1
|
Morgan K, Harr B, White MA, Payseur BA, Turner LM. Disrupted Gene Networks in Subfertile Hybrid House Mice. Mol Biol Evol 2021; 37:1547-1562. [PMID: 32076722 PMCID: PMC7253214 DOI: 10.1093/molbev/msaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Dobzhansky–Muller (DM) model provides a widely accepted mechanism for the evolution of reproductive isolation: incompatible substitutions disrupt interactions between genes. To date, few candidate incompatibility genes have been identified, leaving the genes driving speciation mostly uncharacterized. The importance of interactions in the DM model suggests that gene coexpression networks provide a powerful framework to understand disrupted pathways associated with postzygotic isolation. Here, we perform weighted gene coexpression network analysis to infer gene interactions in hybrids of two recently diverged European house mouse subspecies, Mus mus domesticus and M. m. musculus, which commonly show hybrid male sterility or subfertility. We use genome-wide testis expression data from 467 hybrid mice from two mapping populations: F2s from a laboratory cross between wild-derived pure subspecies strains and offspring of natural hybrids captured in the Central Europe hybrid zone. This large data set enabled us to build a robust consensus network using hybrid males with fertile phenotypes. We identify several expression modules, or groups of coexpressed genes, that are disrupted in subfertile hybrids, including modules functionally enriched for spermatogenesis, cilium and sperm flagellum organization, chromosome organization, and DNA repair, and including genes expressed in spermatogonia, spermatocytes, and spermatids. Our network-based approach enabled us to hone in on specific hub genes likely to be influencing module-wide gene expression and hence potentially driving large-effect DM incompatibilities. A disproportionate number of hub genes lie within sterility loci identified previously in the hybrid zone mapping population and represent promising candidate barrier genes and targets for future functional analysis.
Collapse
Affiliation(s)
- Katy Morgan
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Bettina Harr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Bímová BV, Macholán M, Ďureje Ľ, Bímová KB, Martincová I, Piálek J. Sperm quality, aggressiveness and generation turnover may facilitate unidirectional Y chromosome introgression across the European house mouse hybrid zone. Heredity (Edinb) 2020; 125:200-211. [PMID: 32528080 DOI: 10.1038/s41437-020-0330-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
The widespread and locally massive introgression of Y chromosomes of the eastern house mouse (Mus musculus musculus) into the range of the western subspecies (M. m. domesticus) in Central Europe calls for an explanation of its underlying mechanisms. Given the paternal inheritance pattern, obvious candidates for traits mediating the introgression are characters associated with sperm quantity and quality. We can also expect traits such as size, aggression or the length of generation cycles to facilitate the spread. We have created two consomic strains carrying the non-recombining region of the Y chromosome of the opposite subspecies, allowing us to study introgression in both directions, something impossible in nature due to the unidirectionality of introgression. We analyzed several traits potentially related to male fitness. Transmission of the domesticus Y onto the musculus background had negative effects on all studied traits. Likewise, domesticus males possessing the musculus Y had, on average, smaller body and testes and lower sperm count than the parental strain. However, the same consomic males tended to produce less- dissociated sperm heads, to win more dyadic encounters, and to have shorter generation cycles than pure domesticus males. These data suggest that the domesticus Y is disadvantageous on the musculus background, while introgression in the opposite direction can confer a recognizable, though not always significant, selective advantage. Our results are thus congruent with the unidirectional musculus → domesticus Y chromosome introgression in Central Europe. In addition to some previous studies, they show this to be a multifaceted phenomenon demanding a multidisciplinary approach.
Collapse
Affiliation(s)
- Barbora Vošlajerová Bímová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.,Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic. .,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Kateřina Berchová Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences in Prague, Kamýcká 1176, 165 00, Prague, Czech Republic
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
3
|
Balard A, Jarquín-Díaz VH, Jost J, Martincová I, Ďureje Ľ, Piálek J, Macholán M, Goüy de Bellocq J, Baird SJE, Heitlinger E. Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. J Evol Biol 2020; 33:435-448. [PMID: 31834960 DOI: 10.1111/jeb.13578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
Genetic diversity in animal immune systems is usually beneficial. In hybrid recombinants, this is less clear, as the immune system could also be impacted by genetic conflicts. In the European house mouse hybrid zone, the long-standing impression that hybrid mice are more highly parasitized and less fit than parentals persists despite the findings of recent studies. Working across a novel transect, we assessed infections by intracellular protozoans, Eimeria spp., and infections by extracellular macroparasites, pinworms. For Eimeria, we found lower intensities in hybrid hosts than in parental mice but no evidence of lowered probability of infection or increased mortality in the centre of the hybrid zone. This means ecological factors are very unlikely to be responsible for the reduced load of infected hybrids. Focusing on parasite intensity (load in infected hosts), we also corroborated reduced pinworm loads reported for hybrid mice in previous studies. We conclude that intensity of diverse parasites, including the previously unstudied Eimeria, is reduced in hybrid mice compared to parental subspecies. We suggest caution in extrapolating this to differences in hybrid host fitness in the absence of, for example, evidence for a link between parasitemia and health.
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Jenny Jost
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
4
|
Bego F, Saçdanaku E, Pacifici M, Rondinini C. Small terrestrial mammals of Albania: distribution and diversity (Mammalia, Eulipotyphla, Rodentia). Zookeys 2018:127-163. [PMID: 29670434 PMCID: PMC5904422 DOI: 10.3897/zookeys.742.22364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/14/2018] [Indexed: 11/12/2022] Open
Abstract
In this paper new records are reported for 23 species of small terrestrial mammals (STM) of Albania collected during the field work campaigns organised in the framework of the project “Strengthening capacity in National Nature Protection – preparation for Natura 2000 network” (NaturAL) in Albania during the summer and autumn of 2016 and 2017 Data on small mammals were primarily collected through Sherman live-trapping campaigns in six high priority protected areas of Albania: Korab-Koritnik, Bredhi i Hotovës, Tomorri, Llogara-Karaburun, Divjakë-Karavasta, Liqeni i Shkodrës (Skadar lake), Lëpushë-Vermosh. Other data were obtained by analysis of owl pellets or by direct observation of individuals (dead or alive) in the field. For 21 species Erinaceusroumanicus, Neomysanomalus, Crocidurasuaveolens, Crociduraleucodon, Suncusetruscus, Talpastankovici/caeca, Myocastorcoypus, Sciurusvulgaris, Glisglis, Dryomysnitedula, Muscardinusavellanarius, Microtuslevis/arvalis, Microtussubterraneus, Microtusthomasi, Microtusfelteni, Myodesglareolus, Apodemussylvaticus, Apodemusflavicollis, Apodemusepimelas, Musmusculus, and Musmacedonicus additional records are provide and their distributions reviewed, while the presence of two new species of shrews (Sorexaraneus and Sorexminutus) for Albania is reported for the first time. A comprehensive review of the published and unpublished distribution records of STM species of the country is made, together with an updated checklist and distribution maps of the species.
Collapse
Affiliation(s)
- Ferdinand Bego
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Albania
| | - Enerit Saçdanaku
- Research Centre for Flora and Fauna, Faculty of Natural Sciences, University of Tirana, Albania
| | - Michela Pacifici
- Global Mammal Assessment programme, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Italy
| | - Carlo Rondinini
- Global Mammal Assessment programme, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Italy
| |
Collapse
|
5
|
Kváč M, McEvoy J, Loudová M, Stenger B, Sak B, Květoňová D, Ditrich O, Rašková V, Moriarty E, Rost M, Macholán M, Piálek J. Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus). Int J Parasitol 2013; 43:805-17. [PMID: 23791796 DOI: 10.1016/j.ijpara.2013.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Two house mouse subspecies occur in Europe, eastern and northern Mus musculus musculus (Mmm) and western and southern Mus musculus domesticus (Mmd). A secondary hybrid zone occurs where their ranges meet, running from Scandinavia to the Black Sea. In this paper, we tested a hypothesis that the apicomplexan protozoan species Cryptosporidium tyzzeri has coevolved with the house mouse. More specifically, we assessed to what extent the evolution of this parasite mirrors divergence of the two subspecies. In order to test this hypothesis, we analysed sequence variation at five genes (ssrRNA, Cryptosporidium oocyst wall protein (COWP), thrombospondin-related adhesive protein of Cryptosporidium 1 (TRAP-C1), actin and gp60) in C. tyzzeri isolates from Mmd and Mmm sampled along a transect across the hybrid zone from the Czech Republic to Germany. Mmd samples were supplemented with mice from New Zealand. We found two distinct isolates of C. tyzzeri, each occurring exclusively in one of the mouse subspecies (C. tyzzeri-Mmm and C. tyzzeri-Mmd). In addition to genetic differentiation, oocysts of the C. tyzzeri-Mmd subtype (mean: 4.24×3.69μm) were significantly smaller than oocysts of C. tyzzeri-Mmm (mean: 4.49×3.90 μm). Mmm and Mmd were susceptible to experimental infection with both C. tyzzeri subtypes; however, the subtypes were not infective for the rodent species Meriones unguiculatus, Mastomys coucha, Apodemus flavicollis or Cavia porcellus. Overall, our results support the hypothesis that C. tyzzeri is coevolving with Mmm and Mmd.
Collapse
Affiliation(s)
- Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ďureje Ľ, Macholán M, Baird SJE, Piálek J. The mouse hybrid zone in Central Europe: from morphology to molecules. FOLIA ZOOLOGICA 2012. [DOI: 10.25225/fozo.v61.i3.a13.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ľudovít Ďureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
- CIBIO, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Jaroslav Piálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| |
Collapse
|
7
|
Janoušek V, Wang L, Luzynski K, Dufková P, Vyskočilová MM, Nachman MW, Munclinger P, Macholán M, Piálek J, Tucker PK. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Mol Ecol 2012; 21:3032-47. [PMID: 22582810 PMCID: PMC3872452 DOI: 10.1111/j.1365-294x.2012.05583.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of a hybrid zone between two house mouse subspecies (Mus musculus musculus and M. m. domesticus) along with studies using laboratory crosses reveal a large role for the X chromosome and multiple autosomal regions in reproductive isolation as a consequence of disrupted epistasis in hybrids. One limitation of previous work has been that most of the identified genomic regions have been large. The goal here is to detect and characterize precise genomic regions underlying reproductive isolation. We surveyed 1401 markers evenly spaced across the genome in 679 mice collected from two different transects. Comparisons between transects provide a means for identifying common patterns that likely reflect intrinsic incompatibilities. We used a genomic cline approach to identify patterns that correspond to epistasis. From both transects, we identified contiguous regions on the X chromosome in which markers were inferred to be involved in epistatic interactions. We then searched for autosomal regions showing the same patterns and found they constitute about 5% of autosomal markers. We discovered substantial overlap between these candidate regions underlying reproductive isolation and QTL for hybrid sterility identified in laboratory crosses. Analysis of gene content in these regions suggests a key role for several mechanisms, including the regulation of transcription, sexual conflict and sexual selection operating at both the postmating prezygotic and postzygotic stages of reproductive isolation. Taken together, these results indicate that speciation in two recently diverged (c. 0.5 Ma) house mouse subspecies is complex, involving many genes dispersed throughout the genome and associated with distinct functions.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
SIAHSARVIE ROOHOLLAH, AUFFRAY JEANCHRISTOPHE, DARVISH JAMSHID, RAJABI-MAHAM HASSAN, YU HONTSEN, AGRET SYLVIE, BONHOMME FRANÇOIS, CLAUDE JULIEN. Patterns of morphological evolution in the mandible of the house mouse Mus musculus (Rodentia: Muridae). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01821.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Bímová BV, Macholán M, Baird SJE, Munclinger P, Dufková P, Laukaitis CM, Karn RC, Luzynski K, Tucker PK, Piálek J. Reinforcement selection acting on the European house mouse hybrid zone. Mol Ecol 2011; 20:2403-24. [PMID: 21521395 DOI: 10.1111/j.1365-294x.2011.05106.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioural isolation may lead to complete speciation when partial postzygotic isolation acts in the presence of divergent-specific mate-recognition systems. These conditions exist where Mus musculus musculus and M. m. domesticus come into contact and hybridize. We studied two mate-recognition signal systems, based on urinary and salivary proteins, across a Central European portion of the mouse hybrid zone. Introgression of the genomic regions responsible for these signals: the major urinary proteins (MUPs) and androgen binding proteins (ABPs), respectively, was compared to introgression at loci assumed to be nearly neutral and those under selection against hybridization. The preference of individuals taken from across the zone regarding these signals was measured in Y mazes, and we develop a model for the analysis of the transition of such traits under reinforcement selection. The strongest assortative preferences were found in males for urine and females for ABP. Clinal analyses confirm nearly neutral introgression of an Abp locus and two loci closely linked to the Abp gene cluster, whereas two markers flanking the Mup gene region reveal unexpected introgression. Geographic change in the preference traits matches our reinforcement selection model significantly better than standard cline models. Our study confirms that behavioural barriers are important components of reproductive isolation between the house mouse subspecies.
Collapse
Affiliation(s)
- Barbora Vošlajerová Bímová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Macholán M, Baird SJE, Dufková P, Munclinger P, Bímová BV, Piálek J. ASSESSING MULTILOCUS INTROGRESSION PATTERNS: A CASE STUDY ON THE MOUSE X CHROMOSOME IN CENTRAL EUROPE. Evolution 2011; 65:1428-46. [DOI: 10.1111/j.1558-5646.2011.01228.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- E‐mail:
| | | | - Petra Dufková
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Munclinger
- Biodiversity Research Group, Department of Zoology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Barbora Vošlajerová Bímová
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jaroslav Piálek
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
11
|
Dufková P, Macholán M, Piálek J. Inference of selection and stochastic effects in the house mouse hybrid zone. Evolution 2011; 65:993-1010. [PMID: 21463294 DOI: 10.1111/j.1558-5646.2011.01222.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We explored the transition of 13 X-linked markers across two separate portions of the house mouse hybrid zone, asking whether such a comparison can distinguish the effects of selection from random factors. A heuristic search in the likelihood landscape revealed more complex likelihood profiles for data sampled in two-dimensional (2D) space relative to data sampled along a linear transect. Randomized resampling of localities analyzed for individual loci showed that deletion of sites away from the zone center can decrease cline width estimates whereas deletion of sites close to the center can significantly increase the width estimates. Deleting localities for all loci resulted in wider clines if the number of samples from the center was limited. The results suggest that, given the great variation in width estimates resulting from inclusion/exclusion of sampling sites, the geographic sampling design is important in hybrid zone studies and that our inferences should take into account measures of uncertainty such as support intervals. The comparison of the two transects indicates cline widths are narrower for loci in the central part of the X chromosome, suggesting selection is stronger in this region and genetic incompatibilities may have at least partly common architecture in the house mouse hybrid zone.
Collapse
Affiliation(s)
- Petra Dufková
- Institute of Vertebrate Biology, Academy of Science of the Czech Republic, Brno, Czech Republic.
| | | | | |
Collapse
|
12
|
A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus. PLoS One 2010; 5. [PMID: 20844586 PMCID: PMC2936562 DOI: 10.1371/journal.pone.0012638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/08/2010] [Indexed: 11/19/2022] Open
Abstract
Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus.
Collapse
|
13
|
MIKULA ONDREJ, AUFFRAY JEANCHRISTOPHE, MACHOLAN MILOS. Asymmetric size and shape variation in the Central European transect across the house mouse hybrid zone. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01490.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Frynta D, Slábová M, Vohralík V. Why Do Male House Mice Have Such Small Testes? Zoolog Sci 2009; 26:17-23. [DOI: 10.2108/zsj.26.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Bímová B, Albrecht T, Macholán M, Piálek J. Signalling components of the house mouse mate recognition system. Behav Processes 2008; 80:20-7. [PMID: 18790024 DOI: 10.1016/j.beproc.2008.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Subspecies-specific mate recognition may represent significant barrier to gene flow between diverged genomes potentially leading to speciation. In the house mouse, assortative mating involves the coevolution of several signals and receptors. We compared signalling ability of bedding material, faeces, urine, saliva, salivary androgen binding proteins (ABP) and combinations of urine with saliva and urine with ABP in mate choice in two wild-derived inbred strains (one of Mus musculus musculus and one of Mus musculus domesticus origin). We observed high levels of variation in assortative preferences between the two strains and sexes. The strongest preferences were observed in M. m. musculus-derived individuals in tests where urine was present either alone or as part of a composite signal target. M. m. domesticus-derived mice displayed strain-specific preferences for faeces. Saliva was the least preferred stimulus in both strains and sexes. No effect of two-compound cues was detected. We conclude that there is divergence across both the stimulus and preference parts of the recognition system for both house mouse strains. Of the tested stimuli, those that have the capacity to carry a signal for extended periods under natural conditions (such as urine and faeces) seem to be the most important substances in strain-specific recognition.
Collapse
Affiliation(s)
- B Bímová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, CZ-675 02 Konesin, Studenec 122, Czech Republic.
| | | | | | | |
Collapse
|
16
|
MIKULA O, MACHOLÁN M. There is no heterotic effect upon developmental stability in the ventral side of the skull within the house mouse hybrid zone. J Evol Biol 2008; 21:1055-67. [DOI: 10.1111/j.1420-9101.2008.01539.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Teeter KC, Payseur BA, Harris LW, Bakewell MA, Thibodeau LM, O'Brien JE, Krenz JG, Sans-Fuentes MA, Nachman MW, Tucker PK. Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res 2007; 18:67-76. [PMID: 18025268 DOI: 10.1101/gr.6757907] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hybrid zones between closely related species or subspecies provide useful settings for studying the genetic architecture of speciation. Using markers distributed throughout the mouse genome, we use a hybrid zone between two recently diverged species of house mice (Mus musculus and Mus domesticus) as a natural mapping experiment to identify genomic regions that may be involved in reproductive isolation. Using cline analysis we document a nearly 50-fold variation in level of introgression among markers. Some markers have extremely narrow cline widths; these genomic regions may contribute to reproductive isolation. Biological processes associated with these narrow clines include physiological and immune responses to the environment as well as physiological and behavioral aspects of reproduction. Other autosomal markers exhibit asymmetrically broad clines, usually with high frequencies of M. domesticus alleles on the M. musculus side of the hybrid zone. These markers identify genome regions likely housing genes with alleles that are spreading from one species to the other. Biological processes associated with these wide clines include cell signaling, olfaction, and pheromone response. These processes play important roles in survival and reproduction, and associated genes are likely targets of selection. Patterns of linkage disequilibrium in the center of the hybrid zone suggest that isolation may be caused by multiple epistatic interactions between sets of genes. These data highlight the complex genetic architecture underlying speciation even at early stages of divergence and point to some of the biological processes that may govern this architecture.
Collapse
Affiliation(s)
- Katherine C Teeter
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109-1079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Macholán M, Munclinger P, Sugerková M, Dufková P, Bímová B, Bozíková E, Zima J, Piálek J. Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution 2007; 61:746-71. [PMID: 17439609 DOI: 10.1111/j.1558-5646.2007.00065.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper, we present results of the first comprehensive study of the introgression of both autosomal and sex-chromosome markers across the central European portion of the hybrid zone between two house mouse subspecies, Mus musculus musculus and M. m. domesticus. More than 1800 individuals sampled from 105 sites were analyzed with a set of allozyme loci (hopefully representing neutral or nearly neutral markers) and X-linked loci (which are assumed to be under selection). The zone center is best modeled as a single straight line independent of fine-scale local geographic or climatic conditions, being maintained by a balance between dispersal and selection against hybrids. The width (w) of the multilocus autosomal cline was estimated as 9.6 km whereas the estimate for the compound X-chromosome cline was about 4.6 km only. As the former estimate is comparable to that of the Danish portion of the zone (assumed to be much younger than the central European one), zone width does not appear to be related to its age. The strength (B) of the central barrier was estimated as about 20 km; with dispersal (sigma) of about 1 km/gen(1/2), this means effective selection (s*) is approximately 0.06-0.09 for autosomal loci and about 0.25 for X-linked loci. The number of loci under selection was estimated as N= 56-99 for autosomes and about 380 for X-linked loci. Finally, we highlight some potential pitfalls in hybrid zone analyses and in comparisons of different transects. We suggest that conclusions about parts of the mouse genome involved in reproductive isolation and speciation should be drawn with caution and that analytical approaches always providing some estimates should not be used without due care regarding the support or confidence of such estimates, especially if conclusions are based on the difference between these estimates. Finally, we recommend that analysis in two-dimensional space, dense sampling, and rigorous treatment of data, including inspection of likelihood profiles, are essential for hybrid zone studies.
Collapse
Affiliation(s)
- Milos Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 60200 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
BOŽÍKOVÁ EVA, MUNCLINGER PAVEL, TEETER KATHERINEC, TUCKER PRISCILLAK, MACHOLÁN MILOŠ, PIÁLEK JAROSLAV. Mitochondrial DNA in the hybrid zone between Mus musculus musculus and Mus musculus domesticus: a comparison of two transects. Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00440.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
VYSKOČILOVÁ MARTINA, TRACHTULEC ZDENĚK, FOREJT JIŘÍ, PIÁLEK JAROSLAV. Does geography matter in hybrid sterility in house mice? Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00463.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
BÍMOVÁ BARBORA, KARN ROBERTC, PIÁLEK JAROSLAV. The role of salivary androgen-binding protein in reproductive isolation between two subspecies of house mouse: Mus musculus musculus and Mus musculus domesticus. Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00439.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|