1
|
Isola D, Lee HJ, Chung YJ, Zucconi L, Pelosi C. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. J Fungi (Basel) 2024; 10:366. [PMID: 38786721 PMCID: PMC11122135 DOI: 10.3390/jof10050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Wooden Cultural Heritage (WCH) represents a significant portion of the world's historical and artistic heritage, consisting of immovable and movable artefacts. Despite the expertise developed since ancient times to enhance its durability, wooden artefacts are inevitably prone to degradation. Fungi play a pivotal role in the deterioration of WCH in terrestrial ecosystems, accelerating its decay and leading to alterations in color and strength. Reviewing the literature of the last 25 years, we aimed to provide a comprehensive overview of fungal diversity affecting WCH, the biochemical processes involved in wood decay, and the diagnostic tools available for fungal identification and damage evaluation. Climatic conditions influence the occurrence of fungal species in threatened WCH, characterized by a prevalence of wood-rot fungi (e.g., Serpula lacrymans, Coniophora puteana) in architectural heritage in temperate and continental climates and Ascomycota in indoor and harsh environments. More efforts are needed to address the knowledge fragmentation concerning biodiversity, the biology of the fungi involved, and succession in the degradative process, which is frequently centered solely on the main actors. Multidisciplinary collaboration among engineers, restorers, and life sciences scientists is vital for tackling the challenges posed by climate change with increased awareness. Traditional microbiology and culture collections are fundamental in laying solid foundations for a more comprehensive interpretation of big data.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Hyun-Ju Lee
- Institute of Preventive Conservation for Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Yong-Jae Chung
- Department of Heritage Conservation and Restoration, Graduate School of Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Claudia Pelosi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| |
Collapse
|
2
|
Djokić I, Knežević A, Savković Ž, Ljaljević Grbić M, Dimkić I, Bukvički D, Gavrilović D, Unković N. Characterization of Culturable Mycobiome of Newly Excavated Ancient Wooden Vessels from the Archeological Site of Viminacium, Serbia. J Fungi (Basel) 2024; 10:343. [PMID: 38786698 PMCID: PMC11122453 DOI: 10.3390/jof10050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Two ancient wooden vessels, specifically a monoxyle (1st century BCE to 1st century CE) and shipwreck (15th to 17th century CE), were excavated in a well-preserved state east of the confluence of the old Mlava and the Danube rivers (Serbia). The vessels were found in the ground that used to be river sediment and were temporarily stored within the semi-underground exhibition space of Mammoth Park. As part of the pre-conservation investigations, the primary aim of the research presented was to characterize the culturable mycobiomes of two excavated wooden artifacts so that appropriate conservation procedures for alleviating post-excavation fungal infestation could be formulated. Utilizing culture-based methods, a total of 32 fungi from 15 genera were identified, mainly Ascomycota and to a lesser extent Mucoromycota sensu stricto. Soft-rot Ascomycota of genus Penicillium, followed by Aspergillus and Cephalotrichum species, were the most diverse of the isolated fungi. Out of a total of 38 isolates, screened on 7 biodegradation plate assays, 32 (84.21%) demonstrated at least one degradative property. Penicillium solitum had the highest deterioration potential, with a positive reaction in 5 separate plate assays. The obtained results further broaden the limited knowledge on the peculiarities of post-excavation soft-rot decay of archaeological wood and indicate the biochemical mechanisms at the root of post-excavation fungal deterioration.
Collapse
Affiliation(s)
- Ivana Djokić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Aleksandar Knežević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Željko Savković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Milica Ljaljević Grbić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Danka Bukvički
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | | | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| |
Collapse
|
3
|
Sadiki M, Balouiri M, Elabed S, Bennouna F, Lachkar M, Ibnsouda Koraichi S. The combined effect of essential oils on wood physico-chemical properties and their antiadhesive activity against mold fungi: application of mixture design methodology. BIOFOULING 2023; 39:537-554. [PMID: 37477240 DOI: 10.1080/08927014.2023.2236029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
In the heritage field, the microbial adhesion on wood, and consequently the formation of biofilm led to inestimable losses of historical and cultural monuments. Thereby, this study aimed to examine the combined effect of Thymus vulgaris, Myrtus communis, and Mentha pulegium essential oils on wood surface physico-chemical properties, and to elaborate the optimal mixture using the mixture design approach coupled to the contact angle method. It was found that both wood hydrophobicity and electron donor character increased significantly after treatment using an optimal mixture containing 57% and 43% of M. pulegium and M. communis essential oils, respectively. The theoretical and experimental fungal adhesion on untreated and treated wood were also investigated. The results showed that the adhesion was favorable on untreated wood and reduced using the optimal mixture. Moreover, the experimental data demonstrated that the same mixture exhibited an antiadhesive efficacy effect with a reduction of 36-75% in adhesion.
Collapse
Affiliation(s)
- Moulay Sadiki
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Mounyr Balouiri
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- City of Innovation-Regional University Centre of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fadoua Bennouna
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Mohammed Lachkar
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- City of Innovation-Regional University Centre of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
The Effect of Different Vegetable Oils on Cedar Wood Surface Energy: Theoretical and Experimental Fungal Adhesion. Int J Biomater 2022; 2022:9923079. [PMID: 35069743 PMCID: PMC8776454 DOI: 10.1155/2022/9923079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Despite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor (γ+), and electron-donor (γ−) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils. It has become more hydrophobic quantitatively with values of surface energy ranged from −25.84 to −43.45 mJ/m2 and more electron donors compared to the untreated sample. Moreover, the adhesion of four fungal strains (Penicillium commune (PDLd”), Thielavia hyalocarpa, Penicillium commune (PDLd10), and Aspergillus niger) on untreated and treated cedar wood was examined theoretically and experimentally. For untreated wood, the experimental adhesion showed a positive relationship with the results obtained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach which found that all fungal strains could adhere strongly to the cedar wood material. In contrast, this relationship was not always positive after treatment. The Environmental Scanning Electron Microscopy (ESEM) has shown that P. commune (PDLd10) and A. niger were found unable to adhere to the wood surface after treatment with sunflower and rapeseed oils. In addition, the results showed that the four fungal strains' adhesion was decreased with olive and linseed oils treatment except that of P. commune (PDLd10) treated with linseed oil.
Collapse
|
5
|
Slimen A, Barboux R, Mihajlovski A, Moularat S, Leplat J, Bousta F, Di Martino P. High diversity of fungi associated with altered wood materials in the hunting lodge of “La Muette”, Saint-Germain-en-Laye, France. Mycol Prog 2020. [DOI: 10.1007/s11557-019-01548-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Salo MJ, Marik T, Mikkola R, Andersson MA, Kredics L, Salonen H, Kurnitski J. Penicillium expansum strain isolated from indoor building material was able to grow on gypsum board and emitted guttation droplets containing chaetoglobosins and communesins A, B and D. J Appl Microbiol 2019; 127:1135-1147. [PMID: 31271686 PMCID: PMC6852191 DOI: 10.1111/jam.14369] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
Abstract
Aims Emission of toxic metabolites in guttation droplets of common indoor fungi is not well documented. The aims of this study were (i) to compare mycotoxins in biomass and guttation droplets from indoor fungi from a building following health complaints among occupants, (ii) to identify the most toxic strain and to test if mycotoxins in guttation liquids migrated trough air and (iii) to test if toxigenic Penicillium expansum strains grew on gypsum board. Methods and Results Biomass suspensions and guttation droplets from individual fungal colonies representing Aspergillus, Chaetomium, Penicillium, Stachybotrys and Paecilomyces were screened toxic to mammalian cells. The most toxic strain, RcP61 (CBS 145620), was identified as Pen. expansum Link by sequence analysis of the ITS region and a calmodulin gene fragment, and confirmed by the Westerdijk Institute based on ITS and beta‐tubulin sequences. The strain was isolated from a cork liner, was able to grow on gypsum board and to produce toxic substances in biomass extracts and guttation droplets inhibiting proliferation of somatic cells (PK‐15, MNA, FL) in up to 20 000‐fold dilutions. Toxic compounds in biomass extracts and/or guttation droplets were determined by HPLC and LC‐MS. Strain RcP61 produced communesins A, B and D, and chaetoglobosins in guttation droplets (the liquid emitted from them) and biomass extracts. The toxins of the guttation droplets migrated c. 1 cm through air and condensed on a cool surface. Conclusions The mycotoxin‐containing guttation liquids emitted by Pen. expansum grown on laboratory medium exhibited airborne migration and were >100 times more toxic in bioassays than guttation droplets produced by indoor isolates of the genera Aspergillus, Chaetomium, Stachybotrys and Paecilomyces. Significance and Impact of the Study Toxic exudates produced by Pen. expansum containing communesins A, B and D, and chaetoglobosins were transferable by air. This may represent a novel mechanism of mycotoxin dispersal in indoor environment.
Collapse
Affiliation(s)
- M J Salo
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - T Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - R Mikkola
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - M A Andersson
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - L Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - H Salonen
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - J Kurnitski
- Department of Civil Engineering, Aalto University, Aalto, Finland.,Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
7
|
Arana-Cuenca A, Tovar-Jiménez X, Favela-Torres E, Perraud-Gaime I, González-Becerra AE, Martínez A, Moss-Acosta CL, Mercado-Flores Y, Téllez-Jurado A. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech 2019; 9:21. [PMID: 30622859 DOI: 10.1007/s13205-018-1529-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
The objective of the present work was to evaluate the water hyacinth (WH) as a substrate for the production of hydrolytic enzymes (cellulases and hemicellulases) of 100 strains of filamentous fungi under conditions of solid growth. Five fungal strains, identified as Trichoderma harzianum, Trichoderma atroviride, Penicillium griseofulvum, Penicillium commune and Aspergillus versicolor, were selected and studied for their ability to grow on water hyacinth as a substrate and carbon source only, evaluating hydrolytic enzymatic activities (α-l-arabinofuranosidase, cellulase, xylanase and β-d-xylopyranosidase) and extracellular protein per g of water hyacinth dry matter (gdm). The five strains selected were able to produce the four enzymes studied; however, T. harzianum strain PBCA produces the highest xylanase (149.3 ± 14.3 IU/gdm at 108 h), cellulase (16.4 ± 0.6 IU/gdm at 84 h) and β-d-xylopyranosidase (127.7 ± 14.8 IU/gdm at 48 h). In contrast, the fungus with the highest α-l-arabinofuranosidase activity was A. versicolor, with 129.8 ± 13.3 IU/gdm after 108 h. In conclusion, T. harzianum showed the best production of the hydrolytic enzymes studied, using as a matrix and carbon source, water hyacinth. In addition, catalytic activities of arabinofuranosidase and xylopyranosidase were reported for the first time in T. versicolor and T. harzianum.
Collapse
Affiliation(s)
- Ainhoa Arana-Cuenca
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| | - Xochitl Tovar-Jiménez
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| | - Ernesto Favela-Torres
- 2Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340 México City, Mexico
| | - Isabel Perraud-Gaime
- 3Institut Méditerranéen d'Ecologie et de Paléoécologie, UMR CNRS/IRD 193, IMEP Case 441, FST Saint Jérôme, Université Paul Cézanne, Av. Escadrille Normandie-Niemen, 13397 Marselle Cedex 20, France
| | - Aldo E González-Becerra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Biológicas, C/ Nicolás Cabrera nº1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alfredo Martínez
- 5Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, 62250 Cuernavaca, Morelos Mexico
| | - Cessna L Moss-Acosta
- 5Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, 62250 Cuernavaca, Morelos Mexico
| | - Yuridia Mercado-Flores
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| | - Alejandro Téllez-Jurado
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| |
Collapse
|
8
|
El Bergadi F, Laachari F, Sadiki M, Elabed S, Iraqui MH, Ibnsouda SK. Determination of endoglucanase activity of paper decaying fungi from an old library at the ancient Medina of Fez. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Gutarowska B, Celikkol-Aydin S, Bonifay V, Otlewska A, Aydin E, Oldham AL, Brauer JI, Duncan KE, Adamiak J, Sunner JA, Beech IB. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings. Front Microbiol 2015; 6:979. [PMID: 26483760 PMCID: PMC4586457 DOI: 10.3389/fmicb.2015.00979] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022] Open
Abstract
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.
Collapse
Affiliation(s)
- Beata Gutarowska
- Department of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology Lodz, Poland
| | | | - Vincent Bonifay
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Anna Otlewska
- Department of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology Lodz, Poland
| | - Egemen Aydin
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Athenia L Oldham
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Jonathan I Brauer
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Justyna Adamiak
- Department of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology Lodz, Poland
| | - Jan A Sunner
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Iwona B Beech
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| |
Collapse
|
10
|
|
11
|
Identification of a fungus able to secrete enzymes that degrade regenerated cellulose films and analyses of its extracellular hydrolases. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0718-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
13
|
Statistical optimization of cellulases production by Penicillium chrysogenum QML-2 under solid-state fermentation and primary application to chitosan hydrolysis. World J Microbiol Biotechnol 2011; 28:1163-74. [DOI: 10.1007/s11274-011-0919-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
|
14
|
Adhesion of Aspergillus niger and Penicillium expansumspores on Fez cedar wood substrata. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0045-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|