1
|
Mittal R, McKenna K, Keith G, McKenna E, Lemos JRN, Mittal J, Hirani K. Diabetic peripheral neuropathy and neuromodulation techniques: a systematic review of progress and prospects. Neural Regen Res 2025; 20:2218-2230. [PMID: 39359078 DOI: 10.4103/nrr.nrr-d-24-00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/06/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition. Diabetic peripheral neuropathy, a common complication of diabetes, is characterized by nerve damage due to high blood sugar levels that lead to symptoms, such as pain, tingling, and numbness, primarily in the hands and feet. The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy, while also examining recent developments in this domain. The investigation encompassed an array of neuromodulation methods, including frequency rhythmic electrical modulated systems, dorsal root ganglion stimulation, and spinal cord stimulation. This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy. Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments. Through these efforts, we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Keelin McKenna
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Evan McKenna
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana R N Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Contardi M, Summa M, Lenzuni M, Miracoli L, Bertora F, Mendez MD, Athanassiou A, Bertorelli R. Combining Alginate/PVPI-Based Film with Frequency Rhythmic Electrical Modulation System (FREMS) Technology as an Advanced Strategy for Diabetic Wounds. Macromol Biosci 2024; 24:e2300349. [PMID: 37800281 DOI: 10.1002/mabi.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Diabetes is rising as one of the most diffused diseases of the century with the related urgent necessity to face its systemic and local effects on the patients, such as cardiovascular problems, degeneration of limbs, and dysfunction of the wound healing process. The diffusion of leg ulcers has been estimated to be 1.51 for 1000 population, and these non-resolved wounds can produce several social, economic, and mental health issues in diabetic patients. At the same time, these people experience neuropathic pain that causes morbidity and a further decrease in their quality of life. Here, a new study is presented where asodium alginate/Polyvinylpyrrolidone-Iodine complex (PVPI)-based wound dressing is combined with the Frequency Rhythmic Electrical Modulation System (FREMS) technology, an established medical device for the treatment of neuropathic pain and diabetic ulcers. The produced Alginate/PVPI-based films are characterized in terms of morphology, chemistry, wettability, bio-/hemo-compatibility, and clotting capacity. Next, the Alginate/PVPI-based films are used together with FREMS technology in diabetic mice models, and synergism of their action in the wound closure rate and anti-inflammatory properties is found. Hence, how the combination of electrical neurostimulation devices and advanced wound dressings can be a new approach to improve chronic wound treatment is demonstrated.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Luigi Miracoli
- Fremslife Srl, R&D Dept., Via Buccari, 9, Genova, 16153, Italy
| | - Franco Bertora
- Fremslife Srl, R&D Dept., Via Buccari, 9, Genova, 16153, Italy
| | | | | | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
3
|
Перепелова МА, Зайцева ЕЛ, Бессмертная ЕГ, Груша ЯО, Свириденко НЮ, Галстян ГР. [An integrated approach to the treatment of pretibial myxedema based on pulse therapy with prednisolone and electrical neuromyostimulation (FREMS-therapy) in a patient with Graves' disease and thyroid eye disease]. PROBLEMY ENDOKRINOLOGII 2023; 69:32-37. [PMID: 37694865 PMCID: PMC10520899 DOI: 10.14341/probl12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 09/12/2023]
Abstract
Graves' disease (GD) is one of the urgent problems of modern endocrinology, characterized by a high frequency, polysystemic damage to the body, a steadily progressive course, diagnostic difficulties, a high degree of disability and often resistance to therapy. The manifestations of the disease include: thyrotoxicosis syndrome with impaired lipid and carbohydrate metabolism, and activation of multiple organ pathology in the form of thyroid eye disease (TED), pretibial myxedema, cardiovascular insufficiency, acropathy, lesions of the nervous, osteoarticular system, and other lesions. The development of multiple organ pathology can have a different sequence, different time intervals and different degrees of severity. Any developments in the direction of clarifying the etiopathogenetic, clinical diagnostic and treatment-rehabilitation measures are of undoubted significance. We present a clinical case of GD, TED and pretibial myxedema, in which an integrated approach was tested in the tactics of treating pretibial myxedema (a combination of pulse therapy with prednisolone and FREMS-therapy), as a result of which positive results were obtained within a short time.
Collapse
Affiliation(s)
| | - Е. Л. Зайцева
- Национальный медицинский исследовательский центр эндокринологии
| | | | - Я. О. Груша
- Научно-исследовательский институт глазных болезней им. М.М. Краснова
| | | | - Г. Р. Галстян
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
4
|
Imholz B, Heijster J, Tahrani A, Kooy A. Treatment of Painful Diabetic Neuropathy Using Frequency Rhythmic Electro Magnetic Neural Stimulation (FREMS); Effectiveness in Daily Practice. Diabetes Metab Syndr Obes 2023; 16:1383-1391. [PMID: 37197061 PMCID: PMC10184859 DOI: 10.2147/dmso.s401727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Background Painful diabetic peripheral neuropathy (PDPN) is common and difficult to treat with limited treatment options. We assessed the efficacy of frequency rhythmic electromagnetic neural stimulation (FREMS) in patients with PDPN. Methods An uncontrolled prospective survey of patients with PDPN and pain despite at least two lines of pharmacotherapy. The primary outcome, 50% reduction in pain scores at 1 and/or 3 months post FREMS. FREMS was applied to both legs below the knees using 4 sets of electrodes per leg; the treatment consisted of 10 sessions of 35 min applications given over 14 days. FREMS was repeated every 4 months and patients were followed up for 12 months. Pain was assessed using the neuropathic pain symptom inventory (NPSI) and quality of life (QOL) by the EQ-5D. Results Out of 336 subjects, 248 patients met the inclusion criteria (56% men), average age and diabetes duration were 65 and 12.6 years respectively. FREMS was associated with a median decrease NPSI of 31% at M1 (range -100;+93%), and a median decrease of -37.5% at M3 (range -100;+250%). The 50% reduction in pain was reached in 80/248 (32.3%) and 87/248 (35.1%) after M1 and M3 respectively. The change in NPSI was accompanied by a decrease in self reported use of opiates of >50%. Conclusion FREMS treatment was associated with a significant reduction in pain severity over a three months period in patients who did not have adequate response to pharmacotherapy. Randomised (sham)-controlled trials examining the role of FREMS as a treatment for PDPN in non-responders to pharmacotherapy are needed.
Collapse
Affiliation(s)
- Ben Imholz
- Department of Internal Medicine, ETZ Ziekenhuis, Tilburg, the Netherlands
- Correspondence: Ben Imholz, Department of Internal Medicine, ETZ-Location Waalwijk, Kasteellaan 2 5141BM Waalwijk, Tilburg, the Netherlands, Email
| | - Jack Heijster
- Department of Internal Medicine, ETZ Ziekenhuis, Tilburg, the Netherlands
| | - Abd Tahrani
- Department of Endocrinology and Diabetes, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Adriaan Kooy
- Department of Internal Medicine, Bethesda Hospital, Treant Care Group, Hoogeveen, the Netherlands
| |
Collapse
|
5
|
Gorczyca-Siudak D, Dziemidok P. The 8-Week Efficacy of Frequency Rhythmic Electrical Modulated System (FREMS) as an Add-on Therapy in the Treatment of Symptomatic Diabetic Peripheral Polyneuropathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:111. [PMID: 36612433 PMCID: PMC9819549 DOI: 10.3390/ijerph20010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Frequency Rhythmic Electrical Modulated System (FREMS) is a method of transcutaneous treatment based on frequency-modulated electromagnetic neural stimulation. Its efficacy in neuropathic pain in diabetes mellitus still lacks enough research. METHODS A randomized, single-blind, sham-controlled trial in individuals with symmetric distal polyneuropathy (SDPN) as an add-on therapy compared to standard therapy with alpha-lipoic acid. Participants were randomized to FREMS and standard of care (SOC) versus SOC only. The primary outcome was a change from baseline in perceived pain assessed by visual analogue scale (VAS) after 5 days of treatment and after 8 weeks of follow-up between treatment groups. RESULTS After 5 days of treatment, patients in both groups felt significant reduction in pain as measured by VAS, although only FREMS treatment lasted for 8 weeks and induced a significant improvement in quality of life measured by EuroQol 5-Dimension 5-Level (EQ-5D-5L) and Clinical Global Impression of Change (CGI-C) questionnaires. There were non-significant differences observed in the instrument pain assessment. No relevant side effects were recorded during the study. CONCLUSIONS FREMS as an addition to alpha-lipoic acid therapy occurred to be a beneficial method of treatment in individuals with SDPN and was associated with improvements in pain severity, quality of life and clinical global improvement.
Collapse
|
6
|
Effect of Magnetohydrodynamic on Cutaneous Wound Healing in Rat Model. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.118387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Exogenous electrical stimulation of the skin may mimic its endogenous bioelectric currents. In this study, a combination of direct current (DC) and magnetic field (MF) was investigated in the excision of the rat wound model. Methods: A circular wound was created on the posterior of the neck, and an electrode was fixed in the wound center. Rats were divided into sham, DC (600 µA), MF (~0.8 T), and magnet-direct current (MDC) groups. The study was conducted in 14 days with 20-min treatment daily. Results: The DC and MDC groups had higher healing percentages (P < 0.01) with mean differences of -13.42 and -15.63, respectively. Direct current on days 2, 5, and 6, and MDC on days 8, 9, 10, 11, 12, and 13 showed higher wound closing. In the DC-treated group, angiogenesis was improved on day 7. In MDC-treated rats, angiogenesis and fibroplasia were improved on day 13. The MF and MDC groups had lower granulation thicknesses on day 7. Granulation thickness increased on day 13 in the MF and MDC groups, while it decreased in the DC group. Direct current treatment improved healing in the first half of the study period, whereas MDC enhanced it in the second half, overtaking DC. From day 7, the magnet group started to overtake the control group slightly in the last four days. Conclusions: To accelerate wound healing, we suggest applying DC in the first days of wounding and MDC in the following days.
Collapse
|
7
|
Caretto A, Errichiello E, Patricelli MG, Zuffardi O, Cristel G, Ravelli S, Sirtori M, Scavini M, Bosi E, Martinenghi S. Transcutaneous electrical stimulation therapy and genetic analysis in Dercum's disease: A pilot study. Medicine (Baltimore) 2021; 100:e28360. [PMID: 34941153 PMCID: PMC8702289 DOI: 10.1097/md.0000000000028360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Dercum's disease (DD), or adiposis dolorosa, is a rare condition of unknown etiology characterized by growth of painful subcutaneous adipose tissue. No specific treatment exists. Pain is often invalidating and resistant to analgesic drugs. We tested the efficacy of Frequency Rhythmic Electrical Modulation System (FREMS) therapy on pain relief. Subcutaneous biopsies were performed for genetic analysis.Nine DD patients were enrolled. Five cycles of FREMS at 3-month intervals during 1 year were administered. Visual analogue scale (VAS), Bartel Index Questionnaire and Short Form 36 questionnaire were used to measure pain and general health status at baseline, 6 and 12 months. Dual-energy X-ray absorptiometry (DEXA) quantified fat mass. Next-Generation Sequencing (NGS) was performed on adipose tissue biopsies and peripheral blood sample to search for somatic variants and specific protein pathway mutation.Seven patients were included in the final analysis. FREMS induced a reduction in VAS score (from 92 to 52.5, P = .0597) and a significant improvement in SF-36 domains (Physical functioning, Role limitation due to physical health, Body pain, Vitality, Social functioning, P < .05). No modification in anthropometrics and DEXA values was observed. The analysis of the mitochondrial Displacement loop (D-loop) region confirmed the clonality of all lipomatous lesions. The presence of the mitochondrially encoded tRNA-Lysine (MT-TK) m.8344A>G variant, occasionally identified in patients with multiple symmetric lipomatosis, was excluded in all subjects. On the other hand, we observed variants in genes belonging to signaling pathways involved in cell cycle and proliferation (Phosphoinositide 3-kinase/AKT/mTOR, MAPK/ERK, and Hippo).FREMS can be a useful tool to alleviate pain and improve overall quality of life in patients with DD. Genetic analysis highlighted the molecular heterogeneity of lipomas.
Collapse
Affiliation(s)
- Amelia Caretto
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, IRCCS Mondino Foundation, Pavia, Italy
| | - Giulia Cristel
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ravelli
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marcella Sirtori
- Bone Metabolic Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Scavini
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sabina Martinenghi
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Electric Stimulation as an Effective Adjunctive Therapy for Diabetic Foot Ulcer: A Meta-analysis of Randomized Controlled Trials. Adv Skin Wound Care 2020; 33:608-612. [DOI: 10.1097/01.asw.0000695784.82605.1e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Asadi MR, Torkaman G, Hedayati M, Mohajeri-Tehrani MR, Ahmadi M, Gohardani RF. Angiogenic effects of low-intensity cathodal direct current on ischemic diabetic foot ulcers: A randomized controlled trial. Diabetes Res Clin Pract 2017; 127:147-155. [PMID: 28371685 DOI: 10.1016/j.diabres.2017.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Abstract
AIMS This study investigated the effect of low-intensity cathodal direct current (CDC) of electrical stimulation (ES) on the release of hypoxic inducible factor-1α (HIF-1α), nitric oxide (NO), vascular endothelial growth factor (VEGF), and soluble VEGF receptor-2 (sVEGFR-2) in the wound fluid of ischemic diabetic foot ulcers (DFUs). METHODS This study was a randomized, single-blind, placebo-controlled trial. Thirty type 2 diabetes patients with ischemic foot ulcerations were randomly assigned to receive either low-intensity CDC at sensory threshold (ES group, n=15) or placebo treatment (control group, n=15) for 1h/day, 3days/week, for 4weeks (12 sessions). After debridement during the first and twelfth treatment sessions, wound fluid was collected before and after ES application to determine the levels of HIF-1α, NO, VEGF, and sVEGFR-2. Wound surface area (WSA) was measured at the first, sixth, and twelfth sessions. RESULTS At the first session, after ES application, wound-fluid levels of HIF-1α were significantly increased (+61.98pg/mL) compared to the control group (-3.85pg/mL, P=0.01). After ES application at the first and twelfth sessions, wound-fluid levels of VEGF were also significantly increased (+36.77 and +39.57pg/mL, respectively) compared to the control group (+4.15 and +0.15pg/mL, P=0.007 and P=0.019, respectively). There was no significant effect on NO and sVEGFR-2 levels between the groups. CONCLUSIONS Low-intensity CDC has positive effects on the release of HIF-1α and VEGF in the wound area of ischemic DFUs. Furthermore, our results suggest that applying ES to ischemic DFUs can be a promising way to promote angiogenesis and to achieve better outcomes in diabetic wound healing.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Department of Physical Therapy, School of Rehabilitation Sciences, Hamadan University of Medical Sciences, Hamadan, Iran; Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Giti Torkaman
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mousa Ahmadi
- Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Abstract
New developments in accelerating wound healing can have immense beneficial socioeconomic impact. The wound healing process is a highly orchestrated series of mechanisms where a multitude of cells and biological cascades are involved. The skin battery and current of injury mechanisms have become topics of interest for their influence in chronic wounds. Electrostimulation therapy of wounds has shown to be a promising treatment option with no-device-related adverse effects. This review presents an overview of the understanding and use of applied electrical current in various aspects of wound healing. Rapid clinical translation of the evolving understanding of biomolecular mechanisms underlying the effects of electrical simulation on wound healing would positively impact upon enhancing patient’s quality of life.
Collapse
Affiliation(s)
- Jerome Hunckler
- UCL Division of Surgery and Interventional Sciences, Faculty of Medical Sciences, University College London, London, UK
| | - Achala de Mel
- UCL Division of Surgery and Interventional Sciences, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
11
|
Guo YB, Ji TF, Zhou HW, Yu JL. RETRACTED ARTICLE: Effects of microRNA-21 on Nerve Cell Regeneration and Neural Function Recovery in Diabetes Mellitus Combined with Cerebral Infarction Rats by Targeting PDCD4. Mol Neurobiol 2017; 55:2494-2505. [DOI: 10.1007/s12035-017-0484-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 01/14/2023]
|
12
|
Martinenghi S, Caretto A, Losio C, Scavini M, Bosi E. Successful Treatment of Dercum's Disease by Transcutaneous Electrical Stimulation: A Case Report. Medicine (Baltimore) 2015; 94:e950. [PMID: 26091459 PMCID: PMC4616524 DOI: 10.1097/md.0000000000000950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dercum's disease is a rare condition of painful subcutaneous growth of adipose tissue. Etiology is unknown and pain is difficult to control. We report the case of a 57-year-old man with generalized diffuse Dercum's disease, who improved after the treatment with transcutaneous frequency rhythmic electrical modulation system (FREMS). Treatment consisted in 4 cycles of 30 minutes FREMS sessions over a 6-month period. Measures of efficacy included pain assessment (visual analogue scale, VAS), adipose tissue thickness by magnetic resonance imaging, total body composition and regional fat mass by dual-energy X-ray absorptiometry, physical disability (Barthel index), and health status (Short Form-36 questionnaire). After FREMS treatment the patient's clinical conditions significantly improved, with reduction of pain on the VAS scale from 64 to 17 points, improvement of daily life abilities (the Barthel index increased from 12 to 18) and amelioration of health status (higher scores than baseline in all Short Form-36 domains). Furthermore, we documented a 12 mm reduction in subcutaneous adipose tissue thickness at the abdominal wall and a 7040 g decrease in total body fat mass. FREMS therapy proved to be effective and safe in the treatment of this rare and disabling condition.
Collapse
Affiliation(s)
- Sabina Martinenghi
- From the Diabetes Research Institute (SM, MS, EB); Department of Radiology, San Raffaele Hospital and Scientific Institute (CL); and San Raffaele Vita Salute University, Milan, Italy (AC, EB)
| | | | | | | | | |
Collapse
|
13
|
Liebano RE, Machado AFP. Vascular Endothelial Growth Factor Release Following Electrical Stimulation in Human Subjects. Adv Wound Care (New Rochelle) 2014; 3:98-103. [PMID: 24761350 DOI: 10.1089/wound.2013.0427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/21/2013] [Indexed: 11/13/2022] Open
Abstract
Significance: Angiogenesis is an important phenomenon involved in the healing of chronic wounds, and it is mainly mediated by the release of vascular endothelial growth factor (VEGF) from endothelial cells. Electrical stimulation (ES) is a well-documented treatment used to assist the healing of chronic wounds. Due to the importance of VEGF in the healing process, and the need to know the mechanisms of action of ES involved in the process, this report aimed to determine by a literature review whether the VEGF release occurs following ES in human subjects. Recent Advances: The findings of this literature review suggest that ES releases VEGF, and this effect may be responsible for promoting angiogenesis after ES. Critical Issues: Despite the findings of this literature review on the release of VEGF by ES on wound healing are promising, a large number of studies are needed to confirm such effects. Future Directions: Further studies should be conducted to identify the best parameters and treatment schedule of ES to be used for the VEGF release.
Collapse
|
14
|
Mohajeri-Tehrani MR, Nasiripoor F, Torkaman G, Hedayati M, Annabestani Z, Asadi MR. Effect of low-intensity direct current on expression of vascular endothelial growth factor and nitric oxide in diabetic foot ulcers. ACTA ACUST UNITED AC 2014; 51:815-24. [DOI: 10.1682/jrrd.2013.08.0174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Faezeh Nasiripoor
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Giti Torkaman
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Annabestani
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences,Tehran, Iran
| | - Mohammad Reza Asadi
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Magnoni C, Rossi E, Fiorentini C, Baggio A, Ferrari B, Alberto G. Electrical stimulation as adjuvant treatment for chronic leg ulcers of different aetiology: an RCT. J Wound Care 2013; 22:525-6, 528-33. [DOI: 10.12968/jowc.2013.22.10.525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C. Magnoni
- University of Modena and Reggio Emilia, Department of Dermatology, Modena, Italy
| | - E. Rossi
- University of Modena and Reggio Emilia, Department of Dermatology, Modena, Italy
| | - C. Fiorentini
- University of Modena and Reggio Emilia, Department of Dermatology, Modena, Italy
| | - A. Baggio
- University of Modena and Reggio Emilia, Department of Dermatology, Modena, Italy
| | - B. Ferrari
- University of Modena and Reggio Emilia, Department of Dermatology, Modena, Italy
| | - G. Alberto
- University of Modena and Reggio Emilia, Department of Dermatology, Modena, Italy
| |
Collapse
|
16
|
Bosi E, Bax G, Scionti L, Spallone V, Tesfaye S, Valensi P, Ziegler D. Frequency-modulated electromagnetic neural stimulation (FREMS) as a treatment for symptomatic diabetic neuropathy: results from a double-blind, randomised, multicentre, long-term, placebo-controlled clinical trial. Diabetologia 2013; 56:467-75. [PMID: 23238789 PMCID: PMC3563945 DOI: 10.1007/s00125-012-2795-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/06/2012] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The aim was to evaluate the efficacy and safety of transcutaneous frequency-modulated electromagnetic neural stimulation (frequency rhythmic electrical modulation system, FREMS) as a treatment for symptomatic peripheral neuropathy in patients with diabetes mellitus. METHODS This was a double-blind, randomised, multicentre, parallel-group study of three series, each of ten treatment sessions of FREMS or placebo administered within 3 weeks, 3 months apart, with an overall follow-up of about 51 weeks. The primary endpoint was the change in nerve conduction velocity (NCV) of deep peroneal, tibial and sural nerves. Secondary endpoints included the effects of treatment on pain, tactile, thermal and vibration sensations. Patients eligible to participate were aged 18-75 years with diabetes for ≥ 1 year, HbA(1c) <11.0% (97 mmol/mol), with symptomatic diabetic polyneuropathy at the lower extremities (i.e. abnormal amplitude, latency or NCV of either tibial, deep peroneal or sural nerve, but with an evocable potential and measurable NCV of the sural nerve), a Michigan Diabetes Neuropathy Score ≥ 7 and on a stable dose of medications for diabetic neuropathy in the month prior to enrolment. Data were collected in an outpatient setting. Participants were allocated to the FREMS or placebo arm (1:1 ratio) according to a sequence generated by a computer random number generator, without block or stratification factors. Investigators digitised patients' date of birth and site number into an interactive voice recording system to obtain the assigned treatment. Participants, investigators conducting the trial, or people assessing the outcomes were blinded to group assignment. RESULTS Patients (n = 110) with symptomatic neuropathy were randomised to FREMS (n = 54) or placebo (n = 56). In the intention-to-treat population (50 FREMS, 51 placebo), changes in NCV of the three examined nerves were not different between FREMS and placebo (deep peroneal [means ± SE]: 0.74 ± 0.71 vs 0.06 ± 1.38 m/s; tibial: 2.08 ± 0.84 vs 0.61 ± 0.43 m/s; and sural: 0.80 ± 1.08 vs -0.91 ± 1.13 m/s; FREMS vs placebo, respectively). FREMS induced a significant reduction in day and night pain as measured by a visual analogue scale immediately after each treatment session, although this beneficial effect was no longer measurable 3 months after treatment. Compared with the placebo group, in the FREMS group the cold sensation threshold was significantly improved, while non-significant differences were observed in the vibration and warm sensation thresholds. No relevant side effects were recorded during the study. CONCLUSIONS/INTERPRETATION FREMS proved to be a safe treatment for symptomatic diabetic neuropathy, with immediate, although transient, reduction in pain, and no effect on NCV. TRIAL REGISTRATION ClinicalTrials.gov NCT01628627. FUNDING The clinical trial was sponsored by Lorenz Biotech (Medolla, Italy), lately Lorenz Lifetech (Ozzano dell'Emilia, Italy).
Collapse
Affiliation(s)
- E Bosi
- Diabetes & Endocrinology Unit, Department of Internal Medicine, San Raffaele Hospital and San Raffaele Vita Salute University, Via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Recovery of 0.1Hz microvascular skin blood flow in dysautonomic diabetic (type 2) neuropathy by using Frequency Rhythmic Electrical Modulation System (FREMS). Med Eng Phys 2010; 32:407-13. [DOI: 10.1016/j.medengphy.2010.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 12/21/2009] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
|
18
|
Tavakoli M, Asghar O, Alam U, Petropoulos IN, Fadavi H, Malik RA. Novel insights on diagnosis, cause and treatment of diabetic neuropathy: focus on painful diabetic neuropathy. Ther Adv Endocrinol Metab 2010; 1:69-88. [PMID: 23148152 PMCID: PMC3475285 DOI: 10.1177/2042018810370954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diabetic neuropathy is common, under or misdiagnosed, and causes substantial morbidity with increased mortality. Defining and developing sensitive diagnostic tests for diabetic neuropathy is not only key to implementing earlier interventions but also to ensure that the most appropriate endpoints are employed in clinical intervention trials. This is critical as many potentially effective therapies may never progress to the clinic, not due to a lack of therapeutic effect, but because the endpoints were not sufficiently sensitive or robust to identify benefit. Apart from improving glycaemic control, there is no licensed treatment for diabetic neuropathy, however, a number of pathogenetic pathways remain under active study. Painful diabetic neuropathy is a cause of considerable morbidity and whilst many pharmacological and nonpharmacological interventions are currently used, only two are approved by the US Food and Drug Administration. We address the important issue of the 'placebo effect' and also consider potential new pharmacological therapies as well as nonpharmacological interventions in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Mitra Tavakoli
- Mitra Tavakoli, PhD Omar Asghar, MRCP Uazman Alam, MRCP Ioannis N. Petropoulos, MSc Hassan Fadavi, MD Division of Cardiovascular Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Omar Asghar
- Mitra Tavakoli, PhD Omar Asghar, MRCP Uazman Alam, MRCP Ioannis N. Petropoulos, MSc Hassan Fadavi, MD Division of Cardiovascular Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Uazman Alam
- Mitra Tavakoli, PhD Omar Asghar, MRCP Uazman Alam, MRCP Ioannis N. Petropoulos, MSc Hassan Fadavi, MD Division of Cardiovascular Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Ioannis N. Petropoulos
- Mitra Tavakoli, PhD Omar Asghar, MRCP Uazman Alam, MRCP Ioannis N. Petropoulos, MSc Hassan Fadavi, MD Division of Cardiovascular Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Hassan Fadavi
- Mitra Tavakoli, PhD Omar Asghar, MRCP Uazman Alam, MRCP Ioannis N. Petropoulos, MSc Hassan Fadavi, MD Division of Cardiovascular Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Rayaz A. Malik
- Mitra Tavakoli, PhD Omar Asghar, MRCP Uazman Alam, MRCP Ioannis N. Petropoulos, MSc Hassan Fadavi, MD Division of Cardiovascular Medicine, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
19
|
Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89:607-48. [PMID: 19342615 DOI: 10.1152/physrev.00031.2008] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of the nervous and vascular systems constitutes primary events in the evolution of the animal kingdom; the former provides electrical stimuli and coordination, while the latter supplies oxygen and nutrients. Both systems have more in common than originally anticipated. Perhaps the most striking observation is that angiogenic factors, when deregulated, contribute to various neurological disorders, such as neurodegeneration, and might be useful for the treatment of some of these pathologies. The prototypic example of this cross-talk between nerves and vessels is the vascular endothelial growth factor or VEGF. Although originally described as a key angiogenic factor, it is now well established that VEGF also plays a crucial role in the nervous system. We describe the molecular properties of VEGF and its receptors and review the current knowledge of its different functions and therapeutic potential in the nervous system during development, health, disease and in medicine.
Collapse
|
20
|
Ciavatta VT, Kim M, Wong P, Nickerson JM, Shuler RK, McLean GY, Pardue MT. Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 2009; 50:4523-30. [PMID: 19264883 DOI: 10.1167/iovs.08-2072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To test the hypothesis that subretinal electrical stimulation from a microphotodiode array (MPA) exerts a neuroprotective effect in Royal College of Surgeons (RCS) rats through the induction of growth factors. METHODS At postnatal day 21, RCS rats were divided into four groups in which one eye per rat received treatment: (A) active MPA, (M) minimally active MPA, (S) sham surgery, or (C) no surgery and the opposite eye was unoperated. Dark- and light-adapted ERGs were recorded 1 week after surgery. A second set of A-, M-, and C-treated RCS rats had weekly ERG recordings for 4 weeks. Real-time RT-PCR was used to measure relative expression of mRNAs (Bdnf, Fgf2, Fgf1, Cntf, Gdnf, and Igf1) in retina samples collected 2 days after the final ERG. RESULTS One week after surgery, there was a slight difference in dark-adapted ERG b-wave at the brightest flash intensity. Mean retinal Fgf2 expression in the treated eye relative to the opposite eye was greater for the A group (4.67 +/- 0.72) than for the M group (2.80 +/- 0.45; P = 0.0501), S group (2.03 +/- 0.45; P < 0.01), and C group (1.30 +/- 0.22; P < 0.001). No significant change was detected for Bdnf, Cntf, Fgf1, Gdnf, and Igf1. Four weeks after surgery, the A group had significantly larger dark- and light-adapted ERG b-waves than for the M and C groups (P < 0.01). Simultaneously, mean relative Fgf2 expression was again greater for the A group (3.28 +/- 0.61) than for the M (1.28 +/- 0.32; P < 0.05) and C (1.05 +/- 0.04; P < 0.05) groups. CONCLUSIONS The results show subretinal implantation of an MPA induces selective expression of Fgf2 above that expected from a retina-piercing injury. Preservation of ERG b-wave amplitude 4 weeks after implantation is accompanied by elevated Fgf2 expression. These results suggest that Fgf2 may play a role in the neuroprotection provided by subretinal electrical stimulation.
Collapse
|
21
|
Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch Dermatol Res 2008; 300:377-83. [DOI: 10.1007/s00403-008-0875-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
|