1
|
Shimomura R, Yanagishita T, Ishiguro K, Shichiji M, Sato T, Shimojima Yamamoto K, Nagata M, Ishihara Y, Miyashita Y, Ishigaki K, Nagata S, Asano Y, Yamamoto T. Rare mosaic variant of GJA1 in a patient with a neurodevelopmental disorder. Hum Genome Var 2024; 11:2. [PMID: 38221519 PMCID: PMC10788341 DOI: 10.1038/s41439-023-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
GJA1 is the causative gene for oculodentodigital dysplasia (ODDD). A novel de novo GJA1 variant, NM 000165:c263C > T [p.P88L], was identified in a mosaic state in a patient with short stature, seizures, delayed myelination, mild hearing loss, and tooth enamel hypoplasia. Although the patient exhibited severe neurodevelopmental delay, other clinical features of ODDD, including limb anomalies, were mild. This may be due to differences in the mosaic ratios in different organs.
Collapse
Affiliation(s)
- Rina Shimomura
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kumiko Ishiguro
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Minobu Shichiji
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takatoshi Sato
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Oculodentodigital Dysplasia: A Case Report and Major Review of the Eye and Ocular Adnexa Features of 295 Reported Cases. Case Rep Ophthalmol Med 2020; 2020:6535974. [PMID: 32318302 PMCID: PMC7165356 DOI: 10.1155/2020/6535974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Oculodentodigital dysplasia (ODDD) is a rare genetic disorder associated with a characteristic craniofacial profile with variable dental, limb, eye, and ocular adnexa abnormalities. We performed an extensive literature review to highlight key eye features in patients with ODDD and report a new case of a female patient with a heterozygous missense GJA1 mutation (c.65G>A, p.G22E) and clinical features consistent with the condition. Our patient presented with multiple congenital anomalies including syndactyly, microphthalmia, microcornea, retrognathia, and a small nose with hypoplastic alae and prominent columella; in addition, an omphalocele defect was present, which has not been reported in previous cases. A systematic review of the published cases to date revealed 91 literature reports of 295 individuals with ODDD. There were 73 different GJA1 mutations associated with these cases, of which the most common were the following missense mutations: c.605G>A (p.R202H) (11%), c.389T>C (p.I130T) (10%), and c.119C>T (p.A40V) (10%). Mutations most commonly affect the extracellular-1 and cytoplasmic-1 domains of connexin-43 (gene product of GJA1), predominately manifesting in microphthalmia and microcornea. The syndrome appears with an approximately equal sex ratio. The most common eye features reported among all mutations were microcornea, microphthalmia, short palpebral fissures, and glaucoma.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
4
|
Porntaveetus T, Srichomthong C, Ohazama A, Suphapeetiporn K, Shotelersuk V. A novel GJA1 mutation in oculodentodigital dysplasia with extensive loss of enamel. Oral Dis 2017; 23:795-800. [PMID: 28258662 DOI: 10.1111/odi.12663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To characterize clinical features and identify genetic causes of a patient with oculodentodigital dysplasia (ODDD). SUBJECTS AND METHODS Clinical, dental, radiological features were obtained. DNA was collected from an affected Thai family. Whole-exome sequencing was employed to identify the disease-causing mutation causing ODDD. The presence of the identified variant was confirmed by Sanger sequencing. RESULTS The proband suffered with extensive enamel hypoplasia, polysyndactyly and clinodactyly of the 3rd-5th fingers, microphthalmia, and unique facial characteristics of ODDD. Mutation analysis revealed a novel missense mutation, c. 31C>A, p.L11I, in the GJA1 gene which encodes gap junction channel protein connexin 43. Bioinformatics and structural modeling suggested the mutation to be pathogenic. The parents did not harbor the mutation. CONCLUSIONS This study identified a novel de novo mutation in the GJA1 gene associated with severe tooth defects. These results expand the mutation spectrum and understanding of pathologic dental phenotypes related to ODDD.
Collapse
Affiliation(s)
- T Porntaveetus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,STAR on Craniofacial and Skeletal Disorders, Chulalongkorn University, Bangkok, Thailand
| | - C Srichomthong
- Department of Pediatrics, Center of Excellence for Medical Genetics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - A Ohazama
- Division of Oral Anatomy, Niigata University, Niigata, Japan
| | - K Suphapeetiporn
- Department of Pediatrics, Center of Excellence for Medical Genetics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - V Shotelersuk
- Department of Pediatrics, Center of Excellence for Medical Genetics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
5
|
Plotkin LI, Laird DW, Amedee J. Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 2016; 17 Suppl 1:19. [PMID: 27230612 PMCID: PMC4896274 DOI: 10.1186/s12860-016-0088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush Veterans Administration Medical Center Indiana, Indianapolis, IN, 46202, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A-5C1, Canada
| | - Joelle Amedee
- INSERM U1026, Tissue Bioengineering, Université Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
6
|
A novel truncation mutation in GJA1 associated with open angle glaucoma and microcornea in a large Chinese family. Eye (Lond) 2015; 29:972-7. [PMID: 25976645 DOI: 10.1038/eye.2015.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 03/17/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To identify genetic defects in a large family with open angle glaucoma (OAG) and microcornea. METHODS Genomic DNA was prepared from leukocytes of 15 individuals from three generations of a Chinese family, including seven individuals with OAG and microcornea, one with microcornea alone, and seven healthy individuals. Whole exome sequencing was performed on genomic DNA of the proband. Candidate variants were obtained through multiple steps of bioinformatics analysis and validated by Sanger sequencing and segregation analysis. RESULTS Exome sequencing detected a candidate variant in GJA1, a novel truncation mutation (c.791_792delAA, p.K264Ifs*43). This mutation was present in all seven individuals with OAG and microcornea and the individual with microcornea alone, but not in the seven unaffected relatives in the family. It was not present in 1394 alleles from 505 unrelated controls without glaucoma and 192 normal controls. Extraocular signs were not observed in seven out of the eight individuals; only one was affected with dental enamel hypoplasia and syndactyly. CONCLUSIONS A novel truncation mutation in GJA1 is associated with OAG and microcornea in a Chinese family. This suggests that GJA1 should be included as a candidate gene for glaucoma.
Collapse
|
7
|
Jamsheer A, Sowińska-Seidler A, Socha M, Stembalska A, Kiraly-Borri C, Latos-Bieleńska A. Three novel GJA1 missense substitutions resulting in oculo-dento-digital dysplasia (ODDD) - further extension of the mutational spectrum. Gene 2014; 539:157-61. [PMID: 24508941 DOI: 10.1016/j.gene.2014.01.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 11/30/2022]
Abstract
Oculodentodigital dysplasia (ODDD) is a clinically variable genetic disorder caused by mutations of the GJA1 gene, predominantly inherited in an autosomal dominant fashion. In rare cases ODDD can also exhibit autosomal recessive mode of inheritance. The phenotype of ODDD comprises craniofacial (short and narrow palpebral fissure, thin, narrow nose with hypoplastic alae nasi), dental (oligodontia, hypoplastic enamel), and digital abnormalities (syndactyly of finger 4/5, hypoplastic phalanges). Ocular manifestation is typical and involves microphthalmia, microcornea, glaucoma, congenital malformations of iris or vitreous, ectopic pupils or strabismus. To date, only 67 GJA1 mutations have been described to underlie ODDD and most of them (i.e. 97%) represent missense substitutions. In this report, we describe three (two familial and one sporadic) non-consanguineous cases presenting with ODDD features in whom we identified novel missense heterozygous mutations of the GJA1 gene: c.317T>G (p. L106R), c.G139C (p.D47H), and c.C257A (p.S86Y). The first two mutations were inherited from an affected parent, whereas the latter one occurred de novo. The mutations affect highly conserved amino acid residues located in the different portions of the GJA1 protein. Our report broadens the spectrum of probably pathogenic mutations associated with ODDD phenotype and demonstrates that the amino acid substitutions at highly conserved positions 47, 86, 106 may affect protein functioning and lead to the development of this syndrome. Together with molecular data, we provide a brief clinical description of the affected individuals.
Collapse
Affiliation(s)
- Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; NZOZ Center for Medical Genetics GENESIS, Poznan, Poland.
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Cathy Kiraly-Borri
- Genetic Services of Western Australia, King Edward Memorial Hospital for Women, Subiaco, Australia
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
8
|
Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett 2014; 588:1339-48. [PMID: 24434540 DOI: 10.1016/j.febslet.2013.12.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 01/05/2023]
Abstract
There are now at least 14 distinct diseases linked to germ line mutations in the 21 genes that encode the connexin (Cx) family of gap junction proteins. This review focuses on the links between germ-line mutations in the gene encoding Cx43 (GJA1) and the human disease termed oculodentodigital dysplasia (ODDD). This disease is clinically characterized by soft tissue fusion of the digits, abnormal craniofacial bone development, small eyes and loss of tooth enamel. However, the disease is considerably more complex and somewhat degenerative as patients often suffer from other syndromic effects that include incontinence, glaucoma, skin diseases and neuropathies that become more pronounced during aging. The challenge continues to be understanding how distinct Cx43 gene mutations cause such a diverse range of tissue phenotypes and pathophysiological changes while other Cx43-rich organs are relatively unaffected. This review will provide an overview of many of these studies and distill some themes and outstanding questions that need to be addressed in the coming years.
Collapse
|
9
|
Avshalumova L, Fabrikant J, Koriakos A. Overview of skin diseases linked to connexin gene mutations. Int J Dermatol 2013; 53:192-205. [DOI: 10.1111/ijd.12062] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Jordan Fabrikant
- Texas Division; Department of Dermatology; Larkin Community Hospital; Miami FL USA
| | - Angie Koriakos
- Department of Dermatology; University of North Texas Health Science Center/Texas College of Osteopathic Medicine; Houston TX USA
| |
Collapse
|
10
|
Jordan D, Hindocha S, Dhital M, Saleh M, Khan W. The epidemiology, genetics and future management of syndactyly. Open Orthop J 2012; 6:14-27. [PMID: 22448207 PMCID: PMC3308320 DOI: 10.2174/1874325001206010014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/26/2011] [Accepted: 10/29/2011] [Indexed: 12/18/2022] Open
Abstract
Syndactyly is a condition well documented in current literature due to it being the most common congenital hand defect, with a large aesthetic and functional significance.There are currently nine types of phenotypically diverse non-syndromic syndactyly, an increase since the original classification by Temtamy and McKusick(1978). Non-syndromic syndactyly is inherited as an autosomal dominant trait, although the more severe presenting types and sub types appear to have autosomal recessive and in some cases X-linked hereditary.Gene research has found that these phenotypes appear to not only be one gene specific, although having individual localised loci, but dependant on a wide range of genes and subsequent signalling pathways involved in limb formation. The principal genes so far defined to be involved in congenital syndactyly concern mainly the Zone of Polarizing Activity and Shh pathway.Research into the individual phenotypes appears to complicate classification as new genes are found both linked, and not linked, to each malformation. Consequently anatomical, phenotypical and genotypical classifications can be used, but are variable in significance, depending on the audience.Currently, management is surgical, with a technique unchanged for several decades, although future development will hopefully bring alternatives in both earlier diagnosis and gene manipulation for therapy.
Collapse
Affiliation(s)
- D Jordan
- Department of Plastic Surgery, Countess of Chester Hospital, Liverpool Road Chester, CH21UL, UK
| | - S Hindocha
- Department of Plastic Surgery, Countess of Chester Hospital, Liverpool Road Chester, CH21UL, UK
- Department of Plastic Surgery, Whiston Hospital, Warrington Road, L35 5DR, Liverpool, UK
| | - M Dhital
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - M Saleh
- Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq, Cairo. 11566, Egypt
| | - W Khan
- University College London Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| |
Collapse
|
11
|
Abstract
BACKGROUND Connexins are a family of transmembrane proteins that are widely expressed in the human body. Connexins play an important role in cell-cell communication and homeostasis in various tissues by forming gap junction channels, which enable a direct passage of ions or metabolites from one cell to another. Twenty-one different connexins are expressed in humans, each having distinct expression patterns and regulation properties. Knowledge on this family of proteins can be gained by making an inventory of mutations and associated diseases in human. DESIGN PubMed and other relevant databases were searched. In addition, key review articles were screened for relevant original publications. Sections of representative organs were photographed and annotated. RESULTS The crucial role of connexins is highlighted by the discovery of mutations in connexin genes which cause a variety of disorders such as myelin-related diseases, skin disorders, hearing loss, congenital cataract, or more complex syndromes such as the oculodendrodigital dysplasia. This review systematically addresses current knowledge on mutations in connexin genes and disease, focusing on the correlation between genetic defects, cellular phenotypes and clinical manifestations. CONCLUSIONS The review of diseases caused by mutations in connexin genes highlights the essential nature of connexin function and intercellular communication in tissue homeostasis.
Collapse
Affiliation(s)
- Anna Pfenniger
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|