1
|
Li Z, Li D, Pan D, Xia Q, Sun Y, Du L, He J, Zhou C, Geng F, Cao J. Insights into the mechanism of extracellular proteases from Penicillium on myofibrillar protein hydrolysis and volatile compound evolutions. Food Res Int 2024; 175:113774. [PMID: 38129063 DOI: 10.1016/j.foodres.2023.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
To investigate the mechanism of Penicillium proteases on the hydrolysis of myofibrillar protein (MP) and volatile compound evolutions, enzymatic characteristics of Penicillium proteases, hydrolysis capacities for MP, interactions between Penicillium proteases and MP, and profile changes of volatile compounds were investigated. P. aethiopicum (PA) and P. chrysogenum (PC) proteases showed the largest hydrolysis activities at pH 9.0 and 7.0, and were identified as alkaline serine protease and serine protease by LC-MS/MS, respectively. The proteases of PA and PC significantly degraded myosin and actin, and PA protease showed higher hydrolysis capacity for myosin than that of PC protease, which was confirmed by higher proteolysis index (56.06 %) and lower roughness (3.99 nm) of MP after PA treatment. Molecular docking revealed that hydrogen bond and hydrophobic interaction were the major interaction forces of Penicillium proteases with myosin and actin, and PA protease showed more binding sites with myosin compared with PC protease. The total content of free amino acids increased to 6.02-fold for PA treatment and to 5.51-fold for PC treatment after 4 h hydrolysis of MP, respectively. GC-MS showed that aromatic aldehydes and pyrazines in PA showed the largest increase compared with the control and PC during the hydrolysis of MP. Correlation analysis demonstrated that Phe, Leu and Ile were positively related with the accumulation of benzaldehyde, benzeneacetaldehyde, 2,4-dimethyl benzaldehyde and 2,5-dimethyl pyrazine.
Collapse
Affiliation(s)
- Zimu Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Danni Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jun He
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Pawar KS, Singh PN, Singh SK. Fungal alkaline proteases and their potential applications in different industries. Front Microbiol 2023; 14:1138401. [PMID: 37065163 PMCID: PMC10098022 DOI: 10.3389/fmicb.2023.1138401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
The consumption of various enzymes in industrial applications around the world has increased immensely. Nowadays, industries are more focused on incorporating microbial enzymes in multiple processes to avoid the hazardous effects of chemicals. Among these commercially exploited enzymes, proteases are the most abundantly used enzymes in different industries. Numerous bacterial alkaline proteases have been studied widely and are commercially available; however, fungi exhibit a broader variety of proteases than bacteria. Additionally, since fungi are often recognized as generally regarded as safe (GRAS), using them as enzyme producers is safer than using bacteria. Fungal alkaline proteases are appealing models for industrial use because of their distinct spectrum of action and enormous diversity in terms of being active under alkaline range of pH. Unlike bacteria, fungi are less studied for alkaline protease production. Moreover, group of fungi growing at alkaline pH has remained unexplored for their capability for the production of commercially valuable products that are stable at alkaline pH. The current review focuses on the detailed classification of proteases, the production of alkaline proteases from different fungi by fermentation (submerged and solid–state), and their potential applications in detergent, leather, food, pharmaceutical industries along with their important role in silk degumming, waste management and silver recovery processes. Furthermore, the promising role of alkali–tolerant and alkaliphilic fungi in enzyme production has been discussed briefly. This will highlight the need for more research on fungi growing at alkaline pH and their biotechnological potential.
Collapse
|
3
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|
4
|
El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind's Challenges. J Fungi (Basel) 2021; 8:23. [PMID: 35049963 PMCID: PMC8778853 DOI: 10.3390/jof8010023] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes have played a crucial role in mankind's challenges to use different types of biological systems for a diversity of applications. They are proteins that break down and convert complicated compounds to produce simple products. Fungal enzymes are compatible, efficient, and proper products for many uses in medicinal requests, industrial processing, bioremediation purposes, and agricultural applications. Fungal enzymes have appropriate stability to give manufactured products suitable shelf life, affordable cost, and approved demands. Fungal enzymes have been used from ancient times to today in many industries, including baking, brewing, cheese making, antibiotics production, and commodities manufacturing, such as linen and leather. Furthermore, they also are used in other fields such as paper production, detergent, the textile industry, and in drinks and food technology in products manufacturing ranging from tea and coffee to fruit juice and wine. Recently, fungi have been used for the production of more than 50% of the needed enzymes. Fungi can produce different types of enzymes extracellularly, which gives a great chance for producing in large amounts with low cost and easy viability in purified forms using simple purification methods. In the present review, a comprehensive trial has been advanced to elaborate on the different types and structures of fungal enzymes as well as the current status of the uses of fungal enzymes in various applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed K. Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, Giza 12622, Egypt;
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Yousra A. El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| |
Collapse
|
5
|
El-Shora HM, El-Sharkawy RM. Tyrosinase from Penicillium chrysogenum: Characterization and application in phenol removal from aqueous solution. J GEN APPL MICROBIOL 2021; 66:323-329. [PMID: 33041267 DOI: 10.2323/jgam.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The tyrosinase of Penicillium chrysogenum strain AUMC 14100 Accession No. MN219732 was purified to homogeneity and chemically modified by N-ethylmaleimide (NEM) and 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride, DC). The inactivation of the purified enzyme obeyed pseudo-first-order reaction kinetics in the presence of NEM and DC (1-5 mM). The rate constants of the enzyme inactivation by NEM and DC were calculated to be 0.083 mol/min and 0.0013 mol/min, respectively. The recovery of enzyme activity by the protective effect of substrate indicates a non-specific modification of the active center. The order of tyrosinase inactivation kinetics and the substrate protection revealed the essentiality of sulfhydryl and lysyl residues in the enzyme active site and its role in the enzyme catalysis. The immobilized tyrosinase on alginate showed a gradual increase in residual activity over the immobilization time until the fourth hour. The desorptivity of tyrosinase was gradually raised with higher sodium dodecyl sulfate (SDS) concentrations. The immobilized enzyme retained about 70% of its original activity after 8 repeated cycles. Thus, immobilized tyrosinase of Penicillium chrysogenum removed 75% of phenol after 8 cycles and thus seems likely to be a good candidate for phenol removal in aqueous solution.
Collapse
|
6
|
Screening and evaluation of filamentous fungi potential for protease production in swine plasma and red blood cells-based media: qualitative and quantitative methods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Low molecular weight dextran production by Leuconostoc mesenteroides strains: Optimization of a new culture medium and the rheological assessments. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Solid-state protease production using anchovy waste meal by moderate halophile Serratia proteamaculans AP-CMST isolated from fish intestine. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-010-0191-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|