1
|
Yasin MT, Ali Y, Ahmad K, Ghani A, Amanat K, Basheir MM, Faheem M, Hussain S, Ahmad B, Hussain A, Bokhari SAI. Alkaline lipase production by novel meso-tolerant psychrophilic Exiguobacterium sp. strain (AMBL-20) isolated from glacier of northeastern Pakistan. Arch Microbiol 2020; 203:1309-1320. [PMID: 33325000 DOI: 10.1007/s00203-020-02133-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Lipase is an important commercial enzyme with unique and versatile biotechnological applications. This study was conducted to biosynthesize and characterizes alkaliphilic lipase by Exiguobacterium sp. strain AMBL-20T isolated from the glacial water samples of the northeastern (Gilgit-Baltistan) region of Pakistan. The isolated bacterium was identified as Exiguobaterium sp. strain AMBL-20T on the basis of morphological, biochemical, and phylogenetic analysis of 16S rRNA sequences with GenBank accession number MW229267. The bacterial strain was further screened for its lipolytic activity, biosynthesis, and characterization by different parameters with the aim of maximizing lipase activity. Results showed that 2% Olive oil, 0.2% peptone at 25 °C, pH 8, and 24 h of incubation time found optimal for maximum lipase production. The lipase enzyme was partially purified by ammonium sulphate precipitation and its activity was standardized at pH 8 under 30 °C temperature. The enzyme showed functional stability over a range of temperature and pH. Hence, extracellular alkaliphilic lipase from Exiguobacterium sp. is a potential candidate with extraordinary industrial applications, particularly in bio-detergent formulations.
Collapse
Affiliation(s)
- Muhammad Talha Yasin
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Yasir Ali
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Khurshid Ahmad
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Abdul Ghani
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Kinza Amanat
- Department of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Mudassir Basheir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Saddam Hussain
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Adil Hussain
- Department of Biotechnology, University of Okara, Okara, 56130, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Pearce D, Mohamad Ali MS. Isolation, Characterisation, and Lipase Production of a Cold-Adapted Bacterial Strain Pseudomonas sp. LSK25 Isolated from Signy Island, Antarctica. Molecules 2019; 24:E715. [PMID: 30781467 PMCID: PMC6413188 DOI: 10.3390/molecules24040715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023] Open
Abstract
In recent years, studies on psychrophilic lipases have been an emerging area of research in the field of enzymology. This study focuses on bacterial strains isolated from anthropogenically-influenced soil samples collected around Signy Island Research Station (South Orkney Islands, maritime Antarctic). Limited information on lipase activities from bacteria isolated from Signy station is currently available. The presence of lipase genes was determined using real time quantification PCR (qPCR) in samples obtained from three different locations on Signy Island. Twenty strains from the location with highest lipase gene detection were screened for lipolytic activities at a temperature of 4 °C, and from this one strain was selected for further examination based on the highest enzymatic activities obtained. Analysis of 16S rRNA sequence data of this strain showed the highest level of sequence similarity (98%) to a Pseudomonas sp. strain also isolated from Antarctica. In order to increase lipase production of this psychrophilic strain, optimisation of different parameters of physical and nutritional factors were investigated. Optimal production was obtained at 10 °C and pH 7.0, at 150 rev/min shaking rate over 36 h incubation.
Collapse
Affiliation(s)
- Leelatulasi Salwoom
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- National Antarctic Research Centre (NARC) B303, Block B, Level 3, IPS Building, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - David Pearce
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Newcastle-Upon-Tyne NE1 8ST, UK.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| |
Collapse
|
3
|
Characterization of a Novel Alkalophilic Lipase From Aneurinibacillus thermoaerophilus: Lid Heterogeneity and Assignment to Family I.5. Protein J 2017; 36:478-488. [PMID: 28975457 DOI: 10.1007/s10930-017-9743-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent investigations of Aneurinibacillus thermoaerophilus strains have allowed identification of a unique solvent tolerant lipase, distinct from known lipases. This work reports the expression and purification of this lipase (LipAT) and the first characterization of its structure and temperature and pH-dependent behaviour. LipAT has a secondary structural content compatible with the canonical lipase α/β hydrolase fold, and is dimeric at neutral pH. The protein was folded from pH 5 to 10, and association into folded aggregates at pH 7 and 8 likely protected its secondary structures from thermal unfolding. The enzyme was active from 25 to 65 °C under neutral pH, but its maximal activity was detected at pH 10 and 45 °C. The ability of LipAT to recover from high temperature was investigated. Heating at 70 °C and pH 10 followed by cooling prevented the restoration of activity, while similar treatments performed at pH 8 (where folded aggregates may form) allowed recovery of 50% of the initial activity. In silico analyses revealed a high conservation (85% or more) for the main lipase signature sequences in LipAT despite an overall low residue identity (60% identity compared to family I.5 lipases). In contrast, the active site lid region in LipAT is very distinct showing only 25% amino acid sequence identity to other homologous lipases in this region. Comparison of lids among lipases from the I.5 family members and LipAT reveals that this region should be a primary target for elucidation, optimisation and prediction of structure-function relationships in lipases.
Collapse
|
4
|
Riyadi FA, Alam MZ, Salleh MN, Salleh HM. Optimization of thermostable organic solvent-tolerant lipase production by thermotolerant Rhizopus sp. using solid-state fermentation of palm kernel cake. 3 Biotech 2017; 7:300. [PMID: 28884067 DOI: 10.1007/s13205-017-0932-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/29/2017] [Indexed: 11/27/2022] Open
Abstract
This study enhanced the production of thermostable organic solvent-tolerant (TS-OST) lipase by locally isolated thermotolerant Rhizopus sp. strain using solid-state fermentation (SSF) of palm kernel cake (PKC). The optimum conditions were achieved using a series of statistical approaches. The cultivation parameters, which include fermentation time, moisture content, temperature, pH, inoculum size, various carbon and nitrogen sources, as well as other supplements, were initially screened by the definitive screening design, and one-factor-at-a-time using PKC as the basal medium. Three significant factors (olive oil concentration, pH, and inoculum size) were further optimized using face-centred central composite design. The results indicated a successful and significant improvement of lipase activity by almost two-fold compared to the initial screening production. The findings showed that the optimal conditions were 2% (v/w) inoculum size, 2% (v/w) olive oil, 0.6% (w/w) peptone, 2% (v/w) ethanol, 70% moisture content at initial pH 10.0 and 45 °C within 72 h of fermentation. Process optimization resulted in maximum lipase activity of 58.63 U/gram dry solids (gds). The analysis of variance showed that the statistical model was significant (p value <0.0001) and reliable with a high value of R2 (0.98) and adjusted R2 (0.96). This indicates a better correlation between the actual and predicted responses of lipase production. By considering this study, the low-cost PKC through SSF appears to be promising in the utilization of agro-industrial waste for TS-OST lipase production. This is because satisfactory enzyme activity could be attained that promises industrial applications.
Collapse
Affiliation(s)
- Fatimah Azizah Riyadi
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia
- E5-3-13.6, Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 50728 Kuala Lumpur, Malaysia
| | - Md Noor Salleh
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia
| | - Hamzah Mohd Salleh
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases. PLoS One 2016; 11:e0149851. [PMID: 26934700 PMCID: PMC4774917 DOI: 10.1371/journal.pone.0149851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/06/2016] [Indexed: 12/01/2022] Open
Abstract
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
Collapse
|
6
|
Masomian M, Rahman RNZRA, Salleh AB, Basri M. A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|