1
|
Harris PJ, Burrell MM, Emes MJ, Tetlow IJ. Effects of Post Anthesis High Temperature Stress on Carbon Partitioning and Starch Biosynthesis in a Spring Wheat (Triticum aestivum L.) Adapted to Moderate Growth Temperatures. PLANT & CELL PHYSIOLOGY 2023:pcad030. [PMID: 37026703 DOI: 10.1093/pcp/pcad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
This study investigates carbon partitioning in the developing endosperm of a European variety of spring wheat subjected to moderately elevated daytime temperatures (27°C/16°C day/night) from anthesis to grain maturity. Elevated daytime temperatures caused significant reductions in both fresh and dry weights and reduced starch content of harvested grains compared to plants grown under a 20°C/16°C day/night regime. Accelerated grain development caused by elevated temperatures was accounted for by representing plant development as thermal time (°CDPA). We examined effects of high temperature stress (HTS) on uptake and partitioning of [U-14C]-sucrose supplied to isolated endosperms. HTS caused reduced sucrose uptake into developing endosperms from the second major grain filling stage (approximately 260°CDPA) up to maturity. Enzymes involved in sucrose metabolism were unaffected by HTS, whereas key enzyme activities involved in endosperm starch deposition such as ADP-glucose pyrophosphorylase and soluble isoforms of starch synthase were sensitive to HTS throughout grain development. HTS caused a decrease in other major carbon sinks such as evolved CO2, ethanol-soluble material, cell walls and protein. Despite reductions in labelling of carbon pools caused by HTS, the relative proportions of sucrose taken up by endosperm cells allocated to each cellular pool remain unchanged, except for evolved CO2, which increased under HTS and may reflect enhanced respiratory activity. The results of this study show that moderate temperature increases in some temperate wheat cultivars can cause significant yield reductions chiefly through three effects: reduced sucrose uptake by the endosperm, reduced starch synthesis, and increased partitioning of carbon into evolved CO2.
Collapse
Affiliation(s)
- P J Harris
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - M M Burrell
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - M J Emes
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - I J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| |
Collapse
|
2
|
Fernandez AR, Sáez A, Quintero C, Gleiser G, Aizen MA. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. THE NEW PHYTOLOGIST 2021; 231:1586-1598. [PMID: 33977519 DOI: 10.1111/nph.17452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/23/2021] [Indexed: 05/19/2023]
Abstract
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Collapse
Affiliation(s)
- Anahí R Fernandez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- IRNAD, CONICET, Universidad Nacional de Río Negro, Mitre 630, Bariloche, 8400, Argentina
| | - Agustín Sáez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Carolina Quintero
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Gabriela Gleiser
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| |
Collapse
|
3
|
Wang J, Wang Z, Gu F, Liu H, Kang G, Feng W, Wang Y, Guo T. Tillage and irrigation increase wheat root systems at deep soil layer and grain yields in lime concretion black soil. Sci Rep 2021; 11:6394. [PMID: 33737612 PMCID: PMC7973502 DOI: 10.1038/s41598-021-85588-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
In lime concretion black soil, a two-factor (tillage and irrigation) split block experiment from 2015 to 2017 was conducted to identify whether their combination is suitable for the improvement of winter wheat yield and water use efficiency. The main treatments were subsoiling (SS) and rotary tillage (RT), with secondary treatments of three irrigation regimes: no irrigation during the whole growth period (W0), irrigation at jointing stage (W1), and irrigation at both jointing and anthesis stages (W2). In combination with a soil column experiment, the contribution of the root system in different soil layers to yield was clarified. The results indicated that both tillage and irrigation significantly influenced the spatiotemporal distributions of the root systems and yield components, while tillage produced the strongest effect. Compared with RT, SS significantly promoted the root penetration and delayed root senescence in deep soil layers. With increasing soil depth, each root configuration parameter (dry root weight density, DRWD; root length density, RLD; root surface area per unit area, RSA; root volume per unit area, RV) gradually decreased, and the peak appearance times of each root parameter in RT and three parameters (RLD, RSA and RV) in SS were postponed from heading to anthesis and from anthesis to filling stage, respectively. The average post-peak attenuation values at soil layers from 60 to 100 cm in W1 were less than those in W0 and W2. SSW1 generated the highest grain yields, with an average increase of 31.88% compared with the yield in RTW0. Root systems at three soil layers (0-40 cm, 40-80 cm and below 80 cm) differentially contributed to grain yields with 78.32%, 12.09% and 9.59%, respectively. The growth peak of the deep root system in SSW1 was postponed to the filling stage, and the post-peak attenuation declining rates were also slowed. Therefore, SSW1 is an effective cultivation method improving grain yields and water use efficiency in lime concretion black soil.
Collapse
Affiliation(s)
- Jinfeng Wang
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Zhuangzhuang Wang
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Fengxu Gu
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Huan Liu
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Guozhang Kang
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China ,Collaborative Innovation Centre of Henan Grain Crops, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Wei Feng
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China ,Collaborative Innovation Centre of Henan Grain Crops, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Yonghua Wang
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China ,Collaborative Innovation Centre of Henan Grain Crops, #15 Longzihu College District, Zhengzhou, 450046 China
| | - Tiancai Guo
- grid.108266.b0000 0004 1803 0494Agronomy College of Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046 China ,National Engineering Research Centre for Wheat, #15 Longzihu College District, Zhengzhou, 450046 China ,Collaborative Innovation Centre of Henan Grain Crops, #15 Longzihu College District, Zhengzhou, 450046 China
| |
Collapse
|
4
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
5
|
Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. PLANTA 2017; 246:1153-1163. [PMID: 28825220 DOI: 10.1007/s00425-017-2759-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.
Collapse
Affiliation(s)
- Juan Geng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Fernández-Marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril JM, García-Plazaola JI. Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC PLANT BIOLOGY 2014; 14:1599. [PMID: 25526984 PMCID: PMC4302433 DOI: 10.1186/s12870-014-0385-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lipophilic antioxidants play dual key roles in edible seeds (i) as preservatives of cell integrity and seed viability by preventing the oxidation of fats, and (ii) as essential nutrients for human and animal life stock. It has been well documented that plant domestication and post-domestication evolution frequently resulted in increased seed size and palatability, and reduced seed dormancy. Nevertheless, and surprisingly, it is poorly understood how agricultural selection and cultivation affected the physiological fitness and the nutritional quality of seeds. Fabaceae have the greatest number of crop species of all plant families, and most of them are cultivated for their highly nutritious edible seeds. Here, we evaluate whether evolution of plants under cultivation has altered the integrated system formed by membranes (fatty acids) and lipophilic antioxidants (carotenoids and tocopherols), in the ten most economically important grain legumes and their closest wild relatives, i.e.: Arachis (peanut), Cicer (chickpea), Glycine (soybean), Lathyrus(vetch), Lens (lentil), Lupinus (lupin), Phaseolus (bean), Pisum (pea), Vicia (faba bean) and Vigna (cowpea). RESULTS Unexpectedly, we found that following domestication, the contents of carotenoids, including lutein and zeaxanthin, decreased in all ten species (total carotenoid content decreased 48% in average). Furthermore, the composition of carotenoids changed, whereby some carotenoids were lost in most of the crops. An undirected change in the contents of tocopherols and fatty acids was found, with contents increasing in some species and decreasing in others, independently of the changes in carotenoids. In some species, polyunsaturated fatty acids (linolenic acid especially), α-tocopherol and γ-tocopherol decreased following domestication. CONCLUSIONS The changes in carotenoids, tocopherols and fatty acids are likely side-effects of the selection for other desired traits such as the loss of seed dormancy and dispersal mechanisms, and selection for seed storability and taste. This work may serve as baseline to broaden our knowledge on the integrated changes on crop fitness and nutritional quality following domestication.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain.
- Institute of Botany, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| | - Rubén Milla
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, 28933, Spain.
| | - Nieves Martín-Robles
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, 28933, Spain.
| | - Erwann Arc
- Institute of Botany, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| | - Ilse Kranner
- Institute of Botany, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| | - José María Becerril
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain.
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain.
| |
Collapse
|
7
|
Beckles DM, Thitisaksakul M. How environmental stress affects starch composition and functionality in cereal endosperm. STARCH-STARKE 2013. [DOI: 10.1002/star.201300212] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Diane M. Beckles
- Department of Plant Sciences; University of California; Davis CA USA
| | | |
Collapse
|
8
|
Blennow A, Jensen SL, Shaik SS, Skryhan K, Carciofi M, Holm PB, Hebelstrup KH, Tanackovic V. Future Cereal Starch Bioengineering: Cereal Ancestors Encounter Gene Technology and Designer Enzymes. Cereal Chem 2013. [DOI: 10.1094/cchem-01-13-0010-fi] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Corresponding author. Phone: +45 35333304. Fax: +45 35333333. E-mail:
| | - Susanne L. Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Massimiliano Carciofi
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Preben B. Holm
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Beckles DM, Tananuwong K, Shoemaker CF. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat. J Food Sci 2012; 77:C437-42. [PMID: 22515236 DOI: 10.1111/j.1750-3841.2012.02648.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. PRACTICAL APPLICATION Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we examined if making "specific" changes to the composition of gluten proteins in wheat seeds would simultaneously alter starch, as their synthesis is interrelated and the molecular structure of both determine flour functionality. This information may be used to address issues of "substantial equivalence" and to inform Industrial End-Users of possible changes in product performance.
Collapse
Affiliation(s)
- Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
10
|
|
11
|
Hazard B, Zhang X, Colasuonno P, Uauy C, Beckles DM, Dubcovsky J. Induced mutations in the starch branching enzyme II ( SBEII) genes increase amylose and resistant starch content in durum wheat. CROP SCIENCE 2012; 52:1754-1766. [PMID: 26924849 PMCID: PMC4768815 DOI: 10.2135/cropsci2012.02.0126] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat.
Collapse
Affiliation(s)
- Brittany Hazard
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Xiaoqin Zhang
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Cristobal Uauy
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Diane M. Beckles
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|