1
|
Emborg ME. Reframing the perception of outliers and negative data in translational research. Brain Res Bull 2023; 192:203-207. [PMID: 36464129 PMCID: PMC9891652 DOI: 10.1016/j.brainresbull.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Negative results can be a source of disappointment for scientists, yet their publication is needed for scientific progress, in particular for cutting-edge translational research of novel therapeutics. This manuscript is directed to scientists, junior and senior, that produce and review data for publication. It discusses the difference between 'negative' or 'unexpected' data and 'useless' data, re-evaluates the importance of the experimental design to generate valuable data and proposes strategies to work with and report negative results. Overall, it aims to reframe the perception of working with, reporting and reviewing unexpected data as an opportunity to provide rationale for innovative ideas, prevent the misuse of limited resources and, ultimately, strengthen the reputation of a scientist.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, Department of Medical Physics, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
2
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
3
|
Polymorphism of the 3'-UTR of the dopamine transporter gene (DAT) in New World monkeys. Primates 2016; 58:169-178. [PMID: 27503104 DOI: 10.1007/s10329-016-0560-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Genetic polymorphism in the 3'-untranslated region (3'-UTR) of the dopamine transporter (DAT) gene has been reported in both human and nonhuman primates, and the variable number of tandem repeats (VNTR) polymorphism has been related to several neurological and psychiatric disorders. As New World primates have been employed as models in biomedical research in these fields, in the present study we assessed genetic variation in the DAT gene in 25 robust capuchin monkeys (Sapajus spp.) and 39 common marmosets (Callithrix jacchus). Using enzymatic amplification followed by sequencing of amplified fragments, a VNTR polymorphism in the 3'-UTR region of the DAT gene was identified in both robust capuchins and common marmosets. The polymorphic tandem repeat of 40-bp basic units is similar to the human VNTR consensus sequence, with size variants composed of 9, 10, and 11 units in marmosets and 8, 9, 13, and 17 basic units in capuchins. We found behavioral evidence that carrying the 10-repeat DAT allele promotes flexible choice and maximization of foraging in marmosets tested in an operant choice paradigm. Moreover, in an intertemporal choice task, capuchins with longer repeat variants show less self-controlled choices than capuchins with at least one short repeat variant. Future research should focus on the relationship between these DAT polymorphisms, dopamine reuptake via the dopamine transporter, and behavioral and cognitive variation across New World monkey individuals.
Collapse
|
4
|
Emborg ME, Ebert AD, Moirano J, Peng S, Suzuki M, Capowski E, Joers V, Roitberg BZ, Aebischer P, Svendsen CN. GDNF-Secreting Human Neural Progenitor Cells Increase Tyrosine Hydroxylase and VMAT2 Expression in MPTP-Treated Cynomolgus Monkeys. Cell Transplant 2008. [DOI: 10.3727/096368908784423300] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human neural progenitor cells (hNPCs) have been proposed as a potential source of cells for ex vivo gene therapy. In this pilot study, three 5-year-old female cynomolgus monkeys received a single intracarotid infusion of MPTP, followed 1 week later by MRI-guided stereotaxic intrastriatal and intranigral injections of male hNPCs transgenic for GDNF. Immunosupression with oral cyclosporine (30–40 mg/kg) began 48 h before hNPC transplants and continued throughout the study. We monitored the animals using a clinical rating scale (CRS). Three months postsurgery, we euthanized the animals by transcardiac perfusion, then retrieved and processed their brains for morphological analysis. Our findings include the following. 1) hNPCs survived and produced GDNF in all animals 3 months postsurgery. 2) hNPCs remained in the areas of injection as observed by GDNF immunostaining and in situ hybridization for the human Y chromosome. 3) A “halo” of GDNF expression was observed diffusing from the center of the graft out into the surrounding area. 4) We observed increased TH- and VMAT2-positive fibers in areas of GDNF delivery in two of the three animals. The two animals with TH- and VMAT2-positive fibers also showed reductions in their CRS scores. 5) Some GFAP-positive perivascular cuffing was found in transplanted areas. 6) General blood chemistry and necropsies did not reveal any abnormalities. Therefore, we conclude that hNPCs releasing GDNF may be a possible alternative for intracerebral trophic factor delivery in Parkinson's disease.
Collapse
Affiliation(s)
- Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | - Jeff Moirano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Sun Peng
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | | | | | - Valerie Joers
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Ben Z. Roitberg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Neurosurgery, University of Illinois, Chicago, IL, USA
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clive N. Svendsen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
5
|
Abstract
Nonhuman primate (NHP) models of Parkinson's disease (PD) play an essential role in the understanding of PD pathophysiology and the assessment of PD therapies. NHP research enabled the identification of environmental risk factors for the development of PD. Electrophysiological studies in NHP models of PD identified the neural circuit responsible for PD motor symptoms, and this knowledge led to the development of subthalamic surgical ablation and deep brain stimulation. Similar to human PD patients, parkinsonian monkeys are responsive to dopamine replacement therapies and present complications associated with their long-term use, a similarity that facilitated the assessment of new symptomatic treatments, such as dopaminergic agonists. New generations of compounds and novel therapies that use directed intracerebral delivery of drugs, cells, and viral vectors benefit from preclinical evaluation in NHP models of PD. There are several NHP models of PD, each with characteristics that make it suitable for the study of different aspects of the disease or potential new therapies. Investigators who use the models and peer scientists who evaluate their use need information about the strengths and limitations of the different PD models and their methods of evaluation. This article provides a critical review of available PD monkey models, their utilization, and how they compare to emerging views of PD as a multietiologic, multisystemic disease. The various models are particularly useful for representing different aspects of PD at selected time points. This conceptualization provides clues for the development of new NHP models and facilitates the clinical translation of findings. As ever, successful application of any model depends on matching the model to the scientific question to be answered. Adequate experimental designs, with multiple outcome measures of clinical relevance and an appropriate number of animals, are essential to minimize the limitations of models and increase their predictive clinical validity.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
6
|
Emborg ME, Moirano J, Schafernak KT, Moirano M, Evans M, Konecny T, Roitberg B, Ambarish P, Mangubat E, Ma Y, Eidelberg D, Holden J, Kordower JH, Leestma JE. Basal ganglia lesions after MPTP administration in rhesus monkeys. Neurobiol Dis 2006; 23:281-9. [PMID: 16766201 DOI: 10.1016/j.nbd.2006.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 03/02/2006] [Accepted: 03/12/2006] [Indexed: 11/17/2022] Open
Abstract
In monkeys, intracarotid infusion of a single low dose of MPTP reliably induces a hemiparkinsonian syndrome that is stable over time. This model has been widely used to assess novel anti-parkinsonian therapies. Here, we report the exceptional finding of severe necrotic lesions that were observed in the basal ganglia (but not in the substantia nigra) of monkeys that received a single intracarotid injection of MPTP followed by gene therapy treatments. Although extensive unilateral dopaminergic nigrostriatal loss was found in all the animals, partial behavioral recovery was observed in the subjects that presented pallidal necrotic lesions. This report discusses possible causes and effects of the necrotic lesions and their locations and the value of the intracarotid MPTP model. Testing novel therapies in monkey models has become an essential step before clinical trials. These results indicate that evaluation of any treatment should consider possible confounding factors that may affect the results.
Collapse
Affiliation(s)
- M E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Emborg ME. Evaluation of animal models of Parkinson's disease for neuroprotective strategies. J Neurosci Methods 2004; 139:121-43. [PMID: 15488225 DOI: 10.1016/j.jneumeth.2004.08.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic nigral neurons and striatal dopamine. Despite the advances of modern therapy to treat the symptoms of PD, most of the patients will eventually experience debilitating disability. The need for neuroprotective strategies that will slow or stop the progression of the disease is clear. The progress in the understanding of the cause and pathogenesis of PD is providing clues for the development of disease-modifying strategies. In that regard, animal models of PD and non-human primate models in particular, are essential for the preclinical evaluation and testing of candidate therapies. However, the diversity of models and different outcome measures used by investigators make it challenging to compare results between neuroprotective agents. In this review we will discuss methods for the selection, development and assessment of animal models of PD, the role of non-human primates and the concept of "multiple models/multiple endpoints" to predict the success in the clinic of neuroprotective strategies.
Collapse
Affiliation(s)
- Marina E Emborg
- National Primate Research Center and Department of Anatomy, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
8
|
Ren MQ, Ong WY, Wang XS, Watt F. A nuclear microscopic and histochemical study of iron concentrations and distribution in the midbrain of two age groups of monkeys unilaterally injected with MPTP. Exp Neurol 2003; 184:947-54. [PMID: 14769387 DOI: 10.1016/s0014-4886(03)00341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 06/19/2003] [Accepted: 06/27/2003] [Indexed: 11/19/2022]
Abstract
The present study was carried out to elucidate the concentration and distribution of iron in the substantia nigra of two age groups of monkeys after experimental hemi-Parkinsonism induced by unilateral internal carotid injections of MPTP. Iron levels and distribution were detected using the nuclear microscope, which is able to provide structural and quantitative elemental analysis of biological tissue down to the parts per million (ppm) level of analytical sensitivity. Five weeks after unilateral lesioning with MPTP, we observed a 30-65% loss of neurons in the injected substantia nigra of each monkey, compared with the contralateral control 'non-lesioned' side. In monkeys less than 7 years of age, the iron was distributed fairly uniformly and showed little evidence of focal deposits. In monkeys greater than 7 years of age, we observed many dense focal deposits of iron in the substantia nigra. A comparison between iron distributions in nuclear microscopic scans and cell distributions in the same sections stained by the Nissl technique showed that areas containing high iron concentrations were present not where large-diameter neurons with abundant Nissl substance (presumed dopaminergic neurons) were located but in a region ventral to these cell bodies, i.e., in the substantia nigra pars reticulata. These distributions were present on the control side as well as the MPTP-injected side. Since a previous study has shown that unilateral MPTP injection results in lesions of the substantia nigra of the same side but negligible injury to the opposite side, this implies that the iron deposits existed in the older monkeys before MPTP injections (i.e. they occurred normally). The accumulation of iron in the substantia nigra with age suggests the possibility of localised damage to neurons through the catalysis of free radicals.
Collapse
Affiliation(s)
- Min-Qin Ren
- Research Centre for Nuclear Microscopy, Department of Physics, National University of Singapore, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
9
|
Emborg ME, Shin P, Roitberg B, Sramek JG, Chu Y, Stebbins GT, Hamilton JS, Suzdak PD, Steiner JP, Kordower JH. Systemic administration of the immunophilin ligand GPI 1046 in MPTP-treated monkeys. Exp Neurol 2001; 168:171-82. [PMID: 11170732 DOI: 10.1006/exnr.2000.7592] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic administration of immunophilin ligands provides trophic influences to dopaminergic neurons in rodent models of Parkinson's disease (PD) resulting in the initiation of clinical trials in patients with Parkinson's disease. We believe that prior to clinical trials, novel therapeutic strategies should show safety and efficacy in nonhuman models of PD. The present study assessed whether oral administration of the immunophilin 3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrollidinecarboxylate (GPI 1046) could prevent the structural and functional consequences of n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in nonhuman primates. Twenty-five rhesus monkeys received daily oral administration of vehicle (n = 5) or one of four doses of GPI 1046 (0.3 mg/kg, n = 5; 1.0 mg/kg, n = 5; 3.0 mg/kg, n = 5; 10.0 mg/kg, n = 5). Two weeks after starting the drug treatment, all monkeys received a unilateral intracarotid injection of MPTP-HCl (3 mg). Daily drug administration continue for 6 weeks postlesion after which time the monkeys were sacrificed. Monkeys were assessed for performance on a hand reach task, general activity, and clinical dysfunction based on a clinical rating scale. All groups of monkeys displayed similar deficits on each behavioral measure as well as similar losses of tyrosine hydroxylase (TH)-immunoreactive (ir) nigral neurons, TH-mRNA, and TH-ir striatal optical density indicating that in general treatment failed to have neuroprotective effects.
Collapse
Affiliation(s)
- M E Emborg
- Research Center for Brain Repair, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Emborg ME, Kordower JH. Delivery of therapeutic molecules into the CNS. PROGRESS IN BRAIN RESEARCH 2001; 128:323-32. [PMID: 11105691 DOI: 10.1016/s0079-6123(00)28029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- M E Emborg
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| | | |
Collapse
|