1
|
Anwardeen NR, Naja K, Elrayess MA. Advancements in precision medicine: multi-omics approach for tailored metformin treatment in type 2 diabetes. Front Pharmacol 2024; 15:1506767. [PMID: 39669200 PMCID: PMC11634602 DOI: 10.3389/fphar.2024.1506767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Metformin has become the frontline treatment in addressing the significant global health challenge of type 2 diabetes due to its proven effectiveness in lowering blood glucose levels. However, the reality is that many patients struggle to achieve their glycemic targets with the medication and the cause behind this variability has not been investigated thoroughly. While genetic factors account for only about a third of this response variability, the potential influence of metabolomics and the gut microbiome on drug efficacy opens new avenues for investigation. This review explores the different molecular signatures to uncover how the complex interplay between genetics, metabolic profiles, and gut microbiota can shape individual responses to metformin. By highlighting the insights from recent studies and identifying knowledge gaps regarding metformin-microbiota interplay, we aim to highlight the path toward more personalized and effective diabetes management strategies and moving beyond the one-size-fits-all approach.
Collapse
Affiliation(s)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:457-498. [PMID: 32314317 DOI: 10.1007/5584_2020_518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types - type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.
Collapse
Affiliation(s)
- Shomoita Sayed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
3
|
Cuautle-Rodríguez P, Rodríguez-Rivera N, De Andrés F, Castillo-Nájera F, Llerena A, Molina-Guarneros JA. Frequency of CYP2C9 ( *2, *3 and IVS8-109A>T) allelic variants, and their clinical implications, among Mexican patients with diabetes mellitus type 2 undergoing treatment with glibenclamide and metformin. Biomed Rep 2019; 10:283-295. [PMID: 31086662 PMCID: PMC6489535 DOI: 10.3892/br.2019.1204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
The majority of Mexican patients with diabetes mellitus type 2 (DMT2) (67.9-85.0%) are prescribed sulphonylureas (SUs), which are metabolized by cytochrome P450 2C9 (abbreviated as CYP2C9). SUs are a type of oral anti-diabetic compound which inhibit ATP-sensitive potassium channels, thus inducing glucose-independent insulin release by the β-pancreatic cells. The wide variability reported in SU responses has been attributed to the polymorphisms of CYP2C9. The present study aimed to describe CYP2C9 polymorphisms (*2, *3 and IVS8-109T) within a sample of Mexican patients with DMT2, while suggesting the potential clinical implications in terms of glibenclamide response variability. From a sample of 248 patients with DMT2 who initially consented to be studied, those ultimately included in the study were treated with glibenclamide (n=11), glibenclamide combined with metformin (n=112) or metformin (n=76), and were subsequently genotyped using a reverse transcription-quantitative polymerase chain reaction (PCR), end-point allelic discrimination and PCR amplifying enzymatic restriction fragment long polymorphism. Clinical data were gathered through medical record revision. The frequencies revealed were as follows: CYP2C9*1/*1, 87.5%; *1/*2, 6.5%; *1/*3, 5.2%; and CYP2C9, IVS8-109A>T, 16.1%. Glibenclamide significantly reduced the level of pre-prandial glucose (P<0.01) and the percentage of glycated hemoglobin (%HbA1c; P<0.01) for IVS8-109A>T compared with combined glibenclamide and metformin treatment. Concerning the various treatments with respect to the different genotypes, the percentages obtained were as follows: Glibenclamide A/A, HbA1c<6.5=33.3%; glibenclamide + metformin A/A, HbA1c<6.5=24.6%; glibenclamide A/T, HbA1c<6.5=33.3%; glibenclamide + metformin A/T, HbA1c<6.5=25%; glibenclamide T/T, HbA1c<6.5=100%; and glibenclamide + metformin T/T, HbA1c<6.5=12.5%. Altogether, these results revealed that, although genetically customized prescriptions remain a desirable goal to increase the chances of therapeutic success, within the studied population neither allelic variants nor dosages demonstrated a clear association with biomarker levels. A key limitation of the present study was the lack of ability to quantify either the plasma concentrations of SU or their metabolites; therefore, further, precise experimental and observational studies are required.
Collapse
Affiliation(s)
- Patricia Cuautle-Rodríguez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Nidia Rodríguez-Rivera
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Fernando De Andrés
- Centro de Investigación Clínica Área de Badajoz, SES Hospital Universitario, Universidad de Extremadura, Badajoz 06071, Spain
| | - Fernando Castillo-Nájera
- Centro de Salud T‑III Portales, Servicios de Salud Gobierno de la Ciudad de México, Ciudad de México 03660, México
| | - Adrián Llerena
- Centro de Investigación Clínica Área de Badajoz, SES Hospital Universitario, Universidad de Extremadura, Badajoz 06071, Spain
| | - Juan Arcadio Molina-Guarneros
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
4
|
Hizel C, Tremblay J, Bartlett G, Hamet P. Introduction. PROGRESS AND CHALLENGES IN PRECISION MEDICINE 2017:1-34. [DOI: 10.1016/b978-0-12-809411-2.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 2016; 7:302-315. [PMID: 27555891 PMCID: PMC4980637 DOI: 10.4239/wjd.v7.i15.302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a silent progressive polygenic metabolic disorder resulting from ineffective insulin cascading in the body. World-wide, about 415 million people are suffering from T2DM with a projected rise to 642 million in 2040. T2DM is treated with several classes of oral antidiabetic drugs (OADs) viz. biguanides, sulfonylureas, thiazolidinediones, meglitinides, etc. Treatment strategies for T2DM are to minimize long-term micro and macro vascular complications by achieving an optimized glycemic control. Genetic variations in the human genome not only disclose the risk of T2DM development but also predict the personalized response to drug therapy. Inter-individual variability in response to OADs is due to polymorphisms in genes encoding drug receptors, transporters, and metabolizing enzymes for example, genetic variants in solute carrier transporters (SLC22A1, SLC22A2, SLC22A3, SLC47A1 and SLC47A2) are actively involved in glycemic/HbA1c management of metformin. In addition, CYP gene encoding Cytochrome P450 enzymes also play a crucial role with respect to metabolism of drugs. Pharmacogenetic studies provide insights on the relationship between individual genetic variants and variable therapeutic outcomes of various OADs. Clinical utility of pharmacogenetic study is to predict the therapeutic dose of various OADs on individual basis. Pharmacogenetics therefore, is a step towards personalized medicine which will greatly improve the efficacy of diabetes treatment.
Collapse
|
6
|
Johansen Taber KA, Dickinson BD. Genomic-based tools for the risk assessment, management, and prevention of type 2 diabetes. APPLICATION OF CLINICAL GENETICS 2015; 8:1-8. [PMID: 25609992 PMCID: PMC4293919 DOI: 10.2147/tacg.s75583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes (T2D) is a common and serious disorder and is a significant risk factor for the development of cardiovascular disease, neuropathy, nephropathy, retinopathy, periodontal disease, and foot ulcers and amputations. The burden of disease associated with T2D has led to an emphasis on early identification of the millions of individuals at high risk so that management and intervention strategies can be effectively implemented before disease progression begins. With increasing knowledge about the genetic basis of T2D, several genomic-based strategies have been tested for their ability to improve risk assessment, management and prevention. Genetic risk scores have been developed with the intent to more accurately identify those at risk for T2D and to potentially improve motivation and adherence to lifestyle modification programs. In addition, evidence is building that oral antihyperglycemic medications are subject to pharmacogenomic variation in a substantial number of patients, suggesting genomics may soon play a role in determining the most effective therapies. T2D is a complex disease that affects individuals differently, and risk prediction and treatment may be challenging for health care providers. Genomic approaches hold promise for their potential to improve risk prediction and tailor management for individual patients and to contribute to better health outcomes for those with T2D.
Collapse
Affiliation(s)
| | - Barry D Dickinson
- Department of Science and Biotechnology, American Medical Association, Chicago, IL, USA
| |
Collapse
|
7
|
Afruza R, Suzuki F, Nabi A. PHARMACOGENETICS AND PHARMACOGENOMICS IN PERSONALIZED MEDICINE: ROLE OF GENE POLYMORPHISM IN DRUG RESPONSE. BIOTECHNOLOGY AND BIOINFORMATICS 2014:35-71. [DOI: 10.1201/b17104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
8
|
Abstract
The world is facing an epidemic rise in diabetes mellitus (DM) incidence, which is challenging health funders, health systems, clinicians, and patients to understand and respond to a flood of research and knowledge. Evidence-based guidelines provide uniform management recommendations for "average" patients that rarely take into account individual variation in susceptibility to DM, to its complications, and responses to pharmacological and lifestyle interventions. Personalized medicine combines bioinformatics with genomic, proteomic, metabolomic, pharmacogenomic ("omics") and other new technologies to explore pathophysiology and to characterize more precisely an individual's risk for disease, as well as response to interventions. In this review we will introduce readers to personalized medicine as applied to DM, in particular the use of clinical, genetic, metabolic, and other markers of risk for DM and its chronic microvascular and macrovascular complications, as well as insights into variations in response to and tolerance of commonly used medications, dietary changes, and exercise. These advances in "omic" information and techniques also provide clues to potential pathophysiological mechanisms underlying DM and its complications.
Collapse
Affiliation(s)
- Harry S. Glauber
- Department of Endocrinology, Northwest Permanente, Portland, Oregon, USA
- Galil Center for Telemedicine, Medical Informatics and Personalized Medicine, RB Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | | | - Eddy Karnieli
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, Haifa, Israel and
- Galil Center for Telemedicine, Medical Informatics and Personalized Medicine, RB Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb) 2013; 23:154-71. [PMID: 23894862 PMCID: PMC3900064 DOI: 10.11613/bm.2013.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide epidemic with considerable health and economic consequences. T2DM patients are often treated with more than one drug, including oral antidiabetic drugs (OAD) and drugs used to treat diabetic complications, such as dyslipidemia and hypertension. If genetic testing could be employed to predict treatment outcome, appropriate measures could be taken to treat T2DM more efficiently. Here we provide a review of pharmacogenetic studies focused on OAD and a role of common drug-metabolizing enzymes (DME) and drug-transporters (DT) variants in therapy outcomes. For example, genetic variations of several membrane transporters, including SLC2A1/2 and SLC47A1/2 genes, are implicated in the highly variable glycemic response to metformin, a first-line drug used to treat newly diagnosed T2DM. Furthermore, cytochrome P450 (CYP) enzymes are implicated in variation of sulphonylurea and meglitinide metabolism. Additional variants related to drug target and diabetes risk genes have been also linked to interindividual differences in the efficacy and toxicity of OAD. Thus, in addition to promoting safe and cost-effective individualized diabetes treatment, pharmacogenomics has a great potential to complement current efforts to optimize treatment of diabetes and lead towards its effective and personalized care.
Collapse
Affiliation(s)
- Sabina Semiz
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | | | | |
Collapse
|
10
|
van Leeuwen N, Swen JJ, Guchelaar HJ, ’t Hart LM. The Role of Pharmacogenetics in Drug Disposition and Response of Oral Glucose-Lowering Drugs. Clin Pharmacokinet 2013; 52:833-54. [PMID: 23719679 DOI: 10.1007/s40262-013-0076-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Abstract
INTRODUCTION Hypoglycaemia is a side effect caused by some therapies for type 2 diabetes, which can cause physical, social and psychological harm. Hypoglycaemia also prevents attainment of treatment goals and satisfactory glycaemic control. AREAS COVERED The risk of hypoglycaemia associated with commonly prescribed therapies, including metformin, sulphonylureas, dipeptidyl peptidase-4 enzyme (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) agonists and thiazolidinediones, is reviewed in this paper (insulin-induced hypoglycaemia is not included). Other medications that are frequently co-prescribed in type 2 diabetes are also discussed, including anti-hypertensive drugs, antibiotics and fibrates, along with various important patient-related risk factors. EXPERT OPINION Hypoglycaemia is a common and potentially dangerous side effect of some medications used for type 2 diabetes. The risk of hypoglycaemia should always be considered when selecting and implementing a therapy, with a focus on the individual. Future research into new therapies should measure the frequency of hypoglycaemia prospectively and accurately. Hypoglycaemia has been shown to be a potentially life-threatening metabolic stress; therefore therapies that effectively manage diabetes without the risk of hypoglycaemia are likely to be favoured in the future.
Collapse
Affiliation(s)
- Berit Inkster
- Royal Infirmary of Edinburgh, Department of Diabetes, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | | | | |
Collapse
|
12
|
Impact of genetic polymorphisms of cytochrome P450 2 C (CYP2C) enzymes on the drug metabolism and design of antidiabetics. Chem Biol Interact 2011; 194:159-67. [DOI: 10.1016/j.cbi.2011.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/01/2023]
|
13
|
Genetic polymorphisms in diabetes: influence on therapy with oral antidiabetics. ACTA PHARMACEUTICA 2010; 60:387-406. [PMID: 21169132 DOI: 10.2478/v10007-010-0040-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Due to new genetic insights, etiologic classification of diabetes is under constant scrutiny. Hundreds, or even thousands, of genes are linked with type 2 diabetes. Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to be predisposed to type 2 diabetes mellitus across many large studies. Individually, each of these polymorphisms is only moderately predisposed to type 2 diabetes. On the other hand, monogenic forms of diabetes such as MODY and neonatal diabetes are characterized by unique clinical features and the possibility of applying a tailored treatment.Genetic polymorphisms in drug-metabolizing enzymes, transporters, receptors, and other drug targets have been linked to interindividual differences in the efficacy and toxicity of a number of medications. Mutations in genes important in drug absorption, distribution, metabolism and excretion (ADME) play a critical role in pharmacogenetics of diabetes.There are currently five major classes of oral pharmacological agents available to treat type 2 diabetes: sulfonylureas, meglitinides, metformin (a biguanide), thiazolidinediones, and α-glucosidase inhibitors. Other classes are also mentioned in literature.In this work, different types of genetic mutations (mutations of the gene for glucokinase, HNF 1α, HNF1β and Kir6.2 and SUR1 subunit of KATP channel, PPAR-γ, OCT1 and OCT2, cytochromes, direct drug-receptor (KCNJ11), as well as the factors that influence the development of the disease (TCF7L2) and variants of genes that lead to hepatosteatosis caused by thiazolidinediones) and their influence on the response to therapy with oral antidiabetics will be reviewed.
Collapse
|
14
|
Abstract
A variety of treatment modalities exist for individuals with type 2 diabetes mellitus (T2D). In addition to dietary and physical activity interventions, T2D is also treated pharmacologically with nine major classes of approved drugs. These medications include insulin and its analogues, sulfonylureas, biguanides, thiazolidinediones (TZDs), meglitinides, α-glucosidase inhibitors, amylin analogues, incretin hormone mimetics, and dipeptidyl peptidase 4 (DPP4) inhibitors. Pharmacological treatment strategies for T2D are typically based on efficacy, yet favorable responses to such therapeutics are oftentimes variable and difficult to predict. Characterization of drug response is expected to substantially enhance our ability to provide patients with the most effective treatment strategy given their individual backgrounds, yet pharmacogenetic study of diabetes medications is still in its infancy. To date, major pharmacogenetic studies have focused on response to sulfonylureas, biguanides, and TZDs. Here, we provide a comprehensive review of pharmacogenetics investigations of these specific anti-diabetes medications. We focus not only on the results of these studies, but also on how experimental design, study sample issues, and definition of 'response' can significantly impact our interpretation of findings. Understanding the pharmacogenetics of anti-diabetes medications will provide critical baseline information for the development and implementation of genetic screening into therapeutic decision making, and lay the foundation for "individualized medicine" for patients with T2D.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Metabolic Diseases Division, Translational Genomics Research Institute, 445 N. 5th Street, Phoenix, AZ 85004, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-602-343-8812; Fax: +1-602-343-8844
| | - Richard M. Watanabe
- Departments of Preventive Medicine and Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; E-Mail: (R.M.W.)
| |
Collapse
|
15
|
Pacanowski MA, Hopley CW, Aquilante CL. Interindividual variability in oral antidiabetic drug disposition and response: the role of drug transporter polymorphisms. Expert Opin Drug Metab Toxicol 2008; 4:529-44. [PMID: 18484913 DOI: 10.1517/17425255.4.5.529] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Numerous effective oral pharmacologic therapies are available to treat type 2 diabetes. However, a substantial number of patients do not achieve the expected glucose-lowering response, or may be predisposed to adverse effects, from these agents. The application of pharmacogenetics to the field of type 2 diabetes is one step towards the goal of improved pharmacotherapeutic management of this progressive disease. METHODS A PubMed literature search was conducted to identify clinical studies that have examined the extent to which drug-transporter gene polymorphisms influence interindividual variability in oral antidiabetic drug disposition and response in humans. RESULTS/CONCLUSION Available data suggest that drug transporters play an important role in the disposition of some oral antidiabetic drugs in the body, particularly the meglitinides and metformin. Moreover, polymorphisms in genes encoding drug transport proteins may alter the pharmacodynamic profile of these agents. Drug transporters, drug-metabolizing enzymes, and drug targets each play a distinct and important role in the disposition and action of many oral antidiabetic agents. Thus, future studies may need to take a pharmacogenomic (i.e., multiple gene) approach in order to comprehensively understand the extent to which genetic variation contributes to interindividual differences in oral antidiabetic drug clinical pharmacology.
Collapse
Affiliation(s)
- Michael A Pacanowski
- University of Florida, College of Pharmacy, Department of Pharmacy Practice and Center for Pharmacogenomics, Gainesville, Florida, USA
| | | | | |
Collapse
|
16
|
|