: PMC2915613 DOI: 10.4061/2009/257403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/01/2009] [Accepted: 06/11/2009] [Indexed: 11/20/2022] Open
Abstract
Beta-secretase (BACE1) is the major enzyme participating in generation of toxic amyloid-beta (Aβ) peptides, identified in amyloid plaques of Alzheimer's disease (AD) brains. Its downregulation results in decreasing secretion of Aβ. Thus, BACE1 silencing by RNAi represents possible strategy for antiamyloid therapy in the treatment of AD. In this study, a series of newly designed sequences of synthetic and vector-encoded siRNAs (pSilencer, pcPURhU6, and lentivirus) were tested against overexpressed and endogenous BACE1 in several cell lines and in adult neural progenitor cells, derived from rat hippocampus. SiRNAs active in human, mouse, and rat cell models were shown to diminish the level of BACE1. In HCN A94 cells, two BACE1-specific siRNAs did not alter the expression of genes of BACE2 and several selected genes involved in neurogenesis (Synapsin I, βIII-Tubulin, Calbidin, NeuroD1, GluR2, CREB, MeCP2, PKR), however, remarkable lowering of SCG10 mRNA, coding protein of stathmin family, important in the development of nervous system, was observed.
Collapse
Affiliation(s)
- Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
RCSN-3 cells are a cloned cell line derived from the substantia nigra of an adult rat. The cell line grows in monolayer and does not require differentiation to express catecholaminergic traits, such as (i) tyrosine hydroxylase; (ii) dopamine release; (iii) dopamine transport; (iv) norepinephrine transport; (v) monoamine oxidase (MAO)-A expression, but not MAO-B; (vi) formation of neuromelanin; (vii) VMAT-2 expression. In addition, this cell line expresses serotonin transporters, divalent metal transporter, DMT1, dopamine receptor 1 mRNA under proliferating conditions, and dopamine receptor 5 mRNA after incubation with dopamine or dicoumarol. Expression of dopamine receptors D(2), D(3) and D(4) mRNA were not detected in proliferating cells or when the cells were treated with dopamine, CuSO(4), dicoumarol or dopamine-copper complex. Angiotensin II receptor mRNA was also found to be expressed, but it underwent down regulation in the presence of aminochrome. Total quinone reductase activity corresponded 94% to DT-diaphorase. The cells also express antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase. This cell line is a suitable in vitro model for studies of dopamine metabolism, since under proliferating conditions the cells express all the pertinent markers.
Collapse
|
9
|
Goos M, Zech WD, Jaiswal MK, Balakrishnan S, Ebert S, Mitchell T, Carrì MT, Keller BU, Nau R. Expression of a Cu,Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of neuroblastoma cells to infectious injury. BMC Infect Dis 2007; 7:131. [PMID: 17997855 PMCID: PMC2211486 DOI: 10.1186/1471-2334-7-131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 11/12/2007] [Indexed: 12/15/2022] Open
Abstract
Background Infections can aggravate the course of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Mutations in the anti-oxidant enzyme Cu,Zn superoxide dismutase (EC 1.15.1.1, SOD1) are associated with familial ALS. Streptococcus pneumoniae, the most frequent respiratory pathogen, causes damage by the action of the cholesterol-binding virulence factor pneumolysin and by stimulation of the innate immune system, particularly via Toll-like-receptor 2. Methods SH-SY5Y neuroblastoma cells transfected with the G93A mutant of SOD1 typical for familial ALS (G93A-SOD1) and SH-SY5Y neuroblastoma cells transfected with wildtype SOD1 were both exposed to pneumolysin and in co-cultures with cultured human macrophages treated with the Toll like receptor 2 agonist N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine × 3 HCl (Pam3CSK4). Cell viability and apoptotic cell death were compared morphologically and by in-situ tailing. With the help of the WST-1 test, cell viability was quantified, and by measurement of neuron-specific enolase in the culture supernatant neuronal damage in co-cultures was investigated. Intracellular calcium levels were measured by fluorescence analysis using fura-2 AM. Results SH-SY5Y neuroblastoma cells transfected with the G93A mutant of SOD1 typical for familial ALS (G93A-SOD1) were more vulnerable to the neurotoxic action of pneumolysin and to the attack of monocytes stimulated by Pam3CSK4 than SH-SY5Y cells transfected with wild-type human SOD1. The enhanced pneumolysin toxicity in G93A-SOD1 neuronal cells depended on the inability of these cells to cope with an increased calcium influx caused by pores formed by pneumolysin. This inability was caused by an impaired capacity of the mitochondria to remove cytoplasmic calcium. Treatment of G93A-SOD1 SH-SY5Y neuroblastoma cells with the antioxidant N-acetylcysteine reduced the toxicity of pneumolysin. Conclusion The particular vulnerability of G93A-SOD1 neuronal cells to hemolysins and inflammation may be partly responsible for the clinical deterioration of ALS patients during infections. These findings link infection and motor neuron disease and suggest early treatment of respiratory infections in ALS patients.
Collapse
Affiliation(s)
- Miriam Goos
- Department of Neurology, Georg-August-University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Piroddi M, Depunzio I, Calabrese V, Mancuso C, Aisa CM, Binaglia L, Minelli A, Butterfield AD, Galli F. Oxidatively-modified and glycated proteins as candidate pro-inflammatory toxins in uremia and dialysis patients. Amino Acids 2007; 32:573-92. [PMID: 17356806 DOI: 10.1007/s00726-006-0433-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/02/2007] [Indexed: 02/07/2023]
Abstract
End stage renal disease (ESRD) patients accumulate blood hallmarks of protein glycation and oxidation. It is now well established that these protein damage products may represent a heterogeneous class of uremic toxins with pro-inflammatory and pro-oxidant properties. These toxins could be directly involved in the pathogenesis of the inflammatory syndrome and vascular complications, which are mainly sustained by the uremic state and bioincompatibility of dialysis therapy. A key underlying event in the toxicity of these proteinaceous solutes has been identified in scavenger receptor-dependent recognition and elimination by inflammatory and endothelial cells, which once activated generate further and even more pronounced protein injuries by a self-feeding mechanism based on inflammation and oxidative stress-derived events. This review examines the literature and provides original information on the techniques for investigating proteinaceous pro-inflammatory toxins. We have also evaluated therapeutic - either pharmacological or dialytic - strategies proposed to alleviate the accumulation of these toxins and to constrain the inflammatory and oxidative burden of ESRD.
Collapse
Affiliation(s)
- M Piroddi
- Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|