1
|
List EO, Basu R, Berryman DE, Duran-Ortiz S, Martos-Moreno GÁ, Kopchick JJ. Common and uncommon mouse models of growth hormone deficiency. Endocr Rev 2024:bnae017. [PMID: 38853618 DOI: 10.1210/endrev/bnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mouse models of growth hormone deficiency (GHD) have provided important tools for uncovering the various actions of GH. Nearly 100 years of research using these mouse lines has greatly enhanced our knowledge of the GH/IGF-1 axis. Some of the shared phenotypes of the five "common" mouse models of GHD include reduced body size, delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, and enhanced insulin sensitivity. Since these common mouse lines outlive their normal-sized littermates - and have protection from age-associated disease - they have become important fixtures in the aging field. On the other hand, the twelve "uncommon" mouse models of GHD described herein have tremendously divergent health outcomes ranging from beneficial aging phenotypes (similar to those described for the common models) to extremely detrimental features (such as improper development of the CNS, numerous sensory organ defects, and embryonic lethality). Moreover, advancements in next generation sequencing technologies have led to the identification of an expanding array of genes that are recognized as causative agents to numerous rare syndromes with concomitant GHD. Accordingly, this review provides researchers with a comprehensive up-to-date collection of the common and uncommon mouse models of GHD that have been used to study various aspects of physiology and metabolism associated with multiple forms of GHD. For each mouse line presented, the closest comparable human syndromes are discussed providing important parallels to the clinic.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Gabriel Á Martos-Moreno
- Department of Endocrinology & Pediatrics, Hospital Infantil Universitario Niño Jesús, IIS La Princesa & Universidad Autónoma de Madrid. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| |
Collapse
|
2
|
Ahmad S, Ali MZ, Abbasi SW, Abbas S, Ahmed I, Abbas S, Nawaz S, Ziab M, Ahmed I, Fakhro KA, Khan MA, Akil AAS. A GHRHR founder mutation causes isolated growth hormone deficiency type IV in a consanguineous Pakistani family. Front Endocrinol (Lausanne) 2023; 14:1066182. [PMID: 36960394 PMCID: PMC10029353 DOI: 10.3389/fendo.2023.1066182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2023] Open
Abstract
Background Isolated growth hormone deficiency (IGHD) is caused by a severe shortage or absence of growth hormone (GH), which results in aberrant growth and development. Patients with IGHD type IV (IGHD4) have a short stature, reduced serum GH levels, and delayed bone age. Objectives To identify the causative mutation of IGHD in a consanguineous family comprising four affected patients with IGHD4 (MIM#618157) and explore its functional impact in silico. Methods Clinical and radiological studies were performed to determine the phenotypic spectrum and hormonal profile of the disease, while whole-exome sequencing (WES) and Sanger sequencing were performed to identify the disease-causing mutation. In-silico studies involved protein structural modeling and docking, and molecular dynamic simulation analyses using computational tools. Finally, data from the Qatar Genome Program (QGP) were screened for the presence of the founder variant in the Qatari population. Results All affected individuals presented with a short stature without gross skeletal anomalies and significantly reduced serum GH levels. Genetic mapping revealed a homozygous nonsense mutation [NM_000823:c.G214T:p.(Glu72*)] in the third exon of the growth-hormone-releasing hormone receptor gene GHRHR (MIM#139191) that was segregated in all patients. The substituted amber codon (UAG) seems to truncate the protein by deleting the C-terminus GPCR domain, thus markedly disturbing the GHRHR receptor and its interaction with the growth hormone-releasing hormone. Conclusion These data support that a p.Glu72* founder mutation in GHRHR perturbs growth hormone signaling and causes IGHD type IV. In-silico and biochemical analyses support the pathogenic effect of this nonsense mutation, while our comprehensive phenotype and hormonal profiling has established the genotype-phenotype correlation. Based on the current study, early detection of GHRHR may help in better therapeutic intervention.
Collapse
Affiliation(s)
- Safeer Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zeeshan Ali
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Safdar Abbas
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmed
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Shakil Abbas
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Shoaib Nawaz
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
| | - Mubarak Ziab
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| | - Khalid A. Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College-Doha, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Ammira Al-Shabeeb Akil
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
3
|
Abstract
Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects.
Collapse
Affiliation(s)
- Mara Giordano
- Department of Health Sciences, Laboratory of Human Genetics, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
4
|
Smuel K, Kauli R, Lilos P, Laron Z. Growth, development, puberty and adult height before and during treatment in children with congenital isolated growth hormone deficiency. Growth Horm IGF Res 2015; 25:182-188. [PMID: 26077773 DOI: 10.1016/j.ghir.2015.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/03/2015] [Accepted: 05/07/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To describe the growth, development and puberty in children with congenital IGHD before and during hGH treatment. SUBJECTS Patients with cIGHD treated by hGH between the years 1958-1992. SETTING All patients were diagnosed, treated and followed in our clinic. PARTICIPANTS Data were found in 37/41 patients (21 m, 16 f). 34 had hGH-1A deletions, 7 GHRH-R mutations. Patients, referred after age 25, were excluded. RESULTS The birth length of 10/37 neonates was 48.29±2.26 (44-50) cm. Birth weight of 28/37 neonates was 3380±370 g (m), 3230±409 g (f). Neuromotor milestones were variable. Age at referral was 5.7±4.2 y (m) and 5.6±3.8 y (f). Initiation of hGH treatment (35μg/kg/d) was 7.5±4.8, (0.8-15.08) y (m) and 6.8±4.36 (0.8-16.5) y (f). Height SDS increased from -4.3 to -1.8 (m) and from -4.5 to -2.6 (f). Head circumference increased from -2.6 to -1.3 (m) and from -2.7 to -2.3 (f). BMI increased from 15.8 to 20.6 (m) and from 15.5 to 20.4 (f). There was a negative correlation between age of hGH initiation and change in height SDS (r=-0.66; ρ<0.01), same for bone age (r=-0.69; ρ<0.01). Upper/lower body ratio decreased from 2.5±2.1 (m±SD) to 1.08±0.1 (ρ<0.0005). Puberty was delayed in boys, less so in girls. Mean age of 1st ejaculation (14 m) was 17.6±2.2 y and of menarche (14 f. was 13.7±1.2 y. In both genders there was a positive correlation between age at start of hGH and age at onset of puberty (r=0.57; ρ<0.01). All reached full sexual development but the penile and testicular sizes were below normal. There was a positive correlation between length of hGH treatment and final testicular volume (r=0.597, ρ=0.05) and a negative correlation between the age at initiation of hGH treatment and final testicular volume(r=-0.523, ρ=0.018). All were obese and hGH treatment increased the adiposity progressively (r=0.418, ρ=0.013). CONCLUSION Early diagnosis and treatment of cIGHD enables normal or near normal growth, development and puberty.
Collapse
Affiliation(s)
- Keren Smuel
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Rivka Kauli
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Pearl Lilos
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
5
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
6
|
Bisker-Kassif O, Kauli R, Lilos P, Laron Z. Biphasic response of subscapular skinfold thickness to hGH or IGF-1 administration to patients with congenital IGHD, congenital MPHD and Laron syndrome. Obes Res Clin Pract 2014; 8:e55-62. [DOI: 10.1016/j.orcp.2012.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/19/2012] [Accepted: 11/10/2012] [Indexed: 11/15/2022]
|
7
|
Oron T, Gat-Yablonski G, Lazar L, Phillip M, Gozlan Y. Stress hyperglycemia: a sign of familial diabetes in children. Pediatrics 2011; 128:e1614-7. [PMID: 22065275 DOI: 10.1542/peds.2010-3193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stress hyperglycemia in children is considered a benign condition that usually does not mandate further investigation. In some clinical settings it might be the first sign of diabetes mellitus (DM). Two unrelated boys, one aged 2 years 7 months and the other aged 5 days, were evaluated in the emergency department for a febrile infection and found to have elevated blood glucose levels (238 and 150 mg/dL [preprandial], respectively). In both cases the elevated hemoglobin A1c levels (6.5% and 6.6%, respectively) combined with a history of gestational DM in the mother and positive family history for DM suggested maturity-onset diabetes of the young. Genetic analysis revealed 2 known heterozygote mutations in the glucokinase gene: c.697T→C p.C233R in the first case and c.616A→C p.T206P in the second case. Our findings suggest that stress hyperglycemia during early childhood in association with a positive family history of DM might be a sign of monogenic diabetes.
Collapse
Affiliation(s)
- Tal Oron
- National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | |
Collapse
|
8
|
Inoue H, Kangawa N, Kinouchi A, Sakamoto Y, Kimura C, Horikawa R, Shigematsu Y, Itakura M, Ogata T, Fujieda K. Identification and functional analysis of novel human growth hormone-releasing hormone receptor (GHRHR) gene mutations in Japanese subjects with short stature. Clin Endocrinol (Oxf) 2011; 74:223-33. [PMID: 21044116 DOI: 10.1111/j.1365-2265.2010.03911.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Growth hormone-releasing hormone receptor (GHRHR) gene mutations have been identified in patients of different ethnic origins with isolated GH deficiency (IGHD) type IB. However, the prevalence of these mutations in the Japanese population has yet to be fully determined. OBJECTIVES This study aimed to evaluate the contributions of GHRHR mutations to the molecular mechanism underlying short stature in Japanese subjects. DESIGN The GHRHR gene was sequenced in 127 unrelated Japanese patients with either IGHD (n = 14) or idiopathic short stature (ISS; n = 113). Sequence variants were evaluated in family members and 188 controls, and then examined in functional studies. RESULTS A novel homozygous E382E (c.1146G>A) synonymous variant, at the last base of exon 12, was identified in an IGHD family with two affected sisters. In vitro splicing studies showed this mutation to result in skipping of exon 12. In one ISS patient, a heterozygous ATG-166T>C variant was found in the distal Pit-1 P2 binding element of the GHRHR promoter. In two control subjects, a close but distinct variant, ATG-164T>C, was detected. Functional studies showed that both promoter variants diminish promoter activity by altering Pit-1 binding ability. Four missense variants were also found in both patient and control groups but had no detectable functional consequences. CONCLUSIONS The homozygous GHRHR mutation was rare, being detected in only one Japanese IGHD family. Future research is needed to clarify the genetic contributions of heterozygous functional promoter variants to GHD, ISS and normal-stature variations.
Collapse
Affiliation(s)
- Hiroshi Inoue
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Kuramoto 3-18-15, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.
Collapse
|
10
|
Godi M, Mellone S, Petri A, Arrigo T, Bardelli C, Corrado L, Bellone S, Prodam F, Momigliano-Richiardi P, Bona G, Giordano M. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J Clin Endocrinol Metab 2009; 94:3939-47. [PMID: 19622623 DOI: 10.1210/jc.2009-0833] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
CONTEXT Mutations in the GHRH receptor (GHRHR) have been detected in the familial type-IB isolated GH deficiency (IGHD-IB) inherited as an autosomal recessive disorder and characterized by a low but detectable serum GH level and good response to substitutive GH therapy. OBJECTIVE The aim of our study was the identification of mutations in sporadic patients with a IGHD-IB phenotype. SUBJECTS AND METHODS The GHRHR gene was systematically screened by DHPLC in 134 IGHD patients with no family history of the disorder or declared parental consanguinity. RESULTS We identified a novel variation, Val10Gly, within the signal peptide at the heterozygous state in three patients and in one of 1084 controls (P = 0.004), suggesting that it might contribute to IGHD. The functional analysis showed that the signal peptide is not cleaved from the mutant GHRHR, which in turn is not translocated to the cellular surface, demonstrating that 10Gly drastically affects the receptor correct processing. Because 10Gly was also present in normal-stature relatives of the patients as well as in a control, it is likely that it exerts its effects in the context of other genetic and environmental susceptibility factors. CONCLUSION At difference from previous papers reporting GHRHR mutations in familial cases with a clear recessive mode of inheritance, our study was conducted on a large sample of sporadic patients and allowed to discover a novel mechanism of the disease caused by a recurrent dominant mutation in the GHRHR signal peptide associated with incomplete penetrance.
Collapse
Affiliation(s)
- Michela Godi
- Laboratory of Human Genetics, Department of Medical Sciences and Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chapter 3 Diseases Associated with Growth Hormone‐Releasing Hormone Receptor (GHRHR) Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:57-84. [DOI: 10.1016/s1877-1173(09)88003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Hilal L, Hajaji Y, Vie-Luton MP, Ajaltouni Z, Benazzouz B, Chana M, Chraïbi A, Kadiri A, Amselem S, Sobrier ML. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene. Mol Med 2008; 14:286-92. [PMID: 18297129 DOI: 10.2119/2007-00128.hilal] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/15/2008] [Indexed: 11/06/2022] Open
Abstract
Isolated growth hormone deficiency (IGHD) may be of genetic origin. One of the few genes involved in that condition encodes the growth hormone releasing hormone receptor (GHRHR) that, through its ligand (GHRH), plays a pivotal role in the GH synthesis and secretion by the pituitary. Our objective is to describe the phenotype of two siblings born to a consanguineous union presenting with short stature (IGHD) and Magnetic Resonance Imaging (MRI) abnormalities, and to identify the molecular basis of this condition. Our main outcome measures were clinical and endocrinological investigations, MRI of the pituitary region, study of the GHRHR gene sequence and transcripts. In both patients, the severe growth retardation (-5SD) was combined with anterior pituitary hypoplasia. In addition to these classical phenotypic features for IGHD, one of the patients had a Chiari I malformation, an arachnoid cyst, and a dysmorphic anterior pituitary. A homozygous sequence variation in the consensus donor splice site of intron 1 (IVS1 + 2T > G) of the GHRHR gene was identified in both patients. Using in vitro transcription assay, we showed that this mutation results in abnormal splicing of GHRHR transcripts. In this report, which broadens the phenotype associated with GHRHR defects, we discuss the possible role of the GHRHR in the proper development of extrapituitary structures, through a mechanism that could be direct or secondary to severe GH deficiency.
Collapse
Affiliation(s)
- Latifa Hilal
- Laboratoire de Génétique et de Physiologie Neuroendocrinienne, Equipe des Bases Moléculaires de Maladies Génétiques, UFR de Génétique et Biologie Moléculaire, Université Ibn Tofaïl, Faculté des Sciences, Kenitra, Maroc
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Weintrob N, Stern E, Klipper-Aurbach Y, Phillip M, Gat-Yablonski G. Childhood obesity complicating the differential diagnosis of maturity-onset diabetes of the young and type 2 diabetes. Pediatr Diabetes 2008; 9:60-4. [PMID: 18036134 DOI: 10.1111/j.1399-5448.2007.00259.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To describe a proband with features of type 2 diabetes who was found to have concomitant maturity-onset diabetes of the young (MODY) and the consequent multigeneration genetic analysis. DESIGN Familial genetic analysis. SETTING Tertiary university medical center. PARTICIPANTS The proband was a 13.5-yr-old boy with marked non-ketotic hyperglycemia, obesity, systolic hypertension, and insulin resistance. His mother, maternal aunt, grandmother, and great grandmother had diabetes; his father was obese and had early ischemic heart disease. INTERVENTIONS Clinical examination, laboratory work-up, and DNA study. OUTCOME MEASURES Mutation in hepatocyte nuclear factor-1alpha gene, the most common cause of MODY. RESULTS The proband showed elevated C-peptide level and was negative for beta-cell antibodies. On genetic analysis for MODY, the 291fsinsC mutation was identified in all affected family members. A younger sister who was obese but had no signs of impaired glucose tolerance was also tested on the basis of these findings and was found to have the same mutation. CONCLUSIONS The patient, who presented with apparent type 2 diabetes, had concomitant MODY 3, inherited from his mother's side, and some features of type 2 diabetes secondary to marked obesity. This combination probably caused an earlier and more severe presentation of the disease and had significant implications for medical management. A search for MODY mutations should be considered in patients with a history of diabetes in three generations of one side of the family, even those in whom the clinical picture resembles type 2 diabetes.
Collapse
Affiliation(s)
- Naomi Weintrob
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel
| | | | | | | | | |
Collapse
|
14
|
Abstract
Isolated growth hormone deficiency (IGHD) represents conditions of GH deficiency that are not necessarily associated with other pituitary hormone deficiencies or with an organic lesion. Three sub-categories of IGHD have been clinically identified (IGHD types 1-3), and IGHD type 1 has been further separated into IGHD types 1a and b. However, this clinical sub-categorization of IGHD may need reconsideration due to the recent identification of molecular heterogeneity within each sub-type of IGHD. In a small number of children with IGHD, defects in the GH, GH-releasing hormone receptor (GHRH-R), and GH1 genes have been identified. In most cases, no cause for IGHD can be identified; however, the proportion of idiopathic IGHD cases may be decreasing due to identification of causative factors. The phenotype of IGHD is variable depending in part on the underlying genetic disorders in the affected individuals. Several studies have focused on the usefulness of MRI findings in patients with GHD but anatomic abnormalities of the pituitary gland are variable. We review current studies and the clinical, biochemical, and molecular features described for different groups of affected individuals with IGHD.
Collapse
Affiliation(s)
- Libia M Hernández
- Department of Endocrinology, William Harvey Research Institute, St. Bartholomew's and the Royal London Hospitals, QM, University of London, London, UK
| | | | | |
Collapse
|