1
|
Wang J, Wu S, Gao H, Yu C, Chen X, Yuan Z. Integrated metabolomics and network pharmacology analysis to explore pig bile-processed Rhizoma Coptidis and Fructus Evodiae sauce-processed Rhizoma Coptidis in lipopolysaccharide-induced inflammatory response. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124192. [PMID: 38941716 DOI: 10.1016/j.jchromb.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a "disease-target-differential metabolites-active ingredients" network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1β levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significant influence of processing methods on the medicinal efficacy of TCMs by revealing their regulatory mechanisms and material bases.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Songnan Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Hui Gao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Caina Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Xuelian Chen
- Gynaecological Ward of Panyu District, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Zimin Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China.
| |
Collapse
|
2
|
Gough R, O'Connor PM, Rea MC, Gómez-Sala B, Miao S, Hill C, Brodkorb A. Simulated gastrointestinal digestion of nisin and interaction between nisin and bile. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Influence of Biotechnological Processes, Speed of Formulation Flow and Cellular Concurrent Stream-Integration on Insulin Production from β-cells as a Result of Co-Encapsulation with a Highly Lipophilic Bile Acid. Cell Mol Bioeng 2017; 11:65-75. [PMID: 31719879 DOI: 10.1007/s12195-017-0510-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction We have shown that incorporation of the hydrophilic bile acid, ursodeoxycholic acid, into β-cell microcapsules exerted positive effects on microcapsules' morphology and size, but these effects were excipient and method dependent. Cell viability remained low which suggests low octane-water solubility and formation of highly hydrophilic dispersion, which resulted in low lipophilicity dispersion and compromised cellular permeation of the incorporated bile acid. Thus, this study aimed at investigating various microencapsulating methodologies using highly lipophilic bile acid (LPBA), in order to optimise viability and functions of microencapsulated β-cells. Methods Four different types of microcapsules were produced with (test) and without (control) LPBA, totalling eight different microcapsules. Microencapsulating methodologies were screened for best microcapsule-cell functions and microencapsulating processes were examined in terms of frequency, formulation flow, total bath-gelation time and cellular concurrent stream-integration rate, cell-viability, insulin production and inflammatory profile. Results Optimum biotechnological processes include formation frequency (Hz) of 2350, formulation flow (ml/min) of 1.2, total gelation time (min) of 18 and cellular concurrent stream-integration rate (ml/min) of 0.7. In all formulations, LPBA consistently improved cell viability, insulin production, mitochondrial activities and ameliorated inflammation. Conclusion The deployed biotechnological processes and LPBA optimised formation and functions of β-cell microcapsules, which suggests potential applications in diabetes mellitus via the creation of more stable β-cell microcapsules capable of delivering adequate levels of insulin to control glycaemia and potentially curing diabetes.
Collapse
|
4
|
Alginate-combined cholic acid increased insulin secretion of microencapsulated mouse cloned pancreatic β cells. Ther Deliv 2017; 8:833-842. [DOI: 10.4155/tde-2017-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: A semisynthetic primary bile acid (PBA) has exerted hypoglycemic effects in Type 1 diabetic animals, which were hypothesized to be due to its anti-inflammatory and cellular glucose-regulatory effects. Thus, the research purpose aimed to examine antidiabetic effects of a PBA, in terms of cellular inflammation and survival and insulin release, in the context of supporting β-cell delivery and Type 1 diabetic treatment. Materials & methods: 10 formulations were prepared, five without PBA (control) and five with PBA (test). Formulations were used to microencapsulate pancreatic β cells and the microcapsules were examined for morphology, cell viability, insulin release and inflammation. Results & conclusion: PBA improved cell viability, insulin release and reduced inflammation in a formulation-dependent manner, which suggests potential use in cell delivery and diabetes treatment. [Formula: see text]
Collapse
|
5
|
Gunness P, Flanagan BM, Mata JP, Gilbert EP, Gidley MJ. Molecular interactions of a model bile salt and porcine bile with (1,3:1,4)-β-glucans and arabinoxylans probed by 13C NMR and SAXS. Food Chem 2016; 197:676-85. [DOI: 10.1016/j.foodchem.2015.10.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022]
|
6
|
Mooranian A, Negrulj R, Arfuso F, Al-Salami H. Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic β-cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1642-53. [DOI: 10.3109/21691401.2015.1069299] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Mooranian A, Negrulj R, Mikov M, Golocorbin-Kon S, Arfuso F, Al-Salami H. Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study. J Microencapsul 2015; 32:589-97. [PMID: 26190214 DOI: 10.3109/02652048.2015.1065922] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT We previously designed, developed and characterized a novel microencapsulated formulation as a platform for the targeted delivery of Probucol (PB) in an animal model of Type 2 Diabetes. OBJECTIVE The objective of this study is to optimize this platform by incorporating Chenodeoxycholic acid (CDCA), a bile acid with good permeation-enhancing properties, and examine its effect in vitro. Using sodium alginate (SA), we prepared PB-SA (control) and PB-CDCA-SA (test) microcapsules. RESULTS AND DISCUSSION CDCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained unchanged. PB-CDCA-SA microcapsules showed good excipients' compatibilities, as evidenced by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy studies. CDCA reduced microcapsule swelling at pH 7.8 at both 37 °C and 25 °C and improved PB-release. CONCLUSION CDCA improved the characteristics and release properties of PB-microcapsules and may have potential in the targeted oral delivery of PB.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia , Australia
| | | | | | | | | | | |
Collapse
|
8
|
Shi Y, Xiong J, Sun D, Liu W, Wei F, Ma S, Lin R. Simultaneous quantification of the major bile acids in Artificial Calculus bovis
by high-performance liquid chromatography with precolumn derivatization and its application in quality control. J Sep Sci 2015; 38:2753-62. [DOI: 10.1002/jssc.201500139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Shi
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang Liaoning Province China
- National Institutes for Food and Drug Control; Beijing China
| | - Jing Xiong
- National Institutes for Food and Drug Control; Beijing China
| | - Dongmei Sun
- Jilin Institute for Food and Drug Control; Jilin Jilin Province China
| | - Wei Liu
- National Institutes for Food and Drug Control; Beijing China
| | - Feng Wei
- National Institutes for Food and Drug Control; Beijing China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control; Beijing China
| | - Ruichao Lin
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang Liaoning Province China
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| |
Collapse
|
9
|
Mooranian A, Negrulj R, Chen-Tan N, Watts GF, Arfuso F, Al-Salami H. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1673-83. [PMID: 25302020 PMCID: PMC4189710 DOI: 10.2147/dddt.s68247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB). The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA), which has good permeation-enhancing properties, and to examine its effect on microcapsules' morphology, rheology, structural and surface characteristics, and excipients' chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors' laboratory. Using the polymer sodium alginate (SA), two microencapsulated formulations were prepared: PB-SA (control) and PB-DCA-SA (test) at a constant ratio (1:30 and 1:3:30, respectively). Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients' compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting microcapsule stability. Hence, PB-DCA-SA microcapsules have good rheological and compatibility characteristics and may be suitable for the oral delivery of PB in type 2 diabetes.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Australia
| | - Rebecca Negrulj
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Australia
| | - Nigel Chen-Tan
- Faculty of Science and Engineering, Curtin University, Perth, Australia
| | - Gerald F Watts
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - Frank Arfuso
- School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Australia
| |
Collapse
|
10
|
Onişor C, Poša M, Kevrešan S, Kuhajda K, Sârbu C. Estimation of chromatographic lipophilicity of bile acids and their derivatives by reversed-phase thin layer chromatography. J Sep Sci 2010; 33:3110-8. [DOI: 10.1002/jssc.200900879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Nagana Gowda GA, Shanaiah N, Cooper A, Maluccio M, Raftery D. Bile acids conjugation in human bile is not random: new insights from (1)H-NMR spectroscopy at 800 MHz. Lipids 2009; 44:527-35. [PMID: 19373503 DOI: 10.1007/s11745-009-3296-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 03/16/2009] [Indexed: 01/06/2023]
Abstract
Bile acids constitute a group of structurally closely related molecules and represent the most abundant constituents of human bile. Investigations of bile acids have garnered increased interest owing to their recently discovered additional biological functions including their role as signaling molecules that govern glucose, fat and energy metabolism. Recent NMR methodological developments have enabled single-step analysis of several highly abundant and common glycine- and taurine- conjugated bile acids, such as glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid. Investigation of these conjugated bile acids in human bile employing high field (800 MHz) (1)H-NMR spectroscopy reveals that the ratios between two glycine-conjugated bile acids and their taurine counterparts correlate positively (R2 = 0.83-0.97; p = 0.001 x 10(-2)-0.006 x 10(-7)) as do the ratios between a glycine-conjugated bile acid and its taurine counterpart (R2 = 0.92-0.95; p = 0.004 x 10(-3)-0.002 x 10(-10)). Using such correlations, concentration of individual bile acids in each sample could be predicted in good agreement with the experimentally determined values. These insights into the pattern of bile acid conjugation in human bile between glycine and taurine promise useful clues to the mechanism of bile acids' biosynthesis, conjugation and enterohepatic circulation, and may improve our understanding of the role of individual conjugated bile acids in health and disease.
Collapse
Affiliation(s)
- G A Nagana Gowda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|