1
|
Padda J, Sequiera GL, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: hits and misses. Can J Physiol Pharmacol 2015; 93:835-41. [DOI: 10.1139/cjpp-2014-0468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading.
Collapse
Affiliation(s)
- Jagjit Padda
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
2
|
Fisher SA, Zhang H, Doree C, Mathur A, Martin‐Rendon E. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2015; 2015:CD006536. [PMID: 26419913 PMCID: PMC8572033 DOI: 10.1002/14651858.cd006536.pub4] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cell transplantation offers a potential therapeutic approach to the repair and regeneration of damaged vascular and cardiac tissue after acute myocardial infarction (AMI). This has resulted in multiple randomised controlled trials (RCTs) across the world. OBJECTIVES To determine the safety and efficacy of autologous adult bone marrow stem cells as a treatment for acute myocardial infarction (AMI), focusing on clinical outcomes. SEARCH METHODS This Cochrane review is an update of a previous version (published in 2012). We searched the Cochrane Central Register of Controlled Trials (CENTRAL 2015, Issue 2), MEDLINE (1950 to March 2015), EMBASE (1974 to March 2015), CINAHL (1982 to March 2015) and the Transfusion Evidence Library (1980 to March 2015). In addition, we searched several international and ongoing trial databases in March 2015 and handsearched relevant conference proceedings to January 2011. SELECTION CRITERIA RCTs comparing autologous bone marrow-derived cells with no cells in patients diagnosed with AMI were eligible. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references, assessed the risk of bias of the included trials and extracted data. We conducted meta-analyses using random-effects models throughout. We analysed outcomes at short-term (less than 12 months) and long-term (12 months or more) follow-up. Dichotomous outcomes are reported as risk ratio (RR) and continuous outcomes are reported as mean difference (MD) or standardised MD (SMD). We performed sensitivity analyses to evaluate the results in the context of the risk of selection, performance and attrition bias. Exploratory subgroup analysis investigated the effects of baseline cardiac function (left ventricular ejection fraction, LVEF) and cell dose, type and timing of administration, as well as the use of heparin in the final cell solution. MAIN RESULTS Forty-one RCTs with a total of 2732 participants (1564 cell therapy, 1168 controls) were eligible for inclusion. Cell treatment was not associated with any changes in the risk of all-cause mortality (34/538 versus 32/458; RR 0.93, 95% CI 0.58 to 1.50; 996 participants; 14 studies; moderate quality evidence), cardiovascular mortality (23/277 versus 18/250; RR 1.04, 95% CI 0.54 to 1.99; 527 participants; nine studies; moderate quality evidence) or a composite measure of mortality, reinfarction and re-hospitalisation for heart failure (24/262 versus 33/235; RR 0.63, 95% CI 0.36 to 1.10; 497 participants; six studies; moderate quality evidence) at long-term follow-up. Statistical heterogeneity was low (I(2) = 0% to 12%). Serious periprocedural adverse events were rare and were generally unlikely to be related to cell therapy. Additionally, cell therapy had no effect on morbidity, quality of life/performance or LVEF measured by magnetic resonance imaging. Meta-analyses of LVEF measured by echocardiography, single photon emission computed tomography and left ventricular angiography showed evidence of differences in mean LVEF between treatment groups although the mean differences ranged between 2% and 5%, which are accepted not to be clinically relevant. Results were robust to the risk of selection, performance and attrition bias from individual studies. AUTHORS' CONCLUSIONS The results of this review suggest that there is insufficient evidence for a beneficial effect of cell therapy for AMI patients. However, most of the evidence comes from small trials that showed no difference in clinically relevant outcomes. Further adequately powered trials are needed and until then the efficacy of this intervention remains unproven.
Collapse
Affiliation(s)
- Sheila A Fisher
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Huajun Zhang
- PLA General Hospital, Institute of Cardiac SurgeryDepartment of Cardiovascular Surgery28 Fuxing RoadBeijingChina100853
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Anthony Mathur
- William Harvey Research InstituteDepartment of Clinical PharmacologyCharterhouse SquareLondonUKEC1M 6BQ
| | - Enca Martin‐Rendon
- NHS Blood and TransplantStem Cell Research DepartmentJohn Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | | |
Collapse
|
3
|
Affiliation(s)
- E E van der Wall
- Interuniversity Cardiology Institute of the Netherlands (ICIN), Netherlands Heart Institute, Catherijnesingel 52, P.O. Box 19258, 3501 DG, Utrecht, the Netherlands,
| |
Collapse
|
4
|
Katsikis A, Koutelou M. Cardiac Stem Cell Imaging by SPECT and PET. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Affiliation(s)
- Ibrahim J. Domian
- Cardiovascular Research Center; Massachusetts General Hospital; Boston MA USA
- Harvard Stem Cell Institute; Cambridge MA USA
| | - Jan W. Buikema
- Department of Cardiology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Peter van der Meer
- Department of Cardiology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| |
Collapse
|
6
|
Kreke M, Smith RR, Marbán L, Marbán E. Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction. Expert Rev Cardiovasc Ther 2013; 10:1185-94. [PMID: 23098154 DOI: 10.1586/erc.12.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart disease is a major cause of morbidity and mortality. Cellular therapies hold significant promise for patients with heart disease. Heart-derived progenitor cells are capable of repairing a diseased heart through modulation of growth factor milieu and temporary engraftment leading to endogenous repair. The proof-of-concept CADUCEUS clinical trial using cardiosphere-derived cells has shown evidence of therapeutic cardiac tissue regeneration. Future clinical trials are now being planned to generate additional safety and efficacy data in the hopes of building toward an approved cellular therapy for heart disease.
Collapse
|
7
|
Abstract
Cellular cardiomyoplasty is a cell therapy using stem cells or progenitor cells for myocardial regeneration to improve cardiac function and mitigate heart failure. Since we first published cellular cardiomyoplasty in 1989, this procedure became the innovative method to treat damaged myocardium other than heart transplantation. A significant improvement in cardiac function, metabolism, and perfusion is generally observed in experimental and clinical studies, but the improvement is mild and incomplete. Although safety, feasibility, and efficacy have been well documented for the procedure, the beneficial mechanisms remain unclear and optimization of the procedure requires further study. This chapter briefly reviews the stem cells used for cellular cardiomyoplasty and their clinical outcomes with possible improvements in future studies.
Collapse
Affiliation(s)
- Elizabeth K Lamb
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | |
Collapse
|
8
|
The influence of intracoronary injection of bone marrow cells on prothrombotic markers in patients with acute myocardial infarction. Thromb Res 2012; 130:765-8. [DOI: 10.1016/j.thromres.2011.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/19/2022]
|
9
|
Díez Villanueva P, Sanz-Ruiz R, Núñez García A, Fernández Santos ME, Sánchez PL, Fernández-Avilés F. Functional multipotency of stem cells: what do we need from them in the heart? Stem Cells Int 2012; 2012:817364. [PMID: 22966237 PMCID: PMC3433152 DOI: 10.1155/2012/817364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/22/2012] [Accepted: 07/22/2012] [Indexed: 12/14/2022] Open
Abstract
After more than ten years of human research in the field of cardiac regenerative medicine, application of stem cells in different phases of ischemic heart disease has come to age. Randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease, and several efficacy phase III trials with clinical endpoints are on their way. Nevertheless, a complete knowledge on the mechanisms of action of stem cells still remains elusive. Of the three main mechanisms by which stem cells could exert their benefit, paracrine signaling from the administered cells and stimulation of endogenous repair are nowadays the most plausible ones. However, in this review we will define and discuss the concept of stem cell potency and differentiation, will examine the evidence available, and will depict future directions of research.
Collapse
Affiliation(s)
- Pablo Díez Villanueva
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto Núñez García
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Pedro L. Sánchez
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
10
|
Abdelli LS, Merino H, Rocher CM, Singla DK. Cell therapy in the heart. Can J Physiol Pharmacol 2012; 90:307-15. [DOI: 10.1139/y11-130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell therapy is emerging as a new strategy to circumvent the adverse effects of heart disease. Many experimental and clinical studies investigating the transplantation of cells into the injured myocardium have yielded promising results. Moreover, data from these reports show that transplanted stem cells can engraft within the myocardium, differentiate into major cardiac cell types, and improve cardiac function. However, results from clinical trials show conflicting results. These trials demonstrate significant improvements in cardiac function for up to 6 months. However, these improved functions were diminished when examined at 18 months. In this review, we will discuss the current literature available on cell transplantation, covering studies ranging from animal models to clinical trials.
Collapse
Affiliation(s)
- Latifa S. Abdelli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Hilda Merino
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Crystal M. Rocher
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Dinender K. Singla
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
11
|
Myocardial restoration: is it the cell or the architecture or both? Cardiol Res Pract 2012; 2012:240497. [PMID: 22400122 PMCID: PMC3286902 DOI: 10.1155/2012/240497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023] Open
Abstract
Myocardial infarction is the leading cause of death in developed countries. Cardiac cell therapy has been introduced to clinical trials for more than ten years but its results are still controversial. Tissue engineering has addressed some limitations of cell therapy and appears to be a promising solution for cardiac regeneration. In this review, we would like to summarize the current understanding about the therapeutic effect of cell therapy and tissue engineering under purview of functional and structural aspects, highlighting actual roles of each therapy towards clinical application.
Collapse
|
12
|
Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:101-15. [PMID: 21995703 DOI: 10.1089/ten.teb.2011.0488] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the various types of cell-to-cell signaling, paracrine signaling comprises those signals that are transmitted over short distances between different cell types. In the human body, secreted growth factors and cytokines instruct, among others, proliferation, differentiation, and migration. In the hematopoietic stem cell (HSC) niche, stromal cells provide instructive cues to stem cells via paracrine signaling and one of these cell types, known to secrete a broad panel of growth factors and cytokines, is mesenchymal stromal cells (MSCs). The factors secreted by MSCs have trophic, immunomodulatory, antiapoptotic, and proangiogenic properties, and their paracrine profile varies according to their initial activation by various stimuli. MSCs are currently studied as treatment for inflammatory diseases such as graft-versus-host disease and Crohn's disease, but also as treatment for myocardial infarct and solid organ transplantation. In addition, MSCs are investigated for their use in tissue engineering applications, in which their differentiation plays an important role, but as we have recently demonstrated, their trophic factors may also be involved. Furthermore, a functional improvement of MSCs might be obtained after preconditioning or tailoring the cells themselves. Also, the way the cells are clinically administered may be specialized for specific therapeutic scenarios. In this review we will first discuss the HSC niche, in which MSCs were recently identified and are thought to play an instructive and supportive role. We will then evaluate therapeutic applications that currently try to utilize the trophic and/or immunomodulatory properties of MSCs, and we will also discuss new options to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Joyce Doorn
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Hopp E, Lunde K, Solheim S, Aakhus S, Arnesen H, Forfang K, Edvardsen T, Smith HJ. Regional myocardial function after intracoronary bone marrow cell injection in reperfused anterior wall infarction - a cardiovascular magnetic resonance tagging study. J Cardiovasc Magn Reson 2011; 13:22. [PMID: 21414223 PMCID: PMC3068099 DOI: 10.1186/1532-429x-13-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trials have brought diverse results of bone marrow stem cell treatment in necrotic myocardium. This substudy from the Autologous Stem Cell Transplantation in Acute Myocardial Infarction trial (ASTAMI) explored global and regional myocardial function after intracoronary injection of autologous mononuclear bone marrow cells (mBMC) in acute anterior wall myocardial infarction treated with percutaneous coronary intervention. METHODS Cardiovascular magnetic resonance (CMR) tagging was performed 2-3 weeks and 6 months after revascularization in 15 patients treated with intracoronary stem cell injection (mBMC group) and in 13 controls without sham injection. Global and regional left ventricular (LV) strain and LV twist were correlated to cine CMR and late gadolinium enhancement (LGE). RESULTS In the control group myocardial function as measured by strain improved for the global LV (6 months: -13.1 ± 2.4 versus 2-3 weeks: -11.9 ± 3.4%, p = 0.014) and for the infarct zone (-11.8 ± 3.0 versus -9.3 ± 4.1%, p = 0.001), and significantly more than in the mBMC group (inter-group p = 0.027 for global strain, respectively p = 0.009 for infarct zone strain). LV infarct mass decreased (35.7 ± 20.4 versus 45.7 ± 29.5 g, p = 0.024), also significantly more pronounced than the mBMC group (inter-group p = 0.034). LV twist was initially low and remained unchanged irrespective of therapy. CONCLUSIONS LGE and strain findings quite similarly demonstrate subtle differences between the mBMC and control groups. Intracoronary injection of autologous mBMC did not strengthen regional or global myocardial function in this substudy. TRIAL REGISTRATION ClinicalTrials.gov: NCT00199823.
Collapse
Affiliation(s)
- Einar Hopp
- Department of Radiology, Oslo University Hospital, Rikshospitalet, Postbox 4950, Nydalen, 0424 Oslo, Norway
| | - Ketil Lunde
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Svein Solheim
- Department of Cardiology, Oslo University Hospital, Ullevål, Norway
| | - Svend Aakhus
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Harald Arnesen
- Department of Cardiology, Oslo University Hospital, Ullevål, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kolbjørn Forfang
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Hans-Jørgen Smith
- Department of Radiology, Oslo University Hospital, Rikshospitalet, Postbox 4950, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
14
|
Therapeutic Possibilities of Induced Pluripotent Stem Cells. TRANSLATIONAL STEM CELL RESEARCH 2011. [DOI: 10.1007/978-1-60761-959-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Sanz-Ruiz R, Gutiérrez Ibañes E, Arranz AV, Fernández Santos ME, Fernández PLS, Fernández-Avilés F. Phases I-III Clinical Trials Using Adult Stem Cells. Stem Cells Int 2010; 2010:579142. [PMID: 21076533 PMCID: PMC2975079 DOI: 10.4061/2010/579142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/06/2010] [Accepted: 08/30/2010] [Indexed: 12/13/2022] Open
Abstract
First randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease. Nevertheless, some trials have shown that conflicting results and uncertainties remain in the case of mechanisms of action and possible ways to improve clinical impact of stem cells in cardiac repair. In this paper we will examine the evidence available, analyze the main phase I and II randomized clinical trials and their limitations, discuss the key points in the design of future trials, and depict new directions of research in this fascinating field.
Collapse
Affiliation(s)
- Ricardo Sanz-Ruiz
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
van der Wall EE, Delgado V, Holman ER, Bax JJ. Speckle tracking: distinction of physiologic from pathologic LVH? Int J Cardiovasc Imaging 2010; 27:101-4. [PMID: 20734233 PMCID: PMC3035794 DOI: 10.1007/s10554-010-9689-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 11/03/2022]
|
17
|
van der Wall EE, Holman ER, Scholte AJ, Bax JJ. Echocardiography in Takotsubo cardiomyopathy; a useful approach? Int J Cardiovasc Imaging 2010; 26:537-40. [PMID: 20390358 PMCID: PMC2868168 DOI: 10.1007/s10554-010-9629-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/24/2022]
|
18
|
van der Wall EE, de Graaf FR, van Velzen JE, Jukema JW, Bax JJ, Schuijf JD. IVUS detects more coronary calcifications than MSCT; matter of both resolution and cross-sectional assessment? Int J Cardiovasc Imaging 2010; 27:1011-4. [PMID: 20623370 PMCID: PMC3182328 DOI: 10.1007/s10554-010-9668-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 12/02/2022]
Affiliation(s)
- E E van der Wall
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Menasche P. Cardiac cell therapy: lessons from clinical trials. J Mol Cell Cardiol 2010; 50:258-65. [PMID: 20600097 DOI: 10.1016/j.yjmcc.2010.06.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 01/06/2023]
Abstract
Cardiac cell therapy has now been in clinical use since 10 years. Both autologous skeletal myoblasts and bone marrow-derived different cell subsets (mononuclear cells, hematopoietic progenitors, mesenchymal stem cells) have been investigated in different settings (acute myocardial infarction, refractory angina and chronic heart failure). Despite the huge variability in cell processing techniques, dosing, timing of delivery and route for cell transfer, some lessons can yet be drawn, primarily from randomized controlled trials and summarized as follows: Techniques used for cell preparation are reasonably well controlled although better standardization and improvement in scale-up procedures remain necessary; cell therapy is overall safe, with the caveat of ventricular arrhythmias which still require careful scrutinization; the cell type needs to be tailored to the primary clinical indication, whereas the paracrine effects of bone marrow cells may be therapeutically efficacious for limitation of remodelling or relief of angina, only cells endowed with a true cardiomyogenic differentiation potential are likely to effect regeneration of chronic scars; autologous cells are primarily limited by their variable and unpredictable functionality, thereby calling attention to banked, consistent and readily available allogeneic cell products provided the immunological issues inherent in their use can be satisfactorily addressed; regardless of the cell type, a meaningful and sustained therapeutic benefit is unlikely to occur until cell transfer and survival techniques are improved to allow greater engraftment rates; and trial end points probably need to be reassessed to focus on mechanistic issues or hard end points depending on whether new or already extensively used cells are investigated. Hopefully, these lessons may serve as a building block whose incorporation in the design of second-generation trials will help making them more clinically successful. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Philippe Menasche
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Université Paris Descartes, INSERM U 633, Paris, France.
| |
Collapse
|
20
|
Cardiac magnetic resonance imaging; gatekeeper in suspected CAD? Int J Cardiovasc Imaging 2010; 27:123-6. [PMID: 20571872 PMCID: PMC3035784 DOI: 10.1007/s10554-010-9661-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/23/2022]
|
21
|
van der Pouw Kraan TCTM, Schirmer SH, Fledderus JO, Moerland PD, Baggen JM, Leyen TA, van der Laan AM, Piek JJ, van Royen N, Horrevoets AJG. Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients. BMC Genomics 2010; 11:388. [PMID: 20565948 PMCID: PMC2901320 DOI: 10.1186/1471-2164-11-388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/21/2010] [Indexed: 11/12/2022] Open
Abstract
Background Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD) patients. Results We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12. Conclusions The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.
Collapse
Affiliation(s)
- Tineke C T M van der Pouw Kraan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat, 1081BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
General overview of the Sixth International Symposium on Stem Cell Therapy and Cardiovascular Innovations. J Cardiovasc Transl Res 2010; 3:1-7. [PMID: 20560031 DOI: 10.1007/s12265-009-9156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
Being one of the main stem cell therapy meetings of the year, the Sixth International Symposium on Stem Cell Therapy and Cardiovascular Innovations was held on April 23rd-24th, 2009, at the Auditorium of the High Council of Scientific Research of Spain (CSIC) in Madrid. Gathering the most prestigious basic researchers and clinical experts in the field of cardiovascular regenerative medicine, the aim of the meeting was to discuss the available evidence and the recent contributions from preclinical investigators, cardiologists, and cardiac surgeons in a participative translational fashion. The role of young "clinician scientists" was reinforced with a special poster session and three awards. The main conclusions of the symposium were (1) that standardization, larger clinical trials, and true translational research are needed, and (2) that new-allogeneic-stem cell products, biotechnological devices, and cell-based bioartificial organs are potentially exciting options for the future.
Collapse
|
23
|
Cardiac magnetic resonance imaging analysis in STEMI: quantitative or still visual? Int J Cardiovasc Imaging 2010; 27:965-8. [PMID: 20454931 PMCID: PMC3182319 DOI: 10.1007/s10554-010-9638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 12/04/2022]
|
24
|
van der Wall EE, Scholte AJ, Holman ER, Bax JJ. Stress imaging in patients with diabetes; routine practice? Int J Cardiovasc Imaging 2010; 27:939-42. [PMID: 20454930 PMCID: PMC3182325 DOI: 10.1007/s10554-010-9639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/26/2010] [Indexed: 11/29/2022]
Affiliation(s)
- E. E. van der Wall
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, Leiden, Netherlands
| | - A. J. Scholte
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, Leiden, Netherlands
| | - E. R. Holman
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, Leiden, Netherlands
| | - J. J. Bax
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, Leiden, Netherlands
| |
Collapse
|
25
|
Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 2010; 7:204-15. [DOI: 10.1038/nrcardio.2010.1] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Affiliation(s)
- Stefan Janssens
- Division of Cardiology and Vesalius Research Center, VIB, Gasthuisberg University Hospital, University of Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
27
|
van der Wall EE. Tissue characterization in Takotsubo cardiomyopathy; a valuable approach? Int J Cardiovasc Imaging 2010; 26:233-6. [PMID: 20175295 PMCID: PMC2817074 DOI: 10.1007/s10554-009-9534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022]
|
28
|
A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2010; 54:2277-86. [PMID: 19958962 DOI: 10.1016/j.jacc.2009.06.055] [Citation(s) in RCA: 960] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/20/2009] [Accepted: 06/15/2009] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Our aim was to investigate the safety and efficacy of intravenous allogeneic human mesenchymal stem cells (hMSCs) in patients with myocardial infarction (MI). BACKGROUND Bone marrow-derived hMSCs may ameliorate consequences of MI, and have the advantages of preparation ease, allogeneic use due to immunoprivilege, capacity to home to injured tissue, and extensive pre-clinical support. METHODS We performed a double-blind, placebo-controlled, dose-ranging (0.5, 1.6, and 5 million cells/kg) safety trial of intravenous allogeneic hMSCs (Prochymal, Osiris Therapeutics, Inc., Baltimore, Maryland) in reperfused MI patients (n=53). The primary end point was incidence of treatment-emergent adverse events within 6 months. Ejection fraction and left ventricular volumes determined by echocardiography and magnetic resonance imaging were exploratory efficacy end points. RESULTS Adverse event rates were similar between the hMSC-treated (5.3 per patient) and placebo-treated (7.0 per patient) groups, and renal, hepatic, and hematologic laboratory indexes were not different. Ambulatory electrocardiogram monitoring demonstrated reduced ventricular tachycardia episodes (p=0.025), and pulmonary function testing demonstrated improved forced expiratory volume in 1 s (p=0.003) in the hMSC-treated patients. Global symptom score in all patients (p=0.027) and ejection fraction in the important subset of anterior MI patients were both significantly better in hMSCs versus placebo subjects. In the cardiac magnetic resonance imaging substudy, hMSC treatment, but not placebo, increased left ventricular ejection fraction and led to reverse remodeling. CONCLUSIONS Intravenous allogeneic hMSCs are safe in patients after acute MI. This trial provides pivotal safety and provisional efficacy data for an allogeneic bone marrow-derived stem cell in post-infarction patients. (Safety Study of Adult Mesenchymal Stem Cells [MSC] to Treat Acute Myocardial Infarction; NCT00114452).
Collapse
|
29
|
Cardiovascular dynamics in ischemic cardiomyopathy during exercise. Int J Cardiovasc Imaging 2009; 26:161-4. [PMID: 19937127 PMCID: PMC2817072 DOI: 10.1007/s10554-009-9533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/30/2022]
|
30
|
Abstract
Cell-based myocardial regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles owing to ischemic and nonischemic myocardial diseases. A variety of myogenic and angiogenic cell types have been proposed, such as skeletal myoblasts, mononuclear and mesenchymal bone marrow cells, circulating blood-derived progenitors, adipose-derived stromal cells, induced pluripotent stem cells, umbilical cord cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells and embryonic cells. Current indications for stem cell therapy concern patients who have had a left- or right-ventricular infarction or idiopathic dilated cardiomyopathies. Other indications and potential applications include patients with diabetic cardiomyopathy, Chagas heart disease (American trypanosomiasis), ischemic mitral regurgitation, left ventricular noncompacted myocardium and pediatric cardiomyopathy. Suitable sources of cells for cardiac implant will depend on the types of diseases to be treated. For acute myocardial infarction, a cell that reduces myocardial necrosis and augments vascular blood flow will be desirable. For heart failure, cells that replace or promote myogenesis, reverse apoptopic mechanisms and reactivate dormant cell processes will be useful. It is important to note that stem cells are not an alternative to heart transplantation; selected patients should be in an early stage of heart failure as the goal of this regenerative approach is to avoid or delay organ transplantation. Since the cell niche provides crucial support needed for stem cell maintenance, the most interesting and realistic perspectives include the association of intramyocardial cell transplantation with tissue-engineered scaffolds and multisite cardiac pacing in order to transform a passive regenerative approach into a 'dynamic cellular support', a promising method for the creation of 'bioartificial myocardium'.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
31
|
Apostolakis S, Lip GYH, Shantsila E. Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovasc Res 2009; 85:649-60. [PMID: 19805399 DOI: 10.1093/cvr/cvp327] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monocytes play an important role in immune defence, inflammation, and tissue remodelling. Nevertheless, the role of monocytes in cardiovascular disease is obscure. Indeed, monocytes infiltrate dysfunctional tissue and augment tissue damage and are actively involved in tissue regeneration and healing. In support of the latter, recent studies have provided data on the functional and structural plasticity of monocytes. Monocytes are also actively involved in processes associated with tissue regeneration such as angiogenesis and vasculogenesis, either by producing pro-angiogenic factors or even by evolving to structural components of the vascular wall. This review article provides an overview on whether monocytes represent deteriorating immune overreaction in heart failure (HF), or a desperate attempt for tissue repair or physiological compensation in the failing heart. Perhaps, it is time to reconsider our attitude towards monocytes and consider more 'monocyte activation' rather than 'monocyte suppression' as a potential therapeutic target in HF.
Collapse
Affiliation(s)
- Stavros Apostolakis
- Haemostasis Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, UK
| | | | | |
Collapse
|
32
|
van der Wall EE, Bax JJ, Jukema JW, Schalij MJ. Cardiac magnetic resonance imaging in primary PCI: additional value? Int J Cardiovasc Imaging 2009; 25:643-5. [PMID: 19468863 PMCID: PMC2712062 DOI: 10.1007/s10554-009-9466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/16/2009] [Indexed: 11/29/2022]
Affiliation(s)
- E E van der Wall
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
33
|
van der Laan A, Hirsch A, Nijveldt R, van der Vleuten P, van der Giessen W, Doevendans P, Waltenberger J, ten Berg J, Aengevaeren W, Zwaginga J, Biemond B, van Rossum A, Tijssen J, Zijlstra F, Piek J. Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth Heart J 2008; 16:436-9. [PMID: 19127324 PMCID: PMC2612115 DOI: 10.1007/bf03086194] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
During the last decennium, the role of bone marrow mononuclear cells (BMMC) has been underscored in the healing process after acute myocardial infarction (AMI). Although these cells improve left ventricular recovery after AMI in experimental studies, results from large-scale randomised trials investigating BMMC therapy in patients with AMI have shown contradictory results. To address this issue the HEBE study was designed, a multicentre, randomised trial, evaluating the effects of intracoronary infusion of BMMCs and the effects of intracoronary infusion of peripheral blood mononuclear cells after primary percutaneous coronary intervention. The primary endpoint of the HEBE trial is the change in regional myocardial function in dysfunctional segments at four months relative to baseline, based on segmental analysis as measured by magnetic resonance imaging. The results from the HEBE trial will provide detailed information about the effects of intracoronary BMMC therapy on post-infarct left ventricular recovery. In addition, further analysis of the data and material obtained may provide important mechanistic insights into the contribution of BMMCs to natural recovery from AMI as well as the response to cell therapy. This may significantly contribute to the development of improved cell-based therapies, aiming at optimising post-infarct recovery and preventing heart failure. (Neth Heart J 2008;16:436-9.).
Collapse
Affiliation(s)
- A. van der Laan
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - A. Hirsch
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - R. Nijveldt
- Department of Cardiology, VU University Medical Center, Amsterdam and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - P.A. van der Vleuten
- Department of Cardiology, University Medical Center Groningen, Groningen and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - W.J. van der Giessen
- Department of Cardiology, Erasmus University Medical Center, Rotterdam and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - P.A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J. Waltenberger
- Department of Cardiology, University Hospital Maastricht, Maastricht, the Netherlands
| | - J.M. ten Berg
- Department of Cardiology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - W.R.M. Aengevaeren
- Department of Cardiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - J.J. Zwaginga
- Department of Experimental Immunohaematology, Sanquin Research, Amsterdam and Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - B.J. Biemond
- Department of Haematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A.C. van Rossum
- Department of Cardiology, VU University Medical Center, Amsterdam and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - J.G.P. Tijssen
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - F. Zijlstra
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - J.J. Piek
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|