1
|
Kutuzov I, Rivest R, VanUytven E, McCurdy B. Long-term performance monitoring of a-Si 1200 electronic portal imaging device for dosimetric applications. J Appl Clin Med Phys 2025; 26:e14551. [PMID: 39374243 PMCID: PMC11713653 DOI: 10.1002/acm2.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE Recently, dosimetri applications of the electronic portal imaging device (EPID) in radiotherapy have gained popularity. Confidence in the robust and reliable dosimetric performance of EPID detectors is essential for their clinical use. This study aimed to evaluate the dosimetric performance of the a-Si 1200 EPID and assess the long-term stability of its response. METHODS Weekly measurements were performed on two clinically used TrueBeam linear accelerators (linacs) equipped with a-Si 1200 EPID detectors over a 2-year period. They included dark and flood calibration fields, and EPID response to an open field corrected for the long-term machine output drift measured with the secondary absolute dosimeters: an ion chamber and an ion chamber array. All measurements were performed using five photon beam energies and two imaging modes: continuous and dosimetry. The measurements were analyzed for constancy and the presence of long-term trends. Comparisons were made between the two linacs for each beam energy. Pixel sensitivity matrices (PSM) were determined semi-annually and analyzed for long-term constancy for both treatment machines. RESULTS The long-term variation of the dark and flood field signals, integrated across the EPID plane, over the entire observation period did not exceed 0.17% and 0.79%, respectively. The output-corrected EPID response showed long-term variation from 0.28% to 0.36%, depending on beam energy, while the short-term variation was 0.04%-0.07% for EPID and 0.02%-0.06% for secondary dosimeters. The long-term variation of secondary dosimeters was 0.2%-0.3%. PSMs were found to be stable to within 1% for 97.8% of pixels and 2% for 100% of pixels. CONCLUSION Techniques to monitor and assess the long-term performance of the a-Si 1200 EPID as a dosimeter were developed and implemented using two TrueBeam linacs. The long-term variation of the EPID response was within clinical tolerance indicated in AAPM TG-142 report, and the detector was shown to be stable and reproducible for routine clinical dosimetry.
Collapse
Affiliation(s)
- Ivan Kutuzov
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
- Medical Physics DepartmentCancerCare ManitobaWinnipegManitobaCanada
| | - Ryan Rivest
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
- Medical Physics DepartmentCancerCare ManitobaWinnipegManitobaCanada
- Department of RadiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Eric VanUytven
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
- Medical Physics DepartmentCancerCare ManitobaWinnipegManitobaCanada
| | - Boyd McCurdy
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
- Medical Physics DepartmentCancerCare ManitobaWinnipegManitobaCanada
- Department of RadiologyUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
2
|
Barnes MP, Sun B, Oborn BM, Lamichhane B, Szwec S, Schmidt M, Cai B, Menk F, Greer P. Determination of the electronic portal imaging device pixel‐sensitivity‐map for quality assurance applications. Part 1: Comparison of methods. J Appl Clin Med Phys 2022; 23:e13603. [PMID: 35429102 PMCID: PMC9195035 DOI: 10.1002/acm2.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Michael Paul Barnes
- Department of Radiation Oncology Calvary Mater Hospital Newcastle Newcastle New South Wales Australia
- School of Mathematical and Physical Sciences University of Newcastle Newcastle New South Wales Australia
| | - Baozhou Sun
- Department of Radiation Oncology Washington University in St. Louis St. Louis Missouri USA
| | - Brad Michael Oborn
- Centre for Medical Radiation Physics University of Wollongong Wollongong New South Wales Australia
- Illawarra Cancer Care Centre Wollongong Hospital Wollongong New South Wales Australia
| | - Bishnu Lamichhane
- School of Mathematical and Physical Sciences University of Newcastle Newcastle New South Wales Australia
| | - Stuart Szwec
- School of Medicine and Public Health University of Newcastle Newcastle New South Wales Australia
| | - Matthew Schmidt
- Department of Radiation Oncology Washington University in St. Louis St. Louis Missouri USA
| | - Bin Cai
- Department of Radiation Oncology Washington University in St. Louis St. Louis Missouri USA
| | - Frederick Menk
- School of Mathematical and Physical Sciences University of Newcastle Newcastle New South Wales Australia
| | - Peter Greer
- Department of Radiation Oncology Calvary Mater Hospital Newcastle Newcastle New South Wales Australia
- School of Mathematical and Physical Sciences University of Newcastle Newcastle New South Wales Australia
| |
Collapse
|
3
|
Ma Y, Wang X, Mai R, Wang T, Pei Y, Liu S, Guo Y. An electronic portal image device (EPID)-based multiplatform rapid daily LINAC QA tool. J Appl Clin Med Phys 2021; 22:45-58. [PMID: 33410254 PMCID: PMC7856503 DOI: 10.1002/acm2.13055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop an efficient and economic daily quality research tool (DQRT) for daily check of multiplatform linear accelerators (LINACs) with flattening filter (FF) and flattening filter-free (FFF) photon beams by using an Electronic Portal Image Device (EPID). MATERIALS AND METHODS After EPID calibration, the monitored parameters were analyzed from a 10 cm × 10 cm open and 60° wedge portal images measured by the EPID with 100 MU exposure. Next, the repeatability of the EPID position accuracy, long-term stability, and linearity between image gray value and exposure were verified. Output and beam quality stability of the 6-MV FF and FFF beams measured by DQRT with the introduced setup errors of EPID were also surveyed. Besides, some test results obtained by DQRT were compared with those measured by FC65-G and Matrixx. At last, the tool was evaluated on three LINACs (Synergy, VersaHD, TrueBeam) for 2 months with two popular commercial QA tools as references. RESULTS There are no differences between repeatability tests for all monitored parameters. Image grayscale values obtained by EPID and exposure show good linearity. Either 6 MV FF or FFF photon beam shows minimal impact to the results. The differences between FC65-G, Matrixx and DQRT results are negligible. Monitor results of the two commercial tools are consistent with the DQRT results collected during the 2-month period. CONCLUSION With a shorter time and procedure, the DQRT is useful to daily QA works of LINACs, producing a QA result quality similarly to or more better than the traditional tools and giving richer contents to the QA results. For hospitals with limited QA time window available or lack of funding to purchase commercial QA tools, the proposed DQRT can provide an alternative and economic approach to accomplish the task of daily QA for LINACs.
Collapse
Affiliation(s)
- Yangguang Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Wang
- Department of Radiotherapy Hospital Unit Radiation Therapy, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Rizhen Mai
- Department of Medical Equipment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuntong Pei
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaipeng Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuexin Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Yaddanapudi S, Cai B, Harry T, Dolly S, Sun B, Li H, Stinson K, Noel C, Santanam L, Pawlicki T, Mutic S, Goddu SM. Rapid acceptance testing of modern linac using on-board MV and kV imaging systems. Med Phys 2017; 44:3393-3406. [PMID: 28432806 DOI: 10.1002/mp.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study was to develop a novel process for using on-board MV and kV Electronic Portal Imaging Devices (EPIDs) to perform linac acceptance testing (AT) for two reasons: (a) to standardize the assessment of new equipment performance, and (b) to reduce the time to clinical use while reducing physicist workload. METHODS AND MATERIALS In this study, Varian TrueBeam linacs equipped with amorphous silicon-based EPID (aS1000) were used. The conventional set of AT tests and tolerances were used as a baseline guide. A novel methodology was developed or adopted from published literature to perform as many tests as possible using the MV and kV EPIDs. The developer mode on Varian TrueBeam linacs was used to automate the process. In the EPID-based approach, most of mechanical tests were conducted by acquiring images through a custom phantom and software tools were developed for quantitative analysis to extract different performance parameters. The embedded steel-spheres in a custom phantom provided both visual and radiographic guidance for beam geometry testing. For photon beams, open field EPID images were used to extract inline/crossline profiles to verify the beam energy, flatness and symmetry. EPID images through a double wedge phantom were used for evaluating electron beam properties via diagonal profile. Testing was augmented with a commercial automated application (Machine Performance Check) which was used to perform several geometric accuracy tests such as gantry, collimator rotations, and couch rotations/translations. RESULTS The developed process demonstrated that the tests, which required customer demonstration, were efficiently performed using EPIDs. The AT tests that were performed using EPIDs were fully automated using the developer mode on the Varian TrueBeam system, while some tests, such as the light field versus radiation field congruence, and collision interlock checks required user interaction. CONCLUSIONS On-board imagers are quite suitable for both geometric and dosimetric testing of linac system involved in AT. Electronic format of the acquired data lends itself to benchmarking, transparency, as well as longitudinal use of AT data. While the tests were performed on a specific model of a linear accelerator, the proposed approach can be extended to other linacs.
Collapse
Affiliation(s)
- Sridhar Yaddanapudi
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - Bin Cai
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - Taylor Harry
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr., La Jolla, CA, 92093, USA
| | - Steven Dolly
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - Hua Li
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - Keith Stinson
- Varian Medical Systems, 3100 Hansen Way, Palo Alto, CA, 94304, USA
| | - Camille Noel
- Varian Medical Systems, 3100 Hansen Way, Palo Alto, CA, 94304, USA
| | - Lakshmi Santanam
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - Todd Pawlicki
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr., La Jolla, CA, 92093, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| | - S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO, 63110, USA
| |
Collapse
|
5
|
Barnes MP, Greer PB. Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter-free (FFF) photon beams. J Appl Clin Med Phys 2016; 18:139-150. [PMID: 28291921 PMCID: PMC5689878 DOI: 10.1002/acm2.12016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 11/12/2022] Open
Abstract
Machine Performance Check (MPC) is an automated and integrated image‐based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the MPC beam performance tests against current daily quality assurance (QA) methods, to compare MPC performance against more accurate monthly QA tests and to test the sensitivity of MPC to changes in beam performance. The MPC beam constancy checks test the beam output, uniformity, and beam center against the user defined baseline. MPC was run daily over a period of 5 months (n = 115) in parallel with the Daily QA3 device. Additionally, IC Profiler, in‐house EPID tests, and ion chamber measurements were performed biweekly and results presented in a form directly comparable to MPC. The sensitivity of MPC was investigated using controlled adjustments of output, beam angle, and beam position steering. Over the period, MPC output agreed with ion chamber to within 0.6%. For an output adjustment of 1.2%, MPC was found to agree with ion chamber to within 0.17%. MPC beam center was found to agree with the in‐house EPID method within 0.1 mm. A focal spot position adjustment of 0.4 mm (at isocenter) was measured with MPC beam center to within 0.01 mm. An average systematic offset of 0.5% was measured in the MPC uniformity and agreement of MPC uniformity with symmetry measurements was found to be within 0.9% for all beams. MPC uniformity detected a change in beam symmetry of 1.5% to within 0.3% and 0.9% of IC Profiler for flattened and FFF beams, respectively.
Collapse
Affiliation(s)
- Michael P Barnes
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, NSW, Australia.,School of Medical Radiation Sciences, University of Newcastle, Newcastle, NSW, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Peter B Greer
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, NSW, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
6
|
Chang CS, Tseng YH, Hwang JM, Shih R, Chuang KS. Dosimetric characteristics and day-to-day performance of an amorphous-silicon type electronic portal imaging device. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Use of electronic portal imaging devices for electron treatment verification. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 39:199-209. [PMID: 26581763 DOI: 10.1007/s13246-015-0401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 11/27/2022]
Abstract
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Collapse
|
8
|
Chiu CY, Tsang YW, Hsieh BT. N-isopropylacrylamide gel dosimeter to evaluate clinical photon beam characteristics. Appl Radiat Isot 2014; 90:245-50. [DOI: 10.1016/j.apradiso.2014.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/12/2014] [Indexed: 01/04/2023]
|
9
|
Wang Y, Heaton R, Norrlinger B, Islam M. Quality assurance of electron beams using a Varian electronic portal imaging device. Phys Med Biol 2013; 58:5461-75. [PMID: 23877373 DOI: 10.1088/0031-9155/58/16/5461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The feasibility of utilizing an electronic portal imaging device (EPID) for the quality assurance of electron beams was investigated. This work was conducted on a Varian 2100iX machine equipped with an amorphous silicon (aS1000) portal imager. The linearity of the imager pixel response as a function of exposed dose was first confirmed. The short-term reproducibility of the EPID response to electron beams was verified. Low (6 MeV), medium (12 MeV) and high (20 MeV) energies were tested, each along with small (6 × 6 cm(2)), medium (10 × 10 cm(2)) and large (20 × 20 cm(2)) applicators. Acquired EPID images were analyzed using an in-house MATLAB code for radiation field size, penumbra, symmetry and flatness. Field sizes and penumbra values agreed with those from film dosimetry to within 1 mm. Field symmetry and flatness constancies were measured over a period of three weeks. The results indicate that EPID can be used for routine quality assurance of electron beams.
Collapse
Affiliation(s)
- Y Wang
- Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
10
|
Mohammadi M, Bezak E. Evaluation of relative transmitted dose for a step and shoot head and neck intensity modulated radiation therapy using a scanning liquid ionization chamber electronic portal imaging device. J Med Phys 2012; 37:14-26. [PMID: 22363108 PMCID: PMC3283912 DOI: 10.4103/0971-6203.92716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/13/2022] Open
Abstract
The dose delivery verification for a head and neck static intensity modulated radiation therapy (IMRT) case using a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID) was investigated. Acquired electronic portal images were firstly converted into transmitted dose maps using an in-house developed method. The dose distributions were then compared with those calculated in a virtual EPID using the Pinnacle3 treatment planning system (TPS). Using gamma evaluation with the ΔDmax and DTA criteria of 3%/2.54 mm, an excellent agreement was observed between transmitted dose measured using SLIC-EPID and that calculated by TPS (gamma score approximately 95%) for large MLC fields. In contrast, for several small subfields, due to SLIC-EPID image blurring, significant disagreement was found in the gamma results. Differences between EPID and TPS dose maps were also observed for several parts of the radiation subfields, when the radiation beam passed through air on the outside of tissue. The transmitted dose distributions measured using portal imagers such as SLIC-EPID can be used to verify the dose delivery to a patient. However, several aspects such as accurate calibration procedure and imager response under different conditions should be taken into the consideration. In addition, SLIC-EPID image blurring is another important issue, which should be considered if the SLIC-EPID is used for clinical dosimetry verification.
Collapse
|
11
|
Madebo M, Perkins A, Fox C, Johnston P, Kron T. Study of X-ray field junction dose using an a-Si electronic portal imaging device. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2010; 33:45-50. [PMID: 20237889 DOI: 10.1007/s13246-010-0005-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 02/10/2010] [Indexed: 11/28/2022]
Abstract
Field junctions between megavoltage photon beams are important in modern radiotherapy for treatments such as head and neck and breast cancer. An electronic portal imaging device (EPID) may be used to study junction dose between two megavoltage X-ray fields. In this study, the junction dose was used to determine machine characteristics such as jaw positions and their reproducibility, collimator rotation and the effect of gantry rotation. All measurements were done on Varian linear accelerators with EPID (Varian, Palo Alto, CA). The results show reproducibility in jaw positions of approximately 0.3 mm for repeated jaw placement while EPID readings were reproducible within a standard deviation of 0.4% for fixed jaw positions. Junction dose also allowed collimator rotation error of 0.1 degrees to be observed. Dependence of junction dose on gantry rotation due to gravity was observed; the gravity effect being maximum at 180 degrees gantry angle (beam pointing up). EPIDs were found to be reliable tools for checking field junctions, which in turn may be used to check jaw reproducibility and collimator rotation of linacs.
Collapse
Affiliation(s)
- Mebratu Madebo
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Locked Bag 1 A'Beckett Street, Melbourne, VIC 8006, Australia.
| | | | | | | | | |
Collapse
|
12
|
Clews L, Greer PB. An EPID based method for efficient and precise asymmetric jaw alignment quality assurance. Med Phys 2010; 36:5488-96. [PMID: 20095261 DOI: 10.1118/1.3253463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this work was to investigate the use of amorphous silicon electronic portal imaging devices (EPIDs) for regular quality assurance of linear accelerator asymmetric jaw junctioning. METHODS The method uses the beam central axis position on the EPID measured to subpixel accuracy found from two EPID images with 180 degrees opposing collimator angles. Individual zero jaw position ("half-beam blocked") images are then acquired and the jaw position precisely determined for each using penumbra interpolation. The accuracy of determining jaw position with the EPID method was measured by translating a block (simulating a jaw) by known distances, using a translation stage, and then measuring each translation distance with the EPID. To establish the utility of EPID based junction dose measurements, radiographic film measurements of junction dose maxima/minima as a function of jaw gap/overlap were made and compared to EPID measurements. Using the method, the long-term stability of zero jaw positioning was assessed for four linear accelerators over a 1-1.5 yr time period. The stability at nonzero gantry angles was assessed over a shorter time period. RESULTS The accuracy of determining jaw translations with the method was within 0.14 mm found using the translation stage [standard deviation (SD) of 0.037 mm]. The junction doses measured with the EPID were different from film due to the nonwater equivalent EPID scattering properties and hence different penumbra profile. The doses were approximately linear with gap or overlap, and a correction factor was derived to convert EPID measured junction dose to film measured equivalent. Over a 1 yr period, the zero jaw positions at gantry zero position were highly reproducible with an average SD of 0.07 mm for the 16 collimator jaws examined. However, the average jaw positions ranged from -0.7 to 0.9 mm relative to central axis for the different jaws. The zero jaw position was also reproducible at gantry 90 degrees position with 0.1 mm SD variation with the mean jaw position offset from the gantry zero position consistently by 0.3-0.4 mm for the jaws studied. CONCLUSIONS The EPID based method is efficient and yields more precise data on linear accelerator jaw positioning and reproducibility than previous methods. The results highlight that zero jaw positions are highly reproducible to a level much smaller than the displayed jaw resolution and that there is a need for better methods to calibrate the jaw positioning.
Collapse
Affiliation(s)
- Luke Clews
- Calvary Mater Newcastle Hospital, Newcastle, New South Wales, 2298, Australia
| | | |
Collapse
|
13
|
Beck JA, Budgell GJ, Roberts DA, Evans PM. Electron beam quality control using an amorphous silicon EPID. Med Phys 2009; 36:1859-66. [PMID: 19544805 DOI: 10.1118/1.3110671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An amorphous silicon EPID has been investigated to determine whether it is capable of quality control constancy measurements for linear accelerator electron beams. The EPID grayscale response was found to be extremely linear with dose over a wide dose range and, more specifically, for exposures of 95-100 MU. Small discrepancies of up to 0.8% in linearity were found at 6 MeV (8-15 MeV showed better agreement). The shape of the beam profile was found to be significantly altered by scatter in air over the approximately 60 cm gap between the end of the applicator and the EPID. Nevertheless, relative changes in EPID-measured profile flatness and symmetry were linearly related to changes in these parameters at 95 cm focus to surface distance (FSD) measured using a 2D diode array. Similar results were obtained at 90 degrees and 270 degrees gantry angles. Six months of daily images were acquired and analyzed to determine whether the device is suitable as a constancy checker. EPID output measurements agreed well with daily ion chamber measurements, with a 0.8% standard deviation in the difference between the two measurement sets. When compared to weekly parallel plate chamber measurements, this figure dropped to 0.5%. A Monte Carlo (MC) model of the EPID was created and demonstrated excellent agreement between MC-calculated profiles in water and the EPID at 95 and 157 cm FSD. Good agreement was also found with measured EPID profiles, demonstrating that the EPID provides an accurate measurement of electron profiles. The EPID was thus shown to be an effective method for performing electron beam daily constancy checks.
Collapse
Affiliation(s)
- J A Beck
- North Western Medical Physics, Christie Hospital NHS Foundation Trust, Withington, Manchester M20 4BX, United Kingdom.
| | | | | | | |
Collapse
|
14
|
van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 2008; 88:289-309. [PMID: 18706727 DOI: 10.1016/j.radonc.2008.07.008] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/09/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
Abstract
Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.
Collapse
Affiliation(s)
- Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Budgell GJ, Zhang R, Mackay RI. Daily monitoring of linear accelerator beam parameters using an amorphous silicon EPID. Phys Med Biol 2007; 52:1721-33. [PMID: 17327658 DOI: 10.1088/0031-9155/52/6/012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An amorphous silicon EPID has been investigated to test its suitability as a daily check device for linac output and to provide daily monitoring of beam profile parameters such as flatness, symmetry, field size and wedge factor. Open and wedged 6 and 8 MV photon beams were collected on a daily basis for a period of just over a year and analysed in software to determine daily values of these parameters. Daily output results gave agreement between EPID measured dose and ion chamber measurements with a standard deviation of 0.65%. Step changes in flatness, symmetry and field size were readily detected by the EPID and could be correlated with adjustments made on service days and QC sessions. The results could also be used to assess the long term beam stability. Recalibration of the EPID required new baseline values of the parameters to be set. Wedge factors measured at one collimator angle proved stable but sensitive to changes in beam steering. The EPID proved to be a useful daily check device for linac output which can simultaneously be used for daily monitoring of beam profiles and field sizes.
Collapse
Affiliation(s)
- G J Budgell
- North Western Medical Physics, Christie Hospital NHS Trust, Withington, Manchester, M20 4BX, UK
| | | | | |
Collapse
|
16
|
Baier K, Meyer J. Fast image acquisition and processing on a TV camera-based portal imaging system. Z Med Phys 2005; 15:122-5. [PMID: 16008082 DOI: 10.1078/0939-3889-00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present paper describes the fast acquisition and processing of portal images directly from a TV camera-based portal imaging device (Siemens Beamview Plus). This approach employs not only hard- and software included in the standard package installed by the manufacturer (in particular the frame grabber card and the Matrox Intellicam interpreter software), but also a software tool developed in-house for further processing and analysis of the images. The technical details are presented, including the source code for the Matrox interpreter script that enables the image capturing process. With this method it is possible to obtain raw images directly from the frame grabber card at an acquisition rate of 15 images per second. The original configuration by the manufacturer allows the acquisition of only a few images over the course of a treatment session. The approach has a wide range of applications, such as quality assurance (QA) of the radiation beam, real-time imaging, real-time verification of intensity-modulated radiation therapy (IMRT) fields, and generation of movies of the radiation field (fluoroscopy mode).
Collapse
Affiliation(s)
- Kurt Baier
- Klinik und Poliklinik für Strahlentherapie, Universität Würzburg.
| | | |
Collapse
|