1
|
Hund SJ, Brown BR, Lemale CL, Menon PG, Easley KA, Dreier JP, Jones SC. Numerical Simulation of Concussive-Generated Cortical Spreading Depolarization to Optimize DC-EEG Electrode Spacing for Noninvasive Visual Detection. Neurocrit Care 2022; 37:67-82. [PMID: 35233716 PMCID: PMC9262830 DOI: 10.1007/s12028-021-01430-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cortical spreading depolarization (SD) is a propagating depolarization wave of neurons and glial cells in the cerebral gray matter. SD occurs in all forms of severe acute brain injury, as documented by using invasive detection methods. Based on many experimental studies of mechanical brain deformation and concussion, the occurrence of SDs in human concussion has often been hypothesized. However, this hypothesis cannot be confirmed in humans, as SDs can only be detected with invasive detection methods that would require either a craniotomy or a burr hole to be performed on athletes. Typical electroencephalography electrodes, placed on the scalp, can help detect the possible presence of SD but have not been able to accurately and reliably identify SDs. METHODS To explore the possibility of a noninvasive method to resolve this hurdle, we developed a finite element numerical model that simulates scalp voltage changes that are induced by a brain surface SD. We then compared our simulation results with retrospectively evaluated data in patients with aneurysmal subarachnoid hemorrhage from Drenckhahn et al. (Brain 135:853, 2012). RESULTS The ratio of peak scalp to simulated peak cortical voltage, Vscalp/Vcortex, was 0.0735, whereas the ratio from the retrospectively evaluated data was 0.0316 (0.0221, 0.0527) (median [1st quartile, 3rd quartile], n = 161, p < 0.001, one sample Wilcoxon signed-rank test). These differing values provide validation because their differences can be attributed to differences in shape between concussive SDs and aneurysmal subarachnoid hemorrhage SDs, as well as the inherent limitations in human study voltage measurements. This simulated scalp surface potential was used to design a virtual scalp detection array. Error analysis and visual reconstruction showed that 1 cm is the optimal electrode spacing to visually identify the propagating scalp voltage from a cortical SD. Electrode spacings of 2 cm and above produce distorted images and high errors in the reconstructed image. CONCLUSIONS Our analysis suggests that concussive (and other) SDs can be detected from the scalp, which could confirm SD occurrence in human concussion, provide concussion diagnosis on the basis of an underlying physiological mechanism, and lead to noninvasive SD detection in the setting of severe acute brain injury.
Collapse
Affiliation(s)
- Samuel J Hund
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- SimulationSolutions, Pittsburgh, PA, USA
| | | | - Coline L Lemale
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Prahlad G Menon
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jens P Dreier
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
Zhang L, Jackson WJ, Bentil SA. Deformation of an airfoil-shaped brain surrogate under shock wave loading. J Mech Behav Biomed Mater 2021; 120:104513. [PMID: 34010798 DOI: 10.1016/j.jmbbm.2021.104513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Improvised explosive devices (IEDs), during military operations, has increased the incidence of blast-induced traumatic brain injuries (bTBI). The shock wave is created following detonation of the IED. This shock wave propagates through the atmosphere and may cause bTBI. As a result, bTBI research has gained increased attention since this injury's mechanism is not thoroughly understood. To develop better protection and treatment against bTBI, further studies of soft material (e.g. brain and brain surrogate) deformation due to shock wave exposure are essential. However, the dynamic mechanical behavior of soft materials, subjected to high strain rates from shock wave exposure, remains unknown. Thus, an experimental approach was applied to study the interaction between the shock wave and an unconfined brain surrogate fabricated from a biomaterial (i.e. polydimethylsiloxane (PDMS)). The 1:70 ratio of curing agent-to-base determined the stiffness of the PDMS (Sylgard 184, Dow Corning Corporation). A stretched NACA 2414 (upper airfoil surface) geometry was utilized to resemble the shape of a porcine brain. Digital image correlation (DIC) technique was applied to measure the deformation on the brain surrogate's surface following shock wave exposure. A shock tube was utilized to create the shock wave and pressure transducers measured the pressure in the vicinity of the brain surrogate. A transient structural analysis using ANSYS Workbench was performed to predict the elastic modulus of 1:70 airfoil-shaped PDMS, at a strain rate on the order of 6 × 103 s-1. Both compression and protrusion of the PDMS surface were found due to the shock wave exposure. Negative pressure was found in a semi-ring area, which was the cause of protrusion. Oscillation of the brain surrogate, due to the shock wave loading, was found. The frequency of oscillation does not depend on the geometry. This work will add to the limited data describing the dynamic behavior of soft materials due to shock wave loading.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - William J Jackson
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Güllmar D, Haueisen J, Reichenbach JR. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. Neuroimage 2010; 51:145-63. [PMID: 20156576 DOI: 10.1016/j.neuroimage.2010.02.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/12/2010] [Accepted: 02/08/2010] [Indexed: 01/27/2023] Open
|