1
|
Faust B, Billesbølle CB, Suomivuori CM, Singh I, Zhang K, Hoppe N, Pinto AFM, Diedrich JK, Muftuoglu Y, Szkudlinski MW, Saghatelian A, Dror RO, Cheng Y, Manglik A. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 2022; 609:846-853. [PMID: 35940205 PMCID: PMC9678024 DOI: 10.1038/s41586-022-05159-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022]
Abstract
Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.
Collapse
MESH Headings
- Cell Membrane/metabolism
- Cryoelectron Microscopy
- Graves Disease/immunology
- Graves Disease/metabolism
- Humans
- Immunoglobulins, Thyroid-Stimulating/chemistry
- Immunoglobulins, Thyroid-Stimulating/immunology
- Immunoglobulins, Thyroid-Stimulating/pharmacology
- Immunoglobulins, Thyroid-Stimulating/ultrastructure
- Phospholipids/metabolism
- Protein Domains
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/ultrastructure
- Receptors, Thyrotropin/agonists
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/immunology
- Receptors, Thyrotropin/ultrastructure
- Rotation
- Thyrotropin/chemistry
- Thyrotropin/metabolism
- Thyrotropin/pharmacology
Collapse
Affiliation(s)
- Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | | | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Isha Singh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Alan Saghatelian
- Clayton Foundation Laboratory for Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Biophysics Graduate Program, University of California, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Biophysics Graduate Program, University of California, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Okajima Y, Nagasaki H, Suzuki C, Suga H, Ozaki N, Arima H, Hamada Y, Civelli O, Oiso Y. Biochemical roles of the oligosaccharide chains in thyrostimulin, a heterodimeric hormone of glycoprotein hormone subunits alpha 2 (GPA2) and beta 5 (GPB5). ACTA ACUST UNITED AC 2008; 148:62-7. [PMID: 18433898 DOI: 10.1016/j.regpep.2008.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/05/2008] [Accepted: 03/04/2008] [Indexed: 11/16/2022]
Abstract
Thyrostimulin is a heterodimeric hormone composed of GPA2 and GPB5, and shares the thyroid-stimulating hormone receptor (TSHR). Thyrostimulin has three N-linked oligosaccharide chains, two in GPA2 and one in GPB5. The roles of these N-linked oligosaccharides in secretion, heterodimer formation and signal transduction were analyzed. Recombinant GPA2s lacking either of the two oligosaccharides were obtained from conditioned medium, whereas dual site-disrupted GPA2 and the GPB5 mutant were not expressed in either the conditioned medium or cell lysate. The binding between GPA2 and GPB5 was weaker than that between TSH subunits GPA1 and TSH beta. Neither of the oligosaccharides in GPA2 had significant effects on heterodimerization. Disruption of either of the oligosaccharides in GPA2 significantly decreased receptor activation, suggesting their critical role in receptor activation.
Collapse
Affiliation(s)
- Yoshiki Okajima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yang X, McGraw RA, Ferguson DC. cDNA cloning of canine common alpha gene and its co-expression with canine thyrotropin beta gene in baculovirus expression system. Domest Anim Endocrinol 2000; 18:379-93. [PMID: 10869857 DOI: 10.1016/s0739-7240(00)00057-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The common alpha gene of the canine glycoprotein hormones was cloned, sequenced and co-expressed with the canine thyrotropin beta (TSH beta) gene in the baculovirus expression system, and a bioactive recombinant canine TSH was purified. The canine common alpha gene was cloned from the total RNA extracted from the canine pituitary gland by the reverse transcription polymerase chain reaction (RT-PCR) using primers that were designed based on the consensus sequences from other species. The resulting 476 bp PCR product is consisted of the full coding sequence for the 96 amino acid mature alpha subunit, and a sequence encoding a 24 amino acid signal peptide. Homology analysis with other species revealed that the canine common alpha subunit potentially contains five disulfide bonds and two oligosaccharide chains N-linked to Asn residues located at positions 56 and 82. For expression in the baculovirus expression system, the common alpha gene was cloned downstream of the p10 promoter of the pAcUW51 transfer vector, and the previously cloned canine TSH beta gene was inserted under the polyhedrin promoter of the same vector. The recombinant virus containing both alpha and beta genes was generated and propagated before being used to transfect the Sf9 insect cells for expression. The medium from the Sf9 cultures, presumably containing canine TSH alpha and beta in native heterodimer confirmation, exhibited TSH bioactivity as indicated in the cAMP stimulation assay in FRTL-5 cells. The expressed recombinant protein was purified from the culture medium with an affinity column that was coupled with IgG purified from the polyclonal antibodies generated against the partially purified native canine TSH.
Collapse
Affiliation(s)
- X Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
4
|
Légrádi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 1997; 138:2569-76. [PMID: 9165050 DOI: 10.1210/endo.138.6.5209] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prolonged fasting is associated with a number of changes in the thyroid axis manifested by low serum T3 and T4 levels and, paradoxically, low or normal TSH. This response is, at least partly, caused by suppression of proTRH gene expression in neurons of the hypothalamic paraventricular nucleus (PVN) and reduced hypothalamic TRH release. Because the fall in thyroid hormone levels can be blunted in mice by the systemic administration of leptin, we raised the possibility that leptin may have an important role in the neuroendocrine regulation of the thyroid axis, through effects on hypophysiotropic neurons producing proTRH. Adult male, Sprague-Dawley rats were either fed normally, fasted for 3 days, or fasted and administered leptin at a dose of 0.5 microg/gm BW i.p. every 6 h. Fasted animals showed significant reduction in plasma total and free T4 and T3 levels compared with controls, that were restored toward normal by the administration of leptin. Percent free T4, but not percent free T3, increased during fasting, further suggesting a reduction in plasma transthyretin levels that did not return to fed levels after leptin administration. By semiquantitative analysis of in situ hybridization autoradiograms, proTRH messenger RNA in medial parvocellular PVN neurons was markedly suppressed in the fasting animals but was restored to normal by leptin administration [fed vs. fast vs. fast/leptin (density units x 10(8)): 8.5 +/- 0.4, 3.2 +/- 0.2, 8.1 +/- 0.8]. In contrast, proTRH messenger RNA in adjacent neurons in the lateral hypothalamus that do not have a hypophysiotropic function remained unchanged by any of the experimental manipulations. These findings indicate that leptin has a selective, central action to modulate the hypothalamic-pituitary-thyroid axis by regulating proTRH gene expression in the PVN but does not have peripheral effects on thyroid-binding proteins. We propose that the fall in circulating leptin levels during fasting resets the set point for feedback inhibition by thyroid hormones on the biosynthesis of hypophysiotropic proTRH, thereby allowing adaptation to starvation.
Collapse
Affiliation(s)
- G Légrádi
- Tupper Research Institute and Department of Medicine, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
5
|
Papandréou MJ, Sergi I, Medri G, Labbé-Jullié C, Braun JM, Canonne C, Ronin C. Differential effect of glycosylation on the expression of antigenic and bioactive domains in human thyrotropin. Mol Cell Endocrinol 1991; 78:137-50. [PMID: 1718793 DOI: 10.1016/0303-7207(91)90194-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enzymatic deglycosylation of human thyroid-stimulating hormone (hTSH) was shown to result in a mixture of partially and fully deglycosylated forms of the hormone by gel electrophoresis, silver staining and immunoblotting. Radioiodination of the enzymatic digest, followed by gel filtration and concanavalin A-Sepharose chromatography allowed to separate two different forms of partially deglycosylated [125I]hTSH and a fully deglycosylated hormone. The final recovery was of approx. 60% for [125I]hTSH deglycosylated in its beta-subunit, of 30% for [125I]hTSH missing the oligosaccharide in beta and one in alpha but only of 10% for [125I]hTSH deglycosylated in both the alpha- and beta-subunits. Gel electrophoresis under non-denaturing conditions showed that each form migrated distinctly from free subunits and reverse-phase high performance liquid chromatography after reduction and carboxymethylation identified the presence of the two subunits. Mapping of [125I]hTSH derivatives with polyclonal, monoclonal and anti-peptide antibodies allowed to identify two novel glycosylation-independent epitopes preserved in deglycosylated hTSH while the main immunogenic determinant was lost. When assayed in a bioassay with FRTL-5 cells, the hormone deprived of its beta-linked carbohydrate chain was found to be as effective as the native hormone on cAMP production and cell growth. In contrast, the fully deglycosylated derivative proved to stimulate cAMP release but appeared to be definitely less potent on thyroid cell growth. Our findings thus demonstrate that glycosylation of the alpha-subunit but not that of the beta-subunit is essential to express the domains involved in hTSH immunoreactivity as well as those controlling the post-receptor biological activity of the hormone.
Collapse
Affiliation(s)
- M J Papandréou
- Laboratoire de Biochimie, URA 1179 CNRS, Faculté de Médecine-Secteur Nord, Marseilles, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Thotakura NR, LiCalzi L, Weintraub BD. The role of carbohydrate in thyrotropin action assessed by a novel approach using enzymatic deglycosylation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38429-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Thotakura NR, Weintraub BD, Bahl OP. The role of carbohydrate in human choriogonadotropin (hCG) action. Effects of N-linked carbohydrate chains from hCG and other glycoproteins on hormonal activity. Mol Cell Endocrinol 1990; 70:263-72. [PMID: 1694506 DOI: 10.1016/0303-7207(90)90217-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deglycosylation of gonadotropins and thyrotropin results in a major loss of hormonal bioactivity, while not impairing receptor-binding activity. However, a direct role of the glycan moieties in hormonal signal transduction has not been demonstrated. The addition of carbohydrate chains together with the deglycosylated hormone does not restore the hormonal activity. In contrast, glycopeptides were found to inhibit human choriogonadotropin (hCG)-stimulated adenylyl cyclase activity and hCG binding to its receptor. An inhibition of hCG-stimulated adenylyl cyclase activity but not hCG binding to receptor by glycopeptides specifically from hCG, has previously been reported as a lectin-like membrane component has been implicated in hCG action. In the present study we have shown that glycopeptides and oligosaccharides prepared from hCG, transferrin, fetuin, alpha 1-acid glycoprotein and ovalbumin inhibit the binding of hCG to its receptor. The inhibition was also observed with a highly purified preparation of the receptor, thus suggesting a lack of involvement of other lectin-like membrane components as previously proposed. We suggest that a lectin-like interaction with the hormone, if any, involves the receptor itself. Adenylyl cyclase activity stimulated by hCG, isoproterenol or forskolin was inhibited by oligosaccharides, indicating a non-specific interaction. Our results suggest that Asn-linked oligosaccharide chains from various glycoproteins perturb hCG-receptor interactions through a putative carbohydrate binding site on the receptor.
Collapse
Affiliation(s)
- N R Thotakura
- Molecular, Cellular and Nutritional Endocrinology Branch, NIDDK, NIH, Bethesda, MD 20892
| | | | | |
Collapse
|
8
|
Gyves PW, Gesundheit N, Thotakura NR, Stannard BS, DeCherney GS, Weintraub BD. Changes in the sialylation and sulfation of secreted thyrotropin in congenital hypothyroidism. Proc Natl Acad Sci U S A 1990; 87:3792-6. [PMID: 1692623 PMCID: PMC53989 DOI: 10.1073/pnas.87.10.3792] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined the oligosaccharide structure of secreted thyrotropin (TSH) in perinatal and mature rats with congenital primary hypothyroidism. Rat pituitaries from euthyroid control animals and those rendered hypothyroid by methimazole treatment were incubated with [3H]glucosamine in vitro. Secreted TSH was purified, and oligosaccharides were enzymatically released and characterized by anion-exchange HPLC. In perinatal hypothyroid animals compared with control animals, oligosaccharides from TSH alpha and beta subunits contained more species with three or more negative charges. Moreover, perinatal hypothyroid animals demonstrated a dramatic increase in the ratio of sialylated to sulfated species within oligosaccharides of the same negative charge (2.9- to 7.4-fold increase for TSH-alpha; 15.1- to 25.5-fold increase for TSH-beta). In mature hypothyroid 9-week-old animals compared with control animals, changes were less pronounced, suggesting that endocrine regulation of oligosaccharide structure is dependent upon the maturational state of the animal. These changes were specific for TSH because glycosylation of free alpha subunit (synthesized by the thyrotroph and gonadotroph) and of total glycoproteins was minimally altered by hypothyroidism. Together, these data provide direct evidence and characterization of specific changes in the structure of a secreted pituitary glycoprotein hormone occurring as a result of in vivo endocrine alterations during early development. Moreover, they provide a potential structural basis to explain the delayed clearance of both TSH and the gonadotropins with end-organ deficiency, which may have important implications for the in vivo biological activities of these hormones. Specifically, such posttranslational changes may be an important adaptive response to prevent the consequences of endocrine deficiency during early development.
Collapse
Affiliation(s)
- P W Gyves
- Molecular, Cellular and Nutritional Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
9
|
Weintraub BD. TSH immunoassay: relationship between glycosylation & bioactivity. INTERNATIONAL JOURNAL OF RADIATION APPLICATIONS AND INSTRUMENTATION. PART B, NUCLEAR MEDICINE AND BIOLOGY 1990; 17:657-60. [PMID: 2262334 DOI: 10.1016/0883-2897(90)90080-k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- B D Weintraub
- National Institutes of Health, NIDDK, Bethesda, MD 20892
| |
Collapse
|
10
|
Stannard BS, Gesundheit N, Thotakura NR, Gyves PW, Ronin C, Weintraub BD. Differential effect of inhibitors of oligosaccharide processing on the secretion of thyrotropin from dispersed rodent pituitary cells. Biochem Biophys Res Commun 1989; 165:788-94. [PMID: 2532008 DOI: 10.1016/s0006-291x(89)80035-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the effect of various inhibitors of oligosaccharide processing on the content and secretion of newly synthesized thyroid-stimulating hormone (TSH) from dispersed hypothyroid rodent pituitary cells. 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin, both inhibitors of glucosidases I and II, decreased intracellular TSH (to 60-76% of control) and secreted TSH (to 60-63% of control) after a 1-hour incubation (pulse) with [35S]methionine and an 8-hour incubation (chase) in isotope-free media. In contrast, deoxymannojirimycin and swainsonine, inhibitors of mannosidase I and II, respectively, increased both intracellular TSH (to 267-309% of control) and secreted TSH (to 192% of control) at 8 hours. TSH oligosaccharides synthesized in the presence of these glucosidase and mannosidase inhibitors were largely sensitive to endo-beta-N-acetylglucosaminidase H (endo H), confirming inhibition of processing. Despite differences in oligosaccharide structure, the in vitro bioactivities of these secreted TSH isoforms were nearly identical. These data confirm and extend previous work performed with 1-deoxynojirimycin suggesting that glucosylated high mannose forms of TSH are more susceptible to intracellular degradation. The novel finding that deoxymannojirimycin and swainsonine increase secreted and total TSH above control levels suggests that non-glucosylated high mannose forms as well as hybrid-type oligosaccharides may facilitate secretion and direct TSH away from a natural degradation pathway.
Collapse
Affiliation(s)
- B S Stannard
- Molecular, Cellular and Nutritional Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
11
|
Gyves PW, Gesundheit N, Stannard BS, DeCherney GS, Weintraub BD. Alterations in the Glycosylation of Secreted Thyrotropin during Ontogenesis. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83319-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Weintraub BD, Gesundheit N, Taylor T, Gyves PW. Effect of TRH on TSH glycosylation and biological action. Ann N Y Acad Sci 1989; 553:205-13. [PMID: 2497672 DOI: 10.1111/j.1749-6632.1989.tb46643.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B D Weintraub
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
13
|
WEINTRAUB BRUCED, GESUNDHEIT NEIL, TAYLOR TERRY, GYVES PETERW. Effect of TRH on TSH Glycosylation and Biological Action. Ann N Y Acad Sci 1989. [DOI: 10.1111/j.1749-6632.1989.tb54489.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Magner JA. Thyroid-stimulating hormone: structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1989; 261:27-103. [PMID: 2699971 DOI: 10.1007/978-1-4757-2058-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J A Magner
- Michael Reese Hospital, University of Chicago, IL 60616
| |
Collapse
|
15
|
Dahlberg PA, Petrick PA, Nissim M, Menezes-Ferreira MM, Weintraub BD. Intrinsic bioactivity of thyrotropin in human serum is inversely correlated with thyroid hormone concentrations. Application of a new bioassay using the FRTL-5 rat thyroid cell strain. J Clin Invest 1987; 79:1388-94. [PMID: 3571493 PMCID: PMC424398 DOI: 10.1172/jci112966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have developed a new bioassay for thyrotropin (TSH) in human serum to evaluate bioactivity in normal individuals and patients with different degrees of primary hypothyroidism. Unpurified TSH in serum showed no stimulation of cyclic AMP production in cultured FRTL-5 rat thyroid cells, but after immunopurification showed potent stimulatory activity. Immunoaffinity purification permitted up to 400-fold concentration of serum TSH, allowing bioactivity measurements even in certain normal sera. The limit of detection in the FRTL-5 bioassay was 10 microU of human TSH per 0.5 ml incubate, and half-maximal responses for standard human TSH was 102 +/- 26 (+/- SE) microU/0.5 ml. Immunoaffinity-purified serum TSH varied in bioactivity-to-immunoactivity (B/I) ratios from less than 0.25 to 1.21 among four euthyroid subjects and eight primary hypothyroid patients. An inverse correlation was found between B/I ratios of immunopurified basal TSH and the serum-free T4 (r = -0.7237, P less than 0.01), T4 (r = -0.6650, P less than 0.05), and T3 (r = -0.6382, P less than 0.05). B/I ratios of immunopurified TSH from three hypothyroid patients before and after acute stimulation by thyrotropin-releasing hormone showed no significant change, despite major changes in serum TSH. In summary, the present study shows an inverse relationship between the metabolic status of an individual and the intrinsic bioactivity of TSH.
Collapse
|
16
|
Gesundheit N, Fink D, Silverman L, Weintraub B. Effect of thyrotropin-releasing hormone on the carbohydrate structure of secreted mouse thyrotropin. Analysis by lectin affinity chromatography. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61173-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Amr S, Lippman SS, Weintraub BD. Effects of TRH on thyrotroph function and number in rat pituitaries transplanted to renal capsule. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 251:E563-8. [PMID: 3096145 DOI: 10.1152/ajpendo.1986.251.5.e563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated the function of thyrotrophs in rat pituitaries that were transplanted under the renal capsule of 3-wk-old male Sprague-Dawley rats, which were either intact or hypophysectomized. Groups of 12 animals were implanted with osmotic minipumps that delivered a constant infusion of either thyrotropin-releasing hormone (TRH; 1 mg X kg-1 X day-1) or normal saline for 1 wk. In hypophysectomized rats, TRH infusion led to the appearance of substantial amounts of biologically active serum TSH and prevented the hypothyroidism that occurred in the control group. However, TRH did not change the transplant contents of DNA, immunoactive TSH, and mRNA levels for TSH subunits. Comparison of sellar and renal pituitary tissues, obtained from intact rats after 1 wk of either saline or TRH infusion, showed that removal of the pituitary from hypothalamic influence resulted in a 90% depletion of the thyrotroph TSH content. TRH infusion depleted only 63% of the TSH content of sellar thyrotrophs. The mRNA levels for TSH beta-subunit were similar in sellar and transplanted pituitaries and did not significantly change after TRH infusion. When immunocytochemically stained using rat TSH antiserum, the thyrotrophs in pituitary transplants were morphologically and numerically indistinguishable from the thyrotrophs in sellar pituitaries, in the presence or absence of TRH. These data indicate that in transplanted pituitary, for up to 1 wk of a constant infusion, TRH does not significantly affect either the number of thyrotrophs or their ability to synthesize TSH subunit mRNA. However, it is required to maintain released TSH in circulation, since TSH levels were low in the absence of TRH.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
18
|
Lee KO, Gesundheit N, Chen HC, Weintraub BD. Enzymatic deglycosylation of thyroid-stimulating hormone with peptide N-glycosidase F and endo-beta-N-acetylglucosaminidase F. Biochem Biophys Res Commun 1986; 138:230-7. [PMID: 3091014 DOI: 10.1016/0006-291x(86)90270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated the ability of two enzymes, peptide N-glycosidase F (PNGase F) and endo-beta-N-acetylglucosaminidase F (Endo F), to deglycosylate microgram quantities of bovine TSH and its subunits under nondenaturing conditions. One oligosaccharide chain could be selectively removed from the alpha subunit by PNGase F, and all the oligosaccharide chains from both subunits could be removed by Endo F. These methods of enzymatic deglycosylation should permit study of the functional role of each N-linked carbohydrate chain of various glycoprotein hormones.
Collapse
|
19
|
Gesundheit N, Weintraub BD. Mechanisms and regulation of TSH glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 205:87-105. [PMID: 3788719 DOI: 10.1007/978-1-4684-5209-9_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thyroid-stimulating hormone provides an interesting model to study the glycosylation and carbohydrate processing of a heterodimeric glycoprotein with a clear physiological function. The carbohydrate moiety on TSH is required for subunit combination, protection from intracellular proteolysis and aggregation, and for attainment of full biological activity. Recent work, summarized herein, has studied mechanisms and kinetics of TSH carbohydrate maturation and has contrasted processing rates and composition of free and combined subunits. Neuroendocrine factors, such as thyrotropin-releasing hormone, appear to modulate the carbohydrate structure of secreted TSH, which results in a change in the relative bioactivity of the circulating hormone. The biochemical mechanisms by which these carbohydrate alterations occur and how they affect hormone-receptor interaction are currently under investigation.
Collapse
|