1
|
Zhu L, Ding J, Xue W, Zhou S, Wang L, Jiang A, Zhao M, He Q, Ren A. Manganese Peroxidase Participates in the Liquid-Solid-Gas Triphase Regulation on Microbial Degradation of Lignocellulose in Solid-State Fermentation. Biotechnol Bioeng 2025. [PMID: 39810331 DOI: 10.1002/bit.28927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The three-phase structure of solid-state fermentation (SSF) directly affects substrate degradation and fermentation efficiency. However, the mechanism of three-phase regulation on lignocellulose utilization and microbial metabolism is still unclear. Based on comparative transcriptome analysis, a lignocellulose degrading enzyme, manganese peroxidase (GlMnP), which was significantly affected by water stress meanwhile related to triphase utilization, was screened to reveal the mechanism using Ganoderma lucidum as the reference strain. The results showed that GlMnP directly participates in lignocellulose degradation by positively regulating the activity of carboxymethylcellulase (CMCase), filter paper (FPAse), and laccase (LACase) enzymes, and indirectly participates in lignocellulose degradation by negatively regulating the redox levels in microorganisms. In addition, GlMnP can also control microbial glycolysis rate to enhance lignocellulose utilization. The results indicated that GlMnP participates in the liquid-solid-gas triphase regulation on lignocellulose degradation by G. lucidum in SSF.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Ding
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Xue
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shu Zhou
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Longyu Wang
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ailiang Jiang
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingwen Zhao
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qin He
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ang Ren
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Zhang H, Xu J, Chen Q, Wang H, Kong B. Physiological, Morphological and Antioxidant Responses of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 Isolated from Harbin Dry Sausages to Oxidative Stress. Foods 2021; 10:foods10061203. [PMID: 34073637 PMCID: PMC8229211 DOI: 10.3390/foods10061203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/01/2023] Open
Abstract
As functional starter cultures and potential probiotics, the ability of lactic acid bacteria to resist oxidative stress is essential to maintain viability and functional properties. This study investigates the effects of H2O2 at different concentrations (0, 1, 2, and 3 mM) on the physiological, morphological, and antioxidant properties of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 isolated from Harbin dry sausages. The increase in H2O2 concentration induced a significant increase in reactive oxygen species and a decrease in intracellular ATP levels (p < 0.05). Based on scanning electron microscopy, transmission electron microscopy, and electric conductivity analysis, H2O2 stress caused cell deformation, the destruction of cell membrane integrity, partial loss of the cytoplasm, and an increase in the cell conductivity of both strains. H2O2 stress with 1 mM or 2 mM concentrations could effectively improve the scavenging rates of free radicals, the activities of superoxide dismutase and glutathione peroxide, and the total antioxidant capacity of both strains (p < 0.05). In conclusion, an appropriate oxidative stress contributed to the activation of the antioxidant defense system of both strains, conferred strains a better effect in inhibiting the oxidation of fermented foods, and improved the health of the host.
Collapse
Affiliation(s)
| | | | | | | | - Baohua Kong
- Correspondence: ; Tel.: +86-4515-519-1794; Fax: +86-4515-519-0577
| |
Collapse
|
3
|
A safety assessment of hot aqueous mycelium extracts from Trametes versicolor and Lepista nuda as a food supplement. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00761-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Chae Y, Cui R, Lee J, An YJ. Effects on photosynthesis and polyphenolic compounds in crop plant mung bean (Vigna radiata) following simulated accidental exposure to hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121088. [PMID: 31518806 DOI: 10.1016/j.jhazmat.2019.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen peroxide (H2O2) is a strong oxidizer and bleaching agent included in the list of substances requiring accident preparedness by the National Chemical Information System, Korea. Although chemical accidents related to H2O2 frequently occur globally, few studies have evaluated its toxicity and risk to soil ecosystems. Herein, accidental exposure to H2O2 was simulated in a microcosm including crop plant mung bean (Vigna radiata), and its long-term effects on photosynthetic activities and polyphenolic compounds were measured. Plants were evaluated based on the concentration and amount of H2O2 exposure, distance from H2O2 source, and duration post exposure. Plants exposed to high concentrations and large amounts of H2O2 at a close distance were most damaged; their photosynthetic activities and polyphenolic compound levels significantly decreased compared to the controls. H2O2 consistently damaged plants and affected their activities, but plants with minor damage recovered their photosynthetic activities and polyphenolic compound levels. Additionally, moderate oxidative stress from H2O2 exposure induced the synthesis of polyphenolic antioxidants including flavonol and anthocyanin. Thus, we suggest that flavonol and anthocyanin levels are the most sensitive indicators of adverse effects of H2O2 exposure in V. radiata. Our results highlight the risk of H2O2 and serve as a reference for chemical accidents.
Collapse
Affiliation(s)
- Yooeun Chae
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jieun Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Xia Y, Zhou X, Wang G, Zhang B, Xu G, Ai L. Induction of antroquinonol production by addition of hydrogen peroxide in the fermentation of Antrodia camphorata S-29. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:595-599. [PMID: 27098319 DOI: 10.1002/jsfa.7770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Antroquinonol have significantly anti-tumour effects on various cancer cells. There is still lack of reports on regulation of environmental factors on antroquinonol production by Antrodia camphorata. RESULTS An effective submerged fermentation method was employed to induce antroquinonol with adding H2 O2 . The production of antroquinonol was 57.81 mg L-1 after fermentation for 10 days when adding 25 mmol L-1 H2 O2 at day 4 of the fermentation process. Then, antroquinonol was further increased to 80.10 mg L-1 with cell productivity of 14.94 mg g-1 dry mycelium when the feeding rate of H2 O2 was adjusted to 0.2 mmol L-1 h-1 in the 7 L fermentation bioreactor. After inhibiting the generation of reactive oxygen species with the inhibitor diphenyleneiodoium, the synthesis of antroquinonol from A. camphorata was significantly reduced, and the yield was only 3.3 mg L-1 . CONCLUSION The results demonstrated that addition of H2 O2 was a very effective strategy to induce and regulate the synthesis of antroquinonol in submerged fermentation. Reactive oxygen species generated by H2 O2 during fermentation caused oxidative stress, which induced the synthesis of antroquinonol and other chemical compounds. Moreover, it is very beneficial process to improve production and diversity of the active compounds during liquid fermentation of A. camphorata mycelium. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuan Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bobo Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ganrong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
6
|
Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50. J Biotechnol 2016; 223:42-9. [DOI: 10.1016/j.jbiotec.2016.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
|
7
|
Chan CL, Yew SM, Ngeow YF, Na SL, Lee KW, Hoh CC, Yee WY, Ng KP. Genome analysis of Daldinia eschscholtzii strains UM 1400 and UM 1020, wood-decaying fungi isolated from human hosts. BMC Genomics 2015; 16:966. [PMID: 26581579 PMCID: PMC4650942 DOI: 10.1186/s12864-015-2200-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/10/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species. RESULTS Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments. CONCLUSIONS Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.
Collapse
Affiliation(s)
- Chai Ling Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Su Mei Yew
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, 43000, Kajang, Selangor Darul Ehsan, Malaysia.
| | - Shiang Ling Na
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kok Wei Lee
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, Seri Kembangan, 43200, Selangor Darul Ehsan, Malaysia.
| | - Chee-Choong Hoh
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, Seri Kembangan, 43200, Selangor Darul Ehsan, Malaysia.
| | - Wai-Yan Yee
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, Seri Kembangan, 43200, Selangor Darul Ehsan, Malaysia.
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Cupul WC, Abarca GH, Vázquez RR, Salmones D, Hernández RG, Gutiérrez EA. Response of ligninolytic macrofungi to the herbicide atrazine: dose-response bioassays. Rev Argent Microbiol 2015; 46:348-57. [PMID: 25576420 DOI: 10.1016/s0325-7541(14)70094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 10/23/2014] [Indexed: 10/24/2022] Open
Abstract
The effect of atrazine concentrations on mycelial growth and ligninolytic enzyme activities of eight native ligninolytic macrofungi isolated in Veracruz, México, were evaluated in a semi-solid culture medium. Inhibition of mycelial growth and growth rates were significantly affected (p=0.05) by atrazine concentrations (468, 937, 1875, and 3750 mg/l). In accordance with the median effective concentration (EC50), Pleurotus sp. strain 1 proved to be the most tolerant isolate to atrazine (EC50=2281.0 mg/l), although its enzyme activity was not the highest. Pycnoporus sanguineus strain 2, Daedalea elegans and Trametes maxima showed high laccase activity (62.7, 31.9, 29.3 U mg/protein, respectively) without atrazine (control); however, this activity significantly increased (p<0.05) (to 191.1, 83.5 and 120.6 U mg/protein, respectively) owing to the effect of atrazine (937 mg/l) in the culture medium. Pleurotus sp. strain 2 and Cymatoderma elegans significantly increased (p<0.05) their manganese peroxidase (MnP) activities under atrazine stress at 468 mg/l. The isolates with high EC50 (Pleurotus sp. strain 1) and high enzymatic activity (P. sanguineus strain 2 and T. maxima) could be considered for future studies on atrazine mycodegradation. Furthermore, this study confirms that atrazine can increase laccase and MnP activities in ligninolytic macrofungi.
Collapse
Affiliation(s)
| | | | | | - Dulce Salmones
- Instituto de Ecología A. C. (INECOL), Xalapa, Veracruz, Mexico
| | | | - Enrique Alarcón Gutiérrez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|