1
|
Villa SM, Chen JZ, Kwong Z, Acosta A, Vega NM, Gerardo NM. Specialized acquisition behaviors maintain reliable environmental transmission in an insect-microbial mutualism. Curr Biol 2023:S0960-9822(23)00724-8. [PMID: 37385254 DOI: 10.1016/j.cub.2023.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
Understanding how horizontally transmitted mutualisms are maintained is a major focus of symbiosis research.1,2,3,4 Unlike vertical transmission, hosts that rely on horizontal transmission produce symbiont-free offspring that must find and acquire their beneficial microbes from the environment. This transmission strategy is inherently risky since hosts may not obtain the right symbiont every generation. Despite these potential costs, horizontal transmission underlies stable mutualisms involving a large diversity of both plants and animals.5,6,7,8,9 One largely unexplored way horizontal transmission is maintained is for hosts to evolve sophisticated mechanisms to consistently find and acquire specific symbionts from the environment. Here, we examine this possibility in the squash bug Anasa tristis, an insect pest that requires bacterial symbionts in the genus Caballeronia10 for survival and development.11 We conduct a series of behavioral and transmission experiments that track strain-level transmission in vivo among individuals in real-time. We demonstrate that nymphs can accurately find feces from adult bugs in both the presence and absence of those adults. Once nymphs locate the feces, they deploy feeding behavior that results in nearly perfect symbiont acquisition success. We further demonstrate that nymphs can locate and feed on isolated, cultured symbionts in the absence of feces. Finally, we show this acquisition behavior is highly host specific. Taken together, our data describe not only the evolution of a reliable horizontal transmission strategy, but also a potential mechanism that drives patterns of species-specific microbial communities among closely related, sympatric host species.
Collapse
Affiliation(s)
- Scott M Villa
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA; Department of Biology, Davidson College, 209 Ridge Rd., Davidson, NC 28035, USA.
| | - Jason Z Chen
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Zeeyong Kwong
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Alice Acosta
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Vega
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Ge C, Yu Z, Sheng H, Shen X, Sun X, Zhang Y, Yan Y, Wang J, Yuan Q. Redesigning regulatory components of quorum-sensing system for diverse metabolic control. Nat Commun 2022; 13:2182. [PMID: 35449138 PMCID: PMC9023504 DOI: 10.1038/s41467-022-29933-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) is a ubiquitous cell–cell communication mechanism that can be employed to autonomously and dynamically control metabolic fluxes. However, since the functions of genetic components in the circuits are not fully understood, the developed QS circuits are still less sophisticated for regulating multiple sets of genes or operons in metabolic engineering applications. Here, we discover the regulatory roles of a CRP-binding site and the lux box to −10 region within luxR-luxI intergenic sequence in controlling the lux-type QS promoters. By varying the numbers of the CRP-binding site and redesigning the lux box to −10 site sequence, we create a library of QS variants that possess both high dynamic ranges and low leakiness. These circuits are successfully applied to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthetic pathways in Escherichia coli. This work expands the toolbox for dynamic control of multiple metabolic fluxes under complex metabolic background and presents paradigms to engineer metabolic pathways for high-level synthesis of target products. Existing quorum sensing (QS) circuits are less sophisticated for regulating multiple sets of genes or operons. Here, the authors redesign the luxR-luxI intergenic sequence of the lux-type QS system and apply it to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthesis in E. coli.
Collapse
Affiliation(s)
- Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Host-Like Conditions Are Required for T6SS-Mediated Competition among Vibrio fischeri Light Organ Symbionts. mSphere 2021; 6:e0128820. [PMID: 34287008 PMCID: PMC8386388 DOI: 10.1128/msphere.01288-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria employ diverse competitive strategies to enhance fitness and promote their own propagation. However, little is known about how symbiotic bacteria modulate competitive mechanisms as they compete for a host niche. The bacterium Vibrio fischeri forms a symbiotic relationship with marine animals and encodes a type VI secretion system (T6SS), which is a contact-dependent killing mechanism used to eliminate competitors during colonization of the Euprymna scolopes squid light organ. Like other horizontally acquired symbionts, V. fischeri experiences changes in its physical and chemical environment during symbiosis establishment. Therefore, we probed both environmental and host-like conditions to identify ecologically relevant cues that control T6SS-dependent competition during habitat transition. Although the T6SS did not confer a competitive advantage for V. fischeri strain ES401 under planktonic conditions, a combination of both host-like pH and viscosity was necessary for T6SS competition. For ES401, high viscosity activates T6SS expression and neutral/acidic pH promotes cell-cell contact for killing, and this pH-dependent phenotype was conserved in the majority of T6SS-encoding strains examined. We also identified a subset of V. fischeri isolates that engaged in T6SS-mediated competition at high viscosity under both planktonic and host-like pH conditions. T6SS phylogeny revealed that strains with pH-dependent phenotypes cluster together to form a subclade within the pH-independent strains, suggesting that V. fischeri may have recently evolved to limit competition to the host niche. IMPORTANCE Bacteria have evolved diverse strategies to compete for limited space and resources. Because these mechanisms can be costly to use, their expression and function are often restricted to specific environments where the benefits outweigh the costs. However, little is known about the specific cues that modulate competitive mechanisms as bacterial symbionts transition between free-living and host habitats. Here, we used the bioluminescent squid and fish symbiont Vibrio fischeri to probe for host and environmental conditions that control interbacterial competition via the type VI secretion system. Our findings identify a new host-specific cue that promotes competition among many but not all V. fischeri isolates, underscoring the utility of studying multiple strains to reveal how competitive mechanisms may be differentially regulated among closely related populations as they evolve to fill distinct niches.
Collapse
|
4
|
Soto W, Nishiguchi MK. Environmental Stress Selects for Innovations That Drive Vibrio Symbiont Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic bacteria in the Vibrionaceae are a dynamic group of γ-Proteobacteria that are commonly found throughout the world. Although they primarily are free-living in the environment, they can be commonly found associated with various Eukarya, either as beneficial or pathogenic symbionts. Interestingly, this dual lifestyle (free-living or in symbiosis) enables the bacteria to have enormous ecological breadth, where they can accommodate a variety of stresses in both stages. Here, we discuss some of the most common stressors that Vibrio bacteria encounter when in their free-living state or associated with an animal host, and how some of the mechanisms that are used to cope with these stressors can be used as an evolutionary advantage that increases their diversity both in the environment and within their specific hosts.
Collapse
|
5
|
Stoy KS, Gibson AK, Gerardo NM, Morran LT. A need to consider the evolutionary genetics of host-symbiont mutualisms. J Evol Biol 2020; 33:1656-1668. [PMID: 33047414 DOI: 10.1111/jeb.13715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long-term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.
Collapse
Affiliation(s)
- Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Amanda K Gibson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
7
|
Pankey MS, Foxall RL, Ster IM, Perry LA, Schuster BM, Donner RA, Coyle M, Cooper VS, Whistler CA. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 2017; 6:e24414. [PMID: 28447935 PMCID: PMC5466423 DOI: 10.7554/elife.24414] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/23/2017] [Indexed: 01/14/2023] Open
Abstract
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.
Collapse
Affiliation(s)
- M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Ian M Ster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
- Graduate Program in Biochemistry, University of New Hampshire, Durham, United States
| | - Lauren A Perry
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Brian M Schuster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Rachel A Donner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Matthew Coyle
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Vaughn S Cooper
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| |
Collapse
|
8
|
Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biol 2016; 14:e2000225. [PMID: 27861590 PMCID: PMC5115861 DOI: 10.1371/journal.pbio.2000225] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023] Open
Abstract
Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions. Studies on the assembly and function of host-microbiota symbioses are inherently complicated by the diverse effects of diet, age, sex, host genetics, and endosymbionts. Central to unraveling one effect from the other is an experimental framework that reduces confounders. Using common rearing conditions across four animal groups (deer mice, flies, mosquitoes, and wasps) that span recent host speciation events to more distantly related host genera, this study tests whether microbial community assembly is generally random with respect to host relatedness or "phylosymbiotic," in which the phylogeny of the host group is congruent with ecological relationships of their microbial communities. Across all four animal groups and one external dataset of great apes, we apply several statistics for analyzing congruencies and demonstrate phylosymbiosis to varying degrees in each group. Moreover, consistent with selection on host–microbiota interactions driving phylosymbiosis, transplanting interspecific microbial communities in mice significantly decreased their ability to digest food. Similarly, wasps that received transplants of microbial communities from different wasp species had lower survival than those given their own microbiota. Overall, this experimental and statistical framework shows how microbial community assembly and functionality across related species can be linked to animal evolution, health, and survival.
Collapse
Affiliation(s)
- Andrew W. Brooks
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin D. Kohl
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert M. Brucker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- The Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts, United States of America
| | - Edward J. van Opstal
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Cavallaro M, Battaglia P, Guerrera MC, Abbate F, Levanti MB, Andaloro F, Germanà A, Laurà R. New data on morphology and ultrastructure of skin photophores in the deep-sea squidHistioteuthis bonnellii(Férussac, 1834), Cephalopoda: Histioteuthidae. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mauro Cavallaro
- Department of Veterinary Sciences; University of Messina; Polo Universitario Annunziata 98168 Messina Italy
| | - Pietro Battaglia
- Laboratory of Ichthyology and Marine Ecology; ISPRA, Via dei Mille 46; Milazzo 98057 Messina Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences; University of Messina; Polo Universitario Annunziata 98168 Messina Italy
| | - Francesco Abbate
- Department of Veterinary Sciences; University of Messina; Polo Universitario Annunziata 98168 Messina Italy
| | - Maria Beatrice Levanti
- Department of Veterinary Sciences; University of Messina; Polo Universitario Annunziata 98168 Messina Italy
| | | | - Antonino Germanà
- Department of Veterinary Sciences; University of Messina; Polo Universitario Annunziata 98168 Messina Italy
| | - Rosaria Laurà
- Department of Veterinary Sciences; University of Messina; Polo Universitario Annunziata 98168 Messina Italy
| |
Collapse
|
10
|
Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis. Front Microbiol 2014; 5:593. [PMID: 25538686 PMCID: PMC4260504 DOI: 10.3389/fmicb.2014.00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.
Collapse
Affiliation(s)
- William Soto
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast Lansing, MI, USA
| | | |
Collapse
|
11
|
Chavez-Dozal AA, Gorman C, Lostroh CP, Nishiguchi MK. Gene-swapping mediates host specificity among symbiotic bacteria in a beneficial symbiosis. PLoS One 2014; 9:e101691. [PMID: 25014649 PMCID: PMC4094467 DOI: 10.1371/journal.pone.0101691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/10/2014] [Indexed: 12/12/2022] Open
Abstract
Environmentally acquired beneficial associations are comprised of a wide variety of symbiotic species that vary both genetically and phenotypically, and therefore have differential colonization abilities, even when symbionts are of the same species. Strain variation is common among conspecific hosts, where subtle differences can lead to competitive exclusion between closely related strains. One example where symbiont specificity is observed is in the sepiolid squid-Vibrio mutualism, where competitive dominance exists among V. fischeri isolates due to subtle genetic differences between strains. Although key symbiotic loci are responsible for the establishment of this association, the genetic mechanisms that dictate strain specificity are not fully understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive hemagglutinin) from mutualistic V. fischeri strains isolated from two geographically distinct squid host species (Euprymna tasmanica-Australia and E. scolopes-Hawaii) to determine whether slight genetic differences regulated host specificity. Through colonization studies performed in naïve squid hatchlings from both hosts, we found that all loci examined are important for specificity and host recognition. Complementation of null mutations in non-native V. fischeri with loci from the native V. fischeri caused a gain in fitness, resulting in competitive dominance in the non-native host. The competitive ability of these symbiotic loci depended upon the locus tested and the specific squid species in which colonization was measured. Our results demonstrate that multiple bacterial genetic elements can determine V. fischeri strain specificity between two closely related squid hosts, indicating how important genetic variation is for regulating conspecific beneficial interactions that are acquired from the environment.
Collapse
Affiliation(s)
- Alba A. Chavez-Dozal
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, United States of America
| | - Clayton Gorman
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, United States of America
| | - C. Phoebe Lostroh
- Colorado College, Department of Biology, Colorado Springs, Colorado, United States of America
| | - Michele K. Nishiguchi
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
12
|
Soto W, Rivera FM, Nishiguchi MK. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. MICROBIAL ECOLOGY 2014; 67:700-721. [PMID: 24402368 PMCID: PMC3965629 DOI: 10.1007/s00248-013-0356-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create 24 lines that were serially passaged through the non-native host Euprymna tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between "ES" (E. scolopes) and "ET" (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties--time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines--suggest that increased light intensity per se was not the only important factor. Convergent evolution implies that gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate that numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification.
Collapse
Affiliation(s)
- William Soto
- University of Minnesota-Twin Cities, Department of Ecology, Evolution, & Behavior, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, (612) 626-6200
| | - Ferdinand M. Rivera
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, (575) 646-3721 FAX (575) 646-5665
| | - Michele K. Nishiguchi
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, (575) 646-3721 FAX (575) 646-5665
| |
Collapse
|
13
|
Allcock AL, Lindgren A, Strugnell J. The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review. J NAT HIST 2014. [DOI: 10.1080/00222933.2013.825342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Abucayon E, Ke N, Cornut R, Patelunas A, Miller D, Nishiguchi MK, Zoski CG. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Anal Chem 2013; 86:498-505. [PMID: 24328342 DOI: 10.1021/ac402475m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 10(6) molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.
Collapse
Affiliation(s)
- Erwin Abucayon
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Vibrio fischeri is a bioluminescent, Gram-negative marine bacterium that can be found free living and in a mutualistic association with certain squids and fishes. Over the past decades, the study of V. fischeri has led to important discoveries about bioluminescence, quorum sensing, and the mechanisms that underlie beneficial host-microbe interactions. This chapter highlights what has been learned about metabolic pathways in V. fischeri, and how this information contributes to a broader understanding of the role of bacterial metabolism in host colonization by both beneficial and pathogenic bacteria, as well as in the growth and survival of free-living bacteria.
Collapse
|
16
|
Chavez-Dozal A, Hogan D, Gorman C, Quintanal-Villalonga A, Nishiguchi MK. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol Ecol 2012; 81:562-73. [PMID: 22486781 DOI: 10.1111/j.1574-6941.2012.01386.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.
Collapse
Affiliation(s)
- Alba Chavez-Dozal
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | | | | | | | | |
Collapse
|
17
|
Soto W, Punke EB, Nishiguchi MK. Evolutionary perspectives in a mutualism of sepiolid squid and bioluminescent bacteria: combined usage of microbial experimental evolution and temporal population genetics. Evolution 2012; 66:1308-21. [PMID: 22519773 PMCID: PMC3561466 DOI: 10.1111/j.1558-5646.2011.01547.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.
Collapse
Affiliation(s)
- W. Soto
- Department of Biology, New Mexico State University, Las Cruces, NM 88003–8001
| | - E. B. Punke
- Department of Biology, New Mexico State University, Las Cruces, NM 88003–8001
| | - M. K. Nishiguchi
- Department of Biology, New Mexico State University, Las Cruces, NM 88003–8001
| |
Collapse
|
18
|
Screening of antimicrobial potential of polysaccharide from cuttlebone and methanolic extract from body tissue of Sepia prashadi Winkworth, 1936. Asian Pac J Trop Biomed 2011. [DOI: 10.1016/s2221-1691(11)60163-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations. ISME JOURNAL 2011; 6:352-62. [PMID: 21776028 DOI: 10.1038/ismej.2011.92] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The evolutionary relationship among Vibrio fischeri isolates obtained from the light organs of Euprymna scolopes collected around Oahu, Hawaii, were examined in this study. Phylogenetic reconstructions based on a concatenation of fragments of four housekeeping loci (recA, mdh, katA, pyrC) identified one monophyletic group ('Group-A') of V. fischeri from Oahu. Group-A V. fischeri strains could also be identified by a single DNA fingerprint type. V. fischeri strains with this fingerprint type had been observed to be at a significantly higher abundance than other strains in the light organs of adult squid collected from Maunalua Bay, Oahu, in 2005. We hypothesized that these previous observations might be related to a growth/survival advantage of the Group-A strains in the Maunalua Bay environments. Competition experiments between Group-A strains and non-Group-A strains demonstrated an advantage of the former in colonizing juvenile Maunalua Bay hosts. Growth and survival assays in Maunalua Bay seawater microcosms revealed a reduced fitness of Group-A strains relative to non-Group-A strains. From these results, we hypothesize that there may exist trade-offs between growth in the light organ and in seawater environments for local V. fischeri strains from Oahu. Alternatively, Group-A V. fischeri may represent an example of rapid, evolutionarily significant, specialization of a horizontally transmitted symbiont to a local host population.
Collapse
|
20
|
Abstract
The evolutionary history of leeches is employed as a general framework for understanding more than merely the systematics of this charismatic group of annelid worms, and serves as a basis for understanding blood-feeding related correlates ranging from the specifics of gut-associated bacterial symbionts to salivary anticoagulant peptides. A variety of medicinal leech families were examined for intraluminal crop bacterial symbionts. Species of Aeromonas and Bacteroidetes were characterized with DNA gyrase B and 16S rDNA. Bacteroidetes isolates were found to be much more phylogenetically diverse and suggested stronger evidence of phylogenetic correlation than the gammaproteobacteria. Patterns that look like co-speciation with limited taxon sampling do not in the full context of phylogeny. Bioactive compounds that are expressed as gene products, like those in leech salivary glands, have 'passed the test' of evolutionary selection. We produced and bioinformatically mined salivary gland EST libraries across medicinal leech lineages to experimentally and statistically evaluate whether evolutionary selection on peptides can identify structure-function activities of known therapeutically relevant bioactive compounds like antithrombin, hirudin and antistasin. The combined information content of a well corroborated leech phylogeny and broad taxonomic coverage of expressed proteins leads to a rich understanding of evolution and function in leech history.
Collapse
|
21
|
Contribution of rapid evolution of the luxR-luxI intergenic region to the diverse bioluminescence outputs of Vibrio fischeri strains isolated from different environments. Appl Environ Microbiol 2011; 77:2445-57. [PMID: 21317265 DOI: 10.1128/aem.02643-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri serves as a valuable model of bacterial bioluminescence, its regulation, and its functional significance. Light output varies more than 10,000-fold in wild-type isolates from different environments, yet dim and bright strains have similar organization of the light-producing lux genes, with the activator-encoding luxR divergently transcribed from luxICDABEG. By comparing the genomes of bright strain MJ11 and the dimmer ES114, we found that the lux region has diverged more than most shared orthologs, including those flanking lux. Divergence was particularly high in the intergenic sequence between luxR and luxI. Analysis of the intergenic lux region from 18 V. fischeri strains revealed that, with one exception, sequence divergence essentially mirrored strain phylogeny but with relatively high substitution rates. The bases conserved among intergenic luxR-luxI sequences included binding sites for known regulators, such as LuxR and ArcA, and bases of unknown significance, including a striking palindromic repeat. By using this collection of diverse luxR-luxI regions, we found that expression of P(luxI)-lacZ but not P(luxR)-lacZ transcriptional reporters correlated with the luminescence output of the strains from which the promoters originated. We also found that exchange of a small stretch of the luxI-luxR intergenic region between two strains largely reversed their relative brightness. Our results show that the luxR-luxI intergenic region contributes significantly to the variable luminescence output among V. fischeri strains isolated from different environments, although other elements of strain backgrounds also contribute. Moreover, the lux system appears to have evolved relatively rapidly, suggesting unknown environment-specific selective pressures.
Collapse
|
22
|
Zamborsky DJ, Nishiguchi MK. Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: environment drives specificity among sympatric species. Appl Environ Microbiol 2011; 77:642-9. [PMID: 21075896 PMCID: PMC3020525 DOI: 10.1128/aem.02105-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/02/2010] [Indexed: 11/20/2022] Open
Abstract
Bobtail squid from the genera Sepiola and Rondeletiola (Cephalopoda: Sepiolidae) form mutualistic associations with luminous Gram-negative bacteria (Gammaproteobacteria: Vibrionaceae) from the genera Vibrio and Photobacterium. Symbiotic bacteria proliferate inside a bilobed light organ until they are actively expelled by the host into the surrounding environment on a diel basis. This event results in a dynamic symbiont population with the potential to establish the symbiosis with newly hatched sterile (axenic) juvenile sepiolids. In this study, we examined the genetic diversity found in populations of sympatric sepiolid squid species and their symbionts by the use of nested clade analysis with multiple gene analyses. Variation found in the distribution of different species of symbiotic bacteria suggests a strong influence of abiotic factors in the local environment, affecting bacterial distribution among sympatric populations of hosts. These abiotic factors include temperature differences incurred by a shallow thermocline, as well as a lack of strong coastal water movement accompanied by seasonal temperature changes in overlapping niches. Host populations are stable and do not appear to have a significant role in the formation of symbiont populations relative to their distribution across the Mediterranean Sea. Additionally, all squid species examined (Sepiola affinis, S. robusta, S. ligulata, S. intermedia, and Rondeletiola minor) are genetically distinct from one another regardless of location and demonstrate very little intraspecific variation within species. These findings suggest that physical boundaries and distance in relation to population size, and not host specificity, are important factors in limiting or defining gene flow within sympatric marine squids and their associated bacterial symbionts in the Mediterranean Sea.
Collapse
Affiliation(s)
- D. J. Zamborsky
- Department of Biology, MSC 3AF, New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003-8001
| | - M. K. Nishiguchi
- Department of Biology, MSC 3AF, New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003-8001
| |
Collapse
|
23
|
Guerrero-Ferreira RC, Nishiguchi MK. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:514-523. [PMID: 20680094 PMCID: PMC2911791 DOI: 10.1111/j.1758-2229.2009.00077.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Luminescent bacteria (gamma-Proteobacteria: Vibrionaceae) are found in complex bilobed light organs of both sepiolid and loliginid squids (Mollusca: Cephalopoda). Despite the existence of multiple strain colonization between Vibrio bacteria and loliginid squids, specificity at the genus level still exists and may influence interactions between symbiotic and free-living stages of the symbiont. The environmentally transmitted behaviour of Vibrio symbionts bestows a certain degree of recognition that exists prior and subsequent to the colonization process. Therefore, we identified bacterial genes required for successful colonization of loliginid light organs by examining transcripts solely expressed in either the light organ or free-living stages. Selective capture of transcribed sequences (SCOTS) was used to differentiate genes expressed by the same bacterium when thriving in two different environments (i.e. loliginid light organs and seawater). Genes specific for squid light organs included vulnibactin synthetase, outer membrane protein W and dihydroxy dehydratase, which have been associated with the maintenance of bacterial host associations in other systems. In contrast, genes that were solely expressed in the free-living condition consisted of transcripts recognized as important factors for bacterial survival in the environment. These transcripts included genes for methyl accepting chemotaxis proteins, arginine decarboxylase and chitinase. These results provide valuable information regarding mechanisms determining specificity, establishment, and maintenance of bacteria-squid associations.
Collapse
|
24
|
Schuster BM, Perry LA, Cooper VS, Whistler CA. Breaking the language barrier: experimental evolution of non-native Vibrio fischeri in squid tailors luminescence to the host. Symbiosis 2010. [DOI: 10.1007/s13199-010-0074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Soto W, Lostroh CP, Nishiguchi MK. Physiological Responses to Stress in the Vibrionaceae. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-9449-0_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Ariyakumar DS, Nishiguchi MK. Characterization of two host-specific genes, mannose-sensitive hemagglutinin (mshA) and uridyl phosphate dehydrogenase (UDPDH) that are involved in the Vibrio fischeri-Euprymna tasmanica mutualism. FEMS Microbiol Lett 2009; 299:65-73. [PMID: 19686342 PMCID: PMC2888660 DOI: 10.1111/j.1574-6968.2009.01732.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
While much has been known about the mutualistic associations between the sepiolid squid Euprymna tasmanica and the luminescent bacterium, Vibrio fischeri, less is known about the connectivity between the microscopic and molecular basis of initial attachment and persistence in the light organ. Here, we examine the possible effects of two symbiotic genes on specificity and biofilm formation of V. fischeri in squid light organs. Uridine diphosphate glucose-6-dehydrogenase (UDPDH) and mannose-sensitive hemagglutinin (mshA) mutants were generated in V. fischeri to determine whether each gene has an effect on host colonization, specificity, and biofilm formation. Both squid light organ colonization assays and transmission electron microscopy confirmed differences in host colonization between wild-type and mutant strains, and also demonstrated the importance of both UDPDH and mshA gene expression for successful light organ colonization. This furthers our understanding of the genetic factors playing important roles in this environmentally transmitted symbiosis.
Collapse
|
27
|
Wollenberg MS, Ruby EG. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations. Appl Environ Microbiol 2009; 75:193-202. [PMID: 18997024 PMCID: PMC2612210 DOI: 10.1128/aem.01792-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 10/27/2008] [Indexed: 11/20/2022] Open
Abstract
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.
Collapse
Affiliation(s)
- M S Wollenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706-1521, USA
| | | |
Collapse
|
28
|
Soto W, Gutierrez J, Remmenga MD, Nishiguchi MK. Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. MICROBIAL ECOLOGY 2009; 57:140-50. [PMID: 18587609 PMCID: PMC2703662 DOI: 10.1007/s00248-008-9412-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 05/22/2008] [Indexed: 05/14/2023]
Abstract
Vibrio fischeri is a bioluminescent bacterial symbiont of sepiolid squids (Cephalopoda: Sepiolidae) and monocentrid fishes (Actinopterygii: Monocentridae). V. fischeri exhibit competitive dominance within the allopatrically distributed squid genus Euprymna, which have led to the evolution of V. fischeri host specialists. In contrast, the host genus Sepiola contains sympatric species that is thought to have given rise to V. fischeri that have evolved as host generalists. Given that these ecological lifestyles may have a direct effect upon the growth spectrum and survival limits in contrasting environments, optimal growth ranges were obtained for numerous V. fischeri isolates from both free-living and host environments. Upper and lower limits of growth were observed in sodium chloride concentrations ranging from 0.0% to 9.0%. Sepiola symbiotic isolates possessed the least variation in growth throughout the entire salinity gradient, whereas isolates from Euprymna were the least uniform at <2.0% NaCl. V. fischeri fish symbionts (CG101 and MJ101) and all free-living strains were the most dissimilar at >5.0% NaCl. Growth kinetics of symbiotic V. fischeri strains were also measured under a range of salinity and temperature combinations. Symbiotic V. fischeri ES114 and ET101 exhibited a synergistic effect for salinity and temperature, where significant differences in growth rates due to salinity existed only at low temperatures. Thus, abiotic factors such as temperature and salinity have differential effects between free-living and symbiotic strains of V. fischeri, which may alter colonization efficiency prior to infection.
Collapse
Affiliation(s)
- W Soto
- Department of Biology, MSC 3AF, New Mexico State University, Box 30001, Las Cruces, NM, 88003-8001, USA
| | | | | | | |
Collapse
|
29
|
Browne-Silva J, Nishiguchi MK. Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio fischeri. Int J Syst Evol Microbiol 2008; 58:1292-9. [PMID: 18523167 PMCID: PMC3374725 DOI: 10.1099/ijs.0.65370-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiosis between the bobtail squid Euprymna scolopes (Mollusca: Cephalopoda) and Vibrio fischeri bacteria has been a well-studied model for understanding the molecular mechanisms of colonization and adherence to host cells. For example, pilin expression has been observed to cause subtle variation in colonization for a number of Gram-negative bacteria with eukaryotic hosts. To investigate variation amongst pil genes of closely related strains of vibrios, we amplified pil genes A, B, C and D to determine orientation and sequence similarity to other symbiotic vibrios. The pilA gene was found to be upstream from all other pil genes, and not contiguous with the rest of the operon. The pilB, pilC and pilD loci were flanked at the 3' end by yacE, followed by a conserved hypothetical gene. DNA sequences of each pil gene were aligned and analysed phylogenetically using parsimony for both individual and combined gene trees. Results demonstrate that certain pil loci (pilB and pilD) are conserved among strains of V. fischeri, but pilC differs in sequence between symbiotic and free-living strains. Phylogenetic analysis of all pil genes gives better resolution of Indo-west Pacific V. fischeri symbionts compared with analysis of the 16S rRNA gene. Hawaiian and Australian symbiotic strains form one monophyletic tree, supporting the hypothesis that V. fischeri strain specificity is selected by the geographical location of their hosts and is not related to specific squid species.
Collapse
Affiliation(s)
- J Browne-Silva
- Department of Biology, New Mexico State University, Box 30001, MSC 3AF, Las Cruces, NM 88003-8001, USA
| | | |
Collapse
|
30
|
Guerrero-Ferreira RC, Nishiguchi MK. Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda). Cladistics 2007; 23:497-506. [PMID: 22707847 PMCID: PMC3374722 DOI: 10.1111/j.1096-0031.2007.00155.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Luminescent bacteria in the family Vibrionaceae (Bacteria: γ-Proteobacteria) are commonly found in complex, bilobed light organs of sepiolid and loliginid squids. Although morphology of these organs in both families of squid is similar, the species of bacteria that inhabit each host has yet to be verified. We utilized sequences of 16S ribosomal RNA, luciferase α-subunit (luxA) and the glyceraldehyde-3-phosphate dehydrogenase (gapA) genes to determine phylogenetic relationships between 63 strains of Vibrio bacteria, which included representatives from different environments as well as unidentified luminescent isolates from loliginid and sepiolid squid from Thailand. A combined phylogenetic analysis was used including biochemical data such as carbon use, growth and luminescence. Results demonstrated that certain symbiotic Thai isolates found in the same geographic area were included in a clade containing bacterial species phenotypically suitable to colonize light organs. Moreover, multiple strains isolated from a single squid host were identified as more than one bacteria species in our phylogeny. This research presents evidence of species of luminescent bacteria that have not been previously described as symbiotic strains colonizing light organs of Indo-West Pacific loliginid and sepiolid squids, and supports the hypothesis of a non-species-specific association between certain sepiolid and loliginid squids and marine luminescent bacteria.
Collapse
Affiliation(s)
- R. C. Guerrero-Ferreira
- Department of Biology, New Mexico State University, Box 30001, MSC 3AF, Las Cruces, NM 88003-8001, USA
| | - M. K. Nishiguchi
- Department of Biology, New Mexico State University, Box 30001, MSC 3AF, Las Cruces, NM 88003-8001, USA
| |
Collapse
|
31
|
Jones BW, Nishiguchi MK. Differentially expressed genes reveal adaptations between free-living and symbiotic niches of Vibrio fischeri in a fully established mutualism. Can J Microbiol 2007; 52:1218-27. [PMID: 17473891 DOI: 10.1139/w06-088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major force driving in the innovation of mutualistic symbioses is the number of adaptations that both organisms must acquire to provide overall increased fitness for a successful partnership. Many of these symbioses are relatively dependent on the ability of the symbiont to locate a host (specificity), as well as provide some novel capability upon colonization. The mutualism between sepiolid squids and members of the Vibrionaceae is a unique system in which development of the symbiotic partnership has been studied in detail, but much remains unknown about the genetics of symbiont colonization and persistence within the host. Using a method that captures exclusively expressed transcripts in either free-living or host-associated strains of Vibrio fischeri, we identified and verified expression of genes differentially expressed in both states from two symbiotic strains of V. fischeri. These genes provide a glimpse into the microhabitat V. fischeri encounters in both free-living seawater and symbiotic host light organ-associated habitats, providing insight into the elements necessary for local adaptation and the evolution of host specificity in this unique mutualism.
Collapse
Affiliation(s)
- B W Jones
- Department of Biology, New Mexico State University, Las Cruces 88003-8001, USA
| | | |
Collapse
|
32
|
Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants. ISME JOURNAL 2007; 1:313-20. [PMID: 18043642 DOI: 10.1038/ismej.2007.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Symbiont choice has been proposed to play an important role in shaping many symbiotic relationships, including the fungus-growing ant-microbe mutualism. Over millions of years, fungus-growing ants have defended their fungus gardens from specialized parasites with antibiotics produced by an actinomycete bacterial mutualist (genus Pseudonocardia). Despite the potential of being infected by phylogenetically diverse strains of parasites, each ant colony maintains only a single Pseudonocardia symbiont strain, which is primarily vertically transmitted between colonies by the founding queens. In this study, we show that Acromyrmex leaf-cutter ants are able to differentiate between their native actinomycete strain and a variety of foreign strains isolated from sympatric and allopatric Acromyrmex species, in addition to strains originating from other fungus-growing ant genera. The recognition mechanism is sufficiently sensitive for the ants to discriminate between closely related symbiont strains. Our findings suggest that symbiont recognition may play a crucial role in the fungus-growing ant-bacterium mutualism, likely allowing the ants to retain ecological flexibility necessary for defending their garden from diverse parasites and, at the same time, resolve potential conflict that can arise from rearing competing symbiont strains.
Collapse
|
33
|
Jones BW, Lopez JE, Huttenburg J, Nishiguchi MK. Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis. Mol Ecol 2006; 15:4317-29. [PMID: 17107468 DOI: 10.1111/j.1365-294x.2006.03073.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Squids from the genus Euprymna (Cephalopoda: Sepiolidae) and their symbiotic bacteria Vibrio fischeri form a mutualism in which vibrios inhabit a complex light organ within the squid host. A host-mediated daily expulsion event seeds surrounding seawater with symbiotically capable V. fischeri that environmentally colonize newly hatched axenic Euprymna juveniles. Competition experiments using native and non-native Vibrio have shown that this expulsion/re-colonization phenomenon has led to cospeciation in this system in the Pacific Ocean; however, the genetic architecture of these symbiotic populations has not been determined. Using genetic diversity and nested clade analyses we have examined the variation and history of three allopatric Euprymna squid species (E. scolopes of Hawaii, E. hyllebergi of Thailand, and E. tasmanica from Australia) and their respective Vibrio symbionts. Euprymna populations appear to be very genetically distinct from each other, exhibiting little or no migration over large geographical distances. In contrast, Vibrio symbiont populations contain more diverse haplotypes, suggesting both host presence and unidentified factors facilitating long-distance migration structure in Pacific Vibrio populations. Findings from this study highlight the importance of how interactions between symbiotic organisms can unexpectedly shape population structure in phylogeographical studies.
Collapse
Affiliation(s)
- B W Jones
- Department of Biology, MSC 3AF, New Mexico State University, PO Box 30001, Las Cruces, NM 88003-8001, USA
| | | | | | | |
Collapse
|
34
|
Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G, Roeser-Mueller K, Strohm E. 'Candidatus Streptomyces philanthi', an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 2006; 56:1403-1411. [PMID: 16738121 DOI: 10.1099/ijs.0.64117-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic interactions with bacteria are essential for the survival and reproduction of many insects. The European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) engages in a highly specific association with bacteria of the genus Streptomyces that appears to protect beewolf offspring against infection by pathogens. Using transmission and scanning electron microscopy, the bacteria were located in the antennal glands of female wasps, where they form dense cell clusters. Using genetic methods, closely related streptomycetes were found in the antennae of 27 Philanthus species (including two subspecies of P. triangulum from distant localities). In contrast, no endosymbionts could be detected in the antennae of other genera within the subfamily Philanthinae (Aphilanthops, Clypeadon and Cerceris). On the basis of morphological, genetic and ecological data, 'Candidatus Streptomyces philanthi' is proposed. 16S rRNA gene sequence data are provided for 28 ecotypes of 'Candidatus Streptomyces philanthi' that reside in different host species and subspecies of the genus Philanthus. Primers for the selective amplification of 'Candidatus Streptomyces philanthi' and an oligonucleotide probe for specific detection by fluorescence in situ hybridization (FISH) are described.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- University of Würzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, D-97074 Würzburg, Germany
| | - Wolfgang Goettler
- University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany
- University of Würzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, D-97074 Würzburg, Germany
| | - Colin Dale
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | | - Gudrun Herzner
- University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany
| | - Kerstin Roeser-Mueller
- University of Würzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, D-97074 Würzburg, Germany
| | - Erhard Strohm
- University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany
| |
Collapse
|
35
|
Perry LL, Bright NG, Carroll RJ, Scott MC, Allen MS, Applegate BM. Molecular characterization of autoinduction of bioluminescence in the Microtox indicator strain Vibrio fischeri ATCC 49387. Can J Microbiol 2006; 51:549-57. [PMID: 16175203 DOI: 10.1139/w05-019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated attempts to clone the luxI from Vibrio fischeri ATCC 49387 failed to produce a clone carrying a functional LuxI. Sequence data from the clones revealed the presence of a polymorphism when compared with previously published luxI sequences, prompting further characterization of bioluminescence regulation in V. fischeri ATCC 49387. Further investigation of V. fischeri ATCC 49387 revealed that its LuxI protein lacks detectable LuxI activity due to the presence of a glutamine residue at position 125 in the deduced amino acid sequence. Specific bioluminescence in V. fischeri ATCC 49387 increases with increasing cell density, indicative of a typical autoinduction response. However, conditioned medium from this strain does not induce bioluminescence in an ATCC 49387 luxR-plux-based acyl homoserine lactone reporter strain, but does induce bioluminescence in ATCC 49387. It has been previously shown that a V. fischeri MJ-1 luxI mutant exhibits autoinduction of bioluminescence through N-octanoyl-L-homoserine lactone, the product of the AinS autoinducer synthase. However, a bioreporter based on luxR-plux from V. fischeri ATCC 49387 responded poorly to conditioned medium from V. fischeri ATCC 49387 and also responded poorly to authentic N-octanoyl-DL-homoserine lactone. A similar MJ-1-based bioreporter showed significant induction under the same conditions. A putative ainS gene cloned from ATCC 49387, unlike luxI from ATCC 49387, expresses V. fischeri autoinducer synthase activity in Escherichia coli. This study suggests that a regulatory mechanism independent of LuxR and LuxI but possibly involving AinS is responsible for the control of autoinduction of bioluminescence in V. fischeri ATCC 49387.
Collapse
Affiliation(s)
- Lynda L Perry
- Department of Food Science, Purdue University, IN 47907-2009, USA
| | | | | | | | | | | |
Collapse
|
36
|
Nishiguchi MK, Lopez JE, Boletzky SV. Enlightenment of old ideas from new investigations: more questions regarding the evolution of bacteriogenic light organs in squids. Evol Dev 2004; 6:41-9. [PMID: 15108817 PMCID: PMC3374719 DOI: 10.1111/j.1525-142x.2004.04009.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioluminescence is widespread among many different types of marine organisms. Metazoans contain two types of luminescence production, bacteriogenic (symbiotic with bacteria) or autogenic, via the production of a luminous secretion or the intrinsic properties of luminous cells. Several species in two families of squids, the Loliginidae and the Sepiolidae (Mollusca: Cephalopoda) harbor bacteriogenic light organs that are found central in the mantle cavity. These light organs are exceptional in function, that is, the morphology and the complexity suggests that the organ has evolved to enhance and direct light emission from bacteria that are harbored inside. Although light organs are widespread among taxa within the Sepiolidae, the origin and development of this important feature is not well studied. We compared light organ morphology from several closely related taxa within the Sepiolidae and combined molecular phylogenetic data using four loci (nuclear ribosomal 28S rRNA and the mitochondrial cytochrome c oxidase subunit I and 12S and 16S rRNA) to determine whether this character was an ancestral trait repeatedly lost among both families or whether it evolved independently as an adaptation to the pelagic and benthic lifestyles. By comparing other closely related extant taxa that do not contain symbiotic light organs, we hypothesized that the ancestral state of sepiolid light organs most likely evolved from part of a separate accessory gland open to the environment that allowed colonization of bacteria to occur and further specialize in the eventual development of the modern light organ.
Collapse
Affiliation(s)
- M K Nishiguchi
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, USA.
| | | | | |
Collapse
|
37
|
Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 2003; 69:2058-64. [PMID: 12676683 PMCID: PMC154811 DOI: 10.1128/aem.69.4.2058-2064.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Vesicomyidae) depends for its nutrition on sulfur-oxidizing symbiotic bacteria housed in its gill tissues. This symbiont is transmitted vertically between generations via the clam's eggs; however, it remains uncertain whether occasionally symbionts are horizontally transmitted or acquired from the environment. If symbionts are transmitted strictly vertically through the egg cytoplasm, inheritance of symbiont lineages should behave as if coupled to the host's maternally inherited mitochondrial DNA. This coupling would be obscured, however, with low rates of horizontal or environmental transfers, the equivalent of recombination between host lineages. Population genetic analyses of C. magnifica clams and associated symbionts from eastern Pacific hydrothermal vents clearly supported the hypothesis of strictly maternal cotransmission. Host mitochondrial and symbiont DNA sequences were coupled in a clam population that was polymorphic for both genetic markers. These markers were not similarly coupled with sequence variation at a nuclear gene locus, as expected for a randomly mating sexual population. Phylogenetic analysis of the two cytoplasmic genes also revealed no evidence for recombination. The tight association between vesicomyid clams and their vertically transmitted bacterial endosymbionts is phylogenetically very young (<50 million years) and may serve as a model for the origin and evolution of eukaryotic organelles.
Collapse
Affiliation(s)
- Luis A Hurtado
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA.
| | | | | | | |
Collapse
|