1
|
Di Fiore R, Suleiman S, Ellul B, O’Toole SA, Savona-Ventura C, Felix A, Napolioni V, Conlon NT, Kahramanoglu I, Azzopardi MJ, Dalmas M, Calleja N, Brincat MR, Muscat-Baron Y, Sabol M, Dimitrievska V, Yordanov A, Vasileva-Slaveva M, von Brockdorff K, Micallef RA, Kubelac P, Achimas-Cadariu P, Vlad C, Tzortzatou O, Poka R, Giordano A, Felice A, Reed N, Herrington CS, Faraggi D, Calleja-Agius J. GYNOCARE Update: Modern Strategies to Improve Diagnosis and Treatment of Rare Gynecologic Tumors—Current Challenges and Future Directions. Cancers (Basel) 2021; 13:cancers13030493. [PMID: 33514073 PMCID: PMC7865420 DOI: 10.3390/cancers13030493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary More than 50% of all the tumors affecting the female genital tract can be classified as rare and usually have a poor prognosis owing to delayed diagnosis and treatment. Currently, gynecologic cancer research, due to distinct scientific and technological challenges, is lagging behind. Moreover, the overall efforts for addressing these challenges are fragmented across different countries. The European Network for Gynecological Rare Cancer Research: GYNOCARE aims to address these challenges by creating a unique network between key stakeholders covering distinct domains from basic research to cure. GYNOCARE is part of a European Collaboration in Science and Technology (COST) with the aim to focus on the development of new approaches to improve the diagnosis and treatment of rare gynecological tumors. Here, we provide a brief overview describing the goals of this COST Action and its future challenges with the aim to continue fighting against this rare cancer. Abstract More than 50% of all gynecologic tumors can be classified as rare (defined as an incidence of ≤6 per 100,000 women) and usually have a poor prognosis owing to delayed diagnosis and treatment. In contrast to almost all other common solid tumors, the treatment of rare gynecologic tumors (RGT) is often based on expert opinion, retrospective studies, or extrapolation from other tumor sites with similar histology, leading to difficulty in developing guidelines for clinical practice. Currently, gynecologic cancer research, due to distinct scientific and technological challenges, is lagging behind. Moreover, the overall efforts for addressing these challenges are fragmented across different European countries and indeed, worldwide. The GYNOCARE, COST Action CA18117 (European Network for Gynecological Rare Cancer Research) programme aims to address these challenges through the creation of a unique network between key stakeholders covering distinct domains from concept to cure: basic research on RGT, biobanking, bridging with industry, and setting up the legal and regulatory requirements for international innovative clinical trials. On this basis, members of this COST Action, (Working Group 1, “Basic and Translational Research on Rare Gynecological Cancer”) have decided to focus their future efforts on the development of new approaches to improve the diagnosis and treatment of RGT. Here, we provide a brief overview of the current state-of-the-art and describe the goals of this COST Action and its future challenges with the aim to stimulate discussion and promote synergy across scientists engaged in the fight against this rare cancer worldwide.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (R.D.F.); (S.S.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (R.D.F.); (S.S.)
| | - Bridget Ellul
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, Dublin 8, Ireland;
| | - Charles Savona-Ventura
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Ana Felix
- Department of Pathology, Campo dos Mártires da Pátria, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, UNL, 130, 1169-056 Lisboa, Portugal;
| | - Valerio Napolioni
- Genomic And Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Neil T. Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, 9 Dublin, Ireland;
| | - Ilker Kahramanoglu
- Department of Gynecologic Oncology, Emsey Hospital, Istanbul 3400, Turkey;
| | - Miriam J. Azzopardi
- Directorate for Health Information and Research, PTA 1313 G’Mangia, Malta; (M.J.A.); (N.C.)
| | - Miriam Dalmas
- Office of the Chief Medical Officer, Department of Policy in Health, Ministry for Health, 15 Merchants Street, VLT 1171 Valletta, Malta;
| | - Neville Calleja
- Directorate for Health Information and Research, PTA 1313 G’Mangia, Malta; (M.J.A.); (N.C.)
| | - Mark R. Brincat
- Department of Obstetrics and Gynaecology, Mater Dei Hospital, Triq Dun Karm, MSD 2090 Msida, Malta; (M.R.B.); (Y.M.-B.)
| | - Yves Muscat-Baron
- Department of Obstetrics and Gynaecology, Mater Dei Hospital, Triq Dun Karm, MSD 2090 Msida, Malta; (M.R.B.); (Y.M.-B.)
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Kristelle von Brockdorff
- Sir Anthony Mamo Oncology Centre, Department of Oncology and Radiotherapy, Mater Dei Hospital, MSD 2090 Msida, Malta; (K.v.B.); (R.A.M.)
| | - Rachel A. Micallef
- Sir Anthony Mamo Oncology Centre, Department of Oncology and Radiotherapy, Mater Dei Hospital, MSD 2090 Msida, Malta; (K.v.B.); (R.A.M.)
| | - Paul Kubelac
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”. 34–36 Republicii Street, 400015 Cluj-Napoca, Romania;
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.A.-C.); (C.V.)
| | - Patriciu Achimas-Cadariu
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.A.-C.); (C.V.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.A.-C.); (C.V.)
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj Napoca, Romania
| | - Olga Tzortzatou
- Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4 str., 11527 Athens, Greece;
| | - Robert Poka
- Institute of Obstetrics and Gynaecology, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alex Felice
- Centre of Molecular Medicine and BioBanking, Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Nicholas Reed
- Beatson Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK;
| | - C. Simon Herrington
- Cancer Research UK Edinburgh Centre, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - David Faraggi
- Department of Statistics, University of Haifa, Haifa 31905, Israel;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (R.D.F.); (S.S.)
- Correspondence: ; Tel.: +356-2340-1892
| |
Collapse
|
2
|
Chen H, Gao Y, Wu J, Chen Y, Chen B, Hu J, Zhou J. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett 2014; 354:5-11. [PMID: 25128647 DOI: 10.1016/j.canlet.2014.08.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
Abstract
Despite tremendous advances in the targeted therapy for various types of hematological malignancies with successful improvements in the survival rates, emerging resistance issues are startlingly high and novel therapeutic strategies are urgently needed. In addition, chemoprevention is currently becoming an elusive goal. Plant-derived natural products have garnered considerable attention in recent years due to the potential dual functions as chemotherapeutics and dietary chemoprevention. One of the particularly ubiquitous families is the polyphenolic flavonoids. Among them, baicalin and its aglycone baicalein have been widely investigated in hematological malignancies because both of them exhibit remarkable pharmacological properties. This review focuses on the recent achievements in drug discovery research associated with baicalin and baicalein for hematological malignancy therapies. The promising anticancer activities of these two flavonoids targeting diverse signaling pathways and their potential biological mechanisms in different types of hematological malignancies, as well as the combination strategy with baicalin or baicalein as chemotherapeutic adjuvants for recent therapies in these intractable diseases are discussed. Meanwhile, the biotransformation of baicalin and baicalein and the relevant approaches to improve their bioavailability are also summarized.
Collapse
Affiliation(s)
- Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jianlei Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yingyu Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Buyuan Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| |
Collapse
|
3
|
Prasad NB, Somervell H, Tufano RP, Dackiw APB, Marohn MR, Califano JA, Wang Y, Westra WH, Clark DP, Umbricht CB, Libutti SK, Zeiger MA. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin Cancer Res 2008; 14:3327-37. [PMID: 18519760 DOI: 10.1158/1078-0432.ccr-07-4495] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although fine-needle aspiration biopsy is the most useful diagnostic tool in evaluating a thyroid nodule, preoperative diagnosis of thyroid nodules is frequently imprecise, with up to 30% of fine-needle aspiration biopsy cytology samples reported as "suspicious" or "indeterminate." Therefore, other adjuncts, such as molecular-based diagnostic approaches are needed in the preoperative distinction of these lesions. EXPERIMENTAL DESIGN In an attempt to identify diagnostic markers for the preoperative distinction of these lesions, we chose to study by microarray analysis the eight different thyroid tumor subtypes that can present a diagnostic challenge to the clinician. RESULTS Our microarray-based analysis of 94 thyroid tumors identified 75 genes that are differentially expressed between benign and malignant tumor subtypes. Of these, 33 were overexpressed and 42 were underexpressed in malignant compared with benign thyroid tumors. Statistical analysis of these genes, using nearest-neighbor classification, showed a 73% sensitivity and 82% specificity in predicting malignancy. Real-time reverse transcription-PCR validation for 12 of these genes was confirmatory. Western blot and immunohistochemical analyses of one of the genes, high mobility group AT-hook 2, further validated the microarray and real-time reverse transcription-PCR data. CONCLUSIONS Our results suggest that these 12 genes could be useful in the development of a panel of markers to differentiate benign from malignant tumors and thus serve as an important first step in solving the clinical problem associated with suspicious thyroid lesions.
Collapse
Affiliation(s)
- Nijaguna B Prasad
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fehér LZ, Balázs M, Kelemen JZ, Zvara A, Németh I, Varga-Orvos Z, Puskás LG. Improved DOP-PCR-based representational whole-genome amplification using quantitative real-time PCR. ACTA ACUST UNITED AC 2006; 15:43-8. [PMID: 16531768 DOI: 10.1097/00019606-200603000-00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In many cases, only a minute amount of partially degraded genomic DNA can be extracted from archived clinical samples. Diverse whole-genome amplification methods are applied to provide sufficient amount of DNA for comparative genome hybridization, single-nucleotide polymorphism, and microsatellite analyses. In these applications, the reliability of the amplification techniques is particularly important. In PCR-based approaches, the plateau effect can seriously alter the original relative copy number of certain chromosomal regions. To eliminate this distorting effect, we improved the standard degenerate oligonucleotide-primed PCR (DOP-PCR) technique by following the amplification status with quantitative real-time PCR (QRT-PCR). With real-time detection of the products, we could eliminate DNA overamplification. Probes were prepared from 10 different tumor samples: primary and metastatic melanoma tissues, epidermoid and bronchioloalveolar lung carcinomas, 2 renal cell carcinomas, 2 colorectal carcinomas, and a Conn and Cushing adenoma. Probes were generated by using nonamplified and amplified genomic DNA with DOP-PCR and DOP-PCR combined with QRT-PCR. To demonstrate the reliability of the QRT-PCR based amplification protocol, altogether 152 relative copy number changes of 44 regions were determined. There was 85.6% concordance in copy number alterations between the QRT-PCR protocol and the nonamplified samples, whereas this value was only 63.8% for the traditional DOP-PCR. Our results demonstrate that our protocol preserves the original copy number of different chromosomal regions in amplified genomic DNA than standard DOP-PCR techniques more accurately.
Collapse
Affiliation(s)
- Liliána Z Fehér
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|