1
|
Doghish AS, El-Sayyad GS, Abdel Mageed SS, Abd-Elmawla MA, Sallam AAM, El Tabaa MM, Rizk NI, Ashraf A, Mohammed OA, Mangoura SA, Al-Noshokaty TM, Zaki MB, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Elballal MS, Abulsoud AI. The emerging role of miRNAs in pituitary adenomas: From molecular signatures to diagnostic potential. Exp Cell Res 2024; 442:114279. [PMID: 39389336 DOI: 10.1016/j.yexcr.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pituitary adenomas (PAs) are an array of tumors originating from the pituitary gland. PAs are sorted as functional or nonfunctional according to their hormonal activity and classified according to size into microadenomas and macroadenomas. Still, the cellular events that trigger the transformations in pituitary neoplasms are not fully understood, and the current classification methods do not precisely predict clinical behavior. A rising number of researches have emphasized the role of miRNAs, that drawn more attention as oncogenic molecules or tumor suppressors. The etiopathological mechanisms of PAs include multiple molecular cascades that are influenced by different miRNAs. miRNAs control the cell cycle control, pro- or antiapoptotic processes, and tumor invasion and metastasis. miRNAs offer a novel perspective on tumor features and behaviors and might be valuable in prognostication and therapeutic plans. In pituitary adenomas, miRNAs showed a specific expression pattern depending on their size, cell origin, remission, and treatments. Screening miRNA expression patterns is promising to monitor and evaluate recurrence, as well as to investigate the efficacy of radiation and chemotherapy for PAs exhibiting aggressive behavior. Thus, the current review investigated the interplay of the miRNAs' pivotal role in offering new opportunities to translate these innovative epigenetic tools into healthcare applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
2
|
Lavecchia A, De Virgilio C, Mansi L, Manzari C, Mylonas CC, Picardi E, Pousis C, Cox SN, Ventriglia G, Zupa R, Pesole G, Corriero A. Comparison of ovarian mRNA expression levels in wild and hatchery-produced greater amberjack Seriola dumerili. Sci Rep 2024; 14:18034. [PMID: 39098967 PMCID: PMC11298523 DOI: 10.1038/s41598-024-69091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The greater amberjack Seriola dumerili is a promising candidate for aquaculture production. This study compares the ovary transcriptome of greater amberjack sampled in the wild (WILD) with hatchery-produced breeders reared in aquaculture sea cages in the Mediterranean Sea. Among the seven sampled cultured fish, three were classified as reproductively dysfunctional (DysF group), while four showed no signs of reproductive alteration (NormalF group). The DysF fish showed 1,166 differentially expressed genes (DEGs) compared to WILD females, and 755 DEGs compared to the NormalF. According to gene ontology (GO) analysis, DysF females exhibited enrichment of genes belonging to the biological categories classified as Secreted, ECM-receptor interaction, and Focal adhesion. Protein-protein interaction analysis revealed proteins involved in the biological categories of ECM-receptor interaction, Enzyme-linked receptor protein signaling, Wnt signal transduction pathways, and Ovulation cycle. KEGG pathway analysis showed DEGs involved in 111 pathways, including Neuroactive ligand-receptor interaction, Steroid hormone biosynthesis, Cell cycle, Oocyte meiosis, Necroptosis, Ferroptosis, Apoptosis, Autophagy, Progesterone-mediated oocyte maturation, Endocytosis and Phagosome, as well as Hedgehog, Apelin, PPAR, Notch, and GnRH signalling pathways. Additionally, DysF females exhibited factors encoded by upregulated genes associated with hypogonadism and polycystic ovary syndrome in mammals. This study -which is part of a broader research effort examining the transcriptome of the entire reproductive axis in greater amberjack of both sexes-, enhances our comprehension of the mechanisms underlying the appearance of reproductive dysfunctions when fish are reared under aquaculture conditions.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy.
| |
Collapse
|
3
|
Wang S, Qin Q, Jiang D, Xiao Y, Ye L, Jiang X, Guo Q. Re-analysis of gene mutations found in pituitary stalk interruption syndrome and a new hypothesis on the etiology. Front Endocrinol (Lausanne) 2024; 15:1338781. [PMID: 38464967 PMCID: PMC10920343 DOI: 10.3389/fendo.2024.1338781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pituitary stalk interruption syndrome (PSIS) is a complex clinical syndrome characterized by varied pituitary hormone deficiencies, leading to severe manifestations across multiple systems. These include lifelong infertility, short stature, mental retardation, and potentially life-threatening pituitary crises if not promptly diagnosed and treated. Despite extensive research, the precise pathogenesis of PSIS remains unclear. Currently, there are two proposed theories regarding the pathogenic mechanisms: the genetic defect theory and the perinatal injury theory. Methods We systematically searched English databases (PubMed, Web of Science, Embase) and Chinese databases (CNKI, WanFang Med Online, Sinomed) up to February 24, 2023, to summarize studies on gene sequencing in PSIS patients. Enrichment analyses of reported mutated genes were subsequently performed using the Metascape platform. Results Our study included 37 articles. KEGG enrichment analysis revealed mutated genes were enriched in the Notch signaling pathway, Wnt signaling pathway, and Hedgehog signaling pathway. GO enrichment analysis demonstrated mutated genes were enriched in biological processes such as embryonic development, brain development, axon development and guidance, and development of other organs. Conclusion Based on our summary and analyses, we propose a new hypothesis: disruptions in normal embryonic development, partially stemming from the genetic background and/or specific gene mutations in individuals, may increase the likelihood of abnormal fetal deliveries, where different degrees of traction during delivery may lead to different levels of pituitary stalk interruption and posterior lobe ectopia. The clinical diversity observed in PSIS patients may result from a combination of genetic background, specific mutations, and variable degrees of traction during delivery.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Deyue Jiang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lingtong Ye
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qinghua Guo
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
5
|
Henriques DG, Lamback EB, Dezonne RS, Kasuki L, Gadelha MR. MicroRNA in Acromegaly: Involvement in the Pathogenesis and in the Response to First-Generation Somatostatin Receptor Ligands. Int J Mol Sci 2022; 23:ijms23158653. [PMID: 35955787 PMCID: PMC9368811 DOI: 10.3390/ijms23158653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly’s tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.
Collapse
Affiliation(s)
- Daniel G. Henriques
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Elisa B. Lamback
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Romulo S. Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Endocrinology Division, Hospital Federal de Bonsucesso, Rio de Janeiro 21041-020, Brazil
| | - Monica R. Gadelha
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Correspondence:
| |
Collapse
|
6
|
Zhang J, Lv C, Mo C, Liu M, Wan Y, Li J, Wang Y. Single-Cell RNA Sequencing Analysis of Chicken Anterior Pituitary: A Bird's-Eye View on Vertebrate Pituitary. Front Physiol 2021; 12:562817. [PMID: 34267669 PMCID: PMC8276247 DOI: 10.3389/fphys.2021.562817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
It is well-established that anterior pituitary contains multiple endocrine cell populations, and each of them can secrete one/two hormone(s) to regulate vital physiological processes of vertebrates. However, the gene expression profiles of each pituitary cell population remains poorly characterized in most vertebrate groups. Here we analyzed the transcriptome of each cell population in adult chicken anterior pituitaries using single-cell RNA sequencing technology. The results showed that: (1) four out of five known endocrine cell clusters have been identified and designated as the lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs, respectively. Somatotrophs were not analyzed in the current study. Each cell cluster can express at least one known endocrine hormone, and novel marker genes (e.g., CD24 and HSPB1 in lactotrophs, NPBWR2 and NDRG1 in corticotrophs; DIO2 and SOUL in thyrotrophs, C5H11ORF96 and HPGDS in gonadotrophs) are identified. Interestingly, gonadotrophs were shown to abundantly express five peptide hormones: FSH, LH, GRP, CART and RLN3; (2) four non-endocrine/secretory cell types, including endothelial cells (expressing IGFBP7 and CFD) and folliculo-stellate cells (FS-cells, expressing S100A6 and S100A10), were identified in chicken anterior pituitaries. Among them, FS-cells can express many growth factors, peptides (e.g., WNT5A, HBEGF, Activins, VEGFC, NPY, and BMP4), and progenitor/stem cell-associated genes (e.g., Notch signaling components, CDH1), implying that the FS-cell cluster may act as a paracrine/autocrine signaling center and enrich pituitary progenitor/stem cells; (3) sexually dimorphic expression of many genes were identified in most cell clusters, including gonadotrophs and lactotrophs. Taken together, our data provides a bird's-eye view on the diverse aspects of anterior pituitaries, including cell composition, heterogeneity, cell-to-cell communication, and gene expression profiles, which facilitates our comprehensive understanding of vertebrate pituitary biology.
Collapse
Affiliation(s)
- Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Can Lv
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiping Wan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
8
|
Abstract
The anterior pituitary is derived from Rathke's pouch precursors, which differentiate into specific hormone-secreting cell lineages. Sustained low postnatal and adult pituitary cell turnover is governed by stem/progenitor cells that undergo slow mitotic activity and give rise to hormone-secreting cells in response to physiological demands and feedback loops. Pituitary cell populations exhibit stem cell properties, which include stem cell marker expression, non-hormone expression, and the ability to self-renew and to potentially differentiate into any of five hormone-secreting cell lineages. Specific signaling pathways underlie differentiated pituitary cell development and regulation. Several validated pituitary stem cell models have been reported and have the potential for functional regeneration of pituitary hormone-secreting cell functions.
Collapse
|
9
|
Vlachakis D, Papageorgiou L, Papadaki A, Georga M, Kossida S, Eliopoulos E. An updated evolutionary study of the Notch family reveals a new ancient origin and novel invariable motifs as potential pharmacological targets. PeerJ 2020; 8:e10334. [PMID: 33194454 PMCID: PMC7649014 DOI: 10.7717/peerj.10334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/19/2020] [Indexed: 01/02/2023] Open
Abstract
Notch family proteins play a key role in a variety of developmental processes by controlling cell fate decisions and operating in a great number of biological processes in several organ systems, such as hematopoiesis, somatogenesis, vasculogenesis, neurogenesis and homeostasis. The Notch signaling pathway is crucial for the majority of developmental programs and regulates multiple pathogenic processes. Notch family receptors' activation has been largely related to its multiple effects in sustaining oncogenesis. The Notch signaling pathway constitutes an ancient and conserved mechanism for cell to cell communication. Much of what is known about Notch family proteins function comes from studies done in Caenorhabditis Elegans and Drosophila Melanogaster. Although, human Notch homologs had also been identified, the molecular mechanisms which modulate the Notch signaling pathway remained substantially unknown. In this study, an updated evolutionary analysis of the Notch family members among 603 different organisms of all kingdoms, from bacteria to humans, was performed in order to discover key regions that have been conserved throughout evolution and play a major role in the Notch signaling pathway. The major goal of this study is the presentation of a novel updated phylogenetic tree for the Notch family as a reliable phylogeny "map", in order to correlate information of the closely related members and identify new possible pharmacological targets that can be used in pathogenic cases, including cancer.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Louis Papageorgiou
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariadne Papadaki
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Maria Georga
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Sofia Kossida
- IMGT, The International ImMunoGeneTics Information System, Université de Montpellier, Laboratoire d’ImmunoGénétique Moléculaire and Institut de Génétique Humaine, University of Montpellier, Montpellier, France
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
10
|
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Front Endocrinol (Lausanne) 2020; 11:54. [PMID: 32153500 PMCID: PMC7044184 DOI: 10.3389/fendo.2020.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.
Collapse
Affiliation(s)
- Roberto Würth
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Stefano Thellung
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Federica Barbieri
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
11
|
Lamb LS, Sim HW, McCormack AI. Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature-"Are We There Yet?". Cancers (Basel) 2020; 12:cancers12020308. [PMID: 32012988 PMCID: PMC7072681 DOI: 10.3390/cancers12020308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aggressive pituitary tumors account for up to 10% of pituitary tumors and are characterized by resistance to medical treatment and multiple recurrences despite standard therapies, including surgery, radiotherapy, and chemotherapy. They are associated with increased morbidity and mortality, particularly pituitary carcinomas, which have mortality rates of up to 66% at 1 year after diagnosis. Novel targeted therapies under investigation include mammalian target of rapamycin (mTOR), tyrosine kinase, and vascular endothelial growth factor (VEGF) inhibitors. More recently, immune checkpoint inhibitors have been proposed as a potential treatment option for pituitary tumors. An increased understanding of the molecular pathogenesis of aggressive pituitary tumors is required to identify potential biomarkers and therapeutic targets. This review discusses novel approaches to the management of aggressive pituitary tumors and the role of molecular profiling.
Collapse
Affiliation(s)
- Lydia S. Lamb
- Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW 2010, Australia;
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | - Hao-Wen Sim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Ann I. McCormack
- Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW 2010, Australia;
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Correspondence: ; Tel.: +61-2-9295-8489
| |
Collapse
|
12
|
Feng J, Wang J, Liu Q, Li J, Zhang Q, Zhuang Z, Yao X, Liu C, Li Y, Cao L, Li C, Gong L, Li D, Zhang Y, Gao H. DAPT, a γ-Secretase Inhibitor, Suppresses Tumorigenesis, and Progression of Growth Hormone-Producing Adenomas by Targeting Notch Signaling. Front Oncol 2019; 9:809. [PMID: 31508369 PMCID: PMC6718711 DOI: 10.3389/fonc.2019.00809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Advances in the understanding of growth hormone-producing adenomas (GHomas) are ongoing, but current therapy is limited by moderate and variable efficacy and in need of life-long treatment. In this study, the molecular signaling pathway related to GHoma was investigated by proteomics and transcriptomics. The differentially expressed proteins and genes were significantly enriched in Extracellular Matrix-Receptor Interactions, Notch Signaling, Basal Cell Carcinoma Signaling, JAK-STAT3, Wnt Signaling, and Glioblastoma Multiforme Signaling by Ingenuity Pathway Analysis. Furthermore, the Notch2/Delta-like canonical Notch ligand (DLL) signaling pathway was identified to be associated with tumorigenesis and invasiveness of GHoma. In 76 patients, Notch2 and DLL3 were upregulated in invasive compared to those in non-invasive GHoma (p < 0.05). Disease-free survival was significantly longer in patients with low, compared with high, DLL3 expression (p = 0.027). Notch 2 knockdown inhibited cell migration in both GH3 cells and primary GHoma cells, along with downregulation of the mRNA expression of related genes. DAPT, a γ-secretase inhibitor, inhibited tumor growth and invasion in vivo and in vitro and suppressed the release of growth hormone in primary GHoma cells. The involvement of Notch2/DLL3 signaling in GHoma progression warrants additional study of Notch inhibitor, DAPT, as a potential GHoma treatment.
Collapse
Affiliation(s)
- Jie Feng
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianpeng Wang
- The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Qian Liu
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiye Li
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qi Zhang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Xiaohui Yao
- Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chunhui Liu
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yangfang Li
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Cao
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Gong
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dan Li
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Joshi H, Vastrad B, Vastrad C. Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas. J Mol Neurosci 2019; 68:565-589. [PMID: 30982163 DOI: 10.1007/s12031-019-01318-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Non-functioning pituitary adenomas (NFPAs) are locally invasive with high morbidity. The objective of this study was to diagnose important genes and pathways related to the invasiveness of NFPAs and gain more insights into the underlying molecular mechanisms of NFPAs. The gene expression profiles of GSE51618 were downloaded from the Gene Expression Omnibus database with 4 non-invasive NFPA samples, 3 invasive NFPA samples, and 3 normal pituitary gland samples. Differentially expressed genes (DEGs) are screened between invasive NFPA samples and normal pituitary gland samples, followed by pathway and ontology (GO) enrichment analyses. Subsequently, a protein-protein interaction (PPI) network was constructed and analyzed for these DEGs, and module analysis was performed. In addition, a target gene-miRNA network and target gene-TF (transcription factor) network were analyzed for these DEGs. A total of 879 DEGs were obtained. Among them, 439 genes were upregulated and 440 genes were downregulated. Pathway enrichment analysis indicated that the upregulated genes were significantly enriched in cysteine biosynthesis/homocysteine degradation (trans-sulfuration) and PI3K-Akt signaling pathway, while the downregulated genes were mainly associated with docosahexaenoate biosynthesis III (mammals) and chemokine signaling pathway. GO enrichment analysis indicated that the upregulated genes were significantly enriched in animal organ morphogenesis, extracellular matrix, and hormone activity, while the downregulated genes were mainly associated with leukocyte chemotaxis, dendrites, and RAGE receptor binding. Subsequently, ESR1, SOX2, TTN, GFAP, WIF1, TTR, XIST, SPAG5, PPBP, AR, IL1R2, and HIST1H1C were diagnosed as the top hub genes in the upregulated and downregulated PPI networks and modules. In addition, HS3ST1, GPC4, CCND2, and SCD were diagnosed as the top hub genes in the upregulated and downregulated target gene-miRNA networks, while CISH, ISLR, UBE2E3, and CCNG2 were diagnosed as the top hub genes in the upregulated and downregulated target gene-TF networks. The new important DEGs and pathways diagnosed in this study may serve key roles in the invasiveness of NFPAs and indicate more molecular targets for the treatment of NFPAs.
Collapse
Affiliation(s)
- Harish Joshi
- Endocrine and Diabetes Care Center, Hubli, Karnataka, 5800029, India
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET'S College of Pharmacy, Dharwad, Karnataka, 580002, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| |
Collapse
|
15
|
Tsuji-Tamura K, Ogawa M. Morphology regulation in vascular endothelial cells. Inflamm Regen 2018; 38:25. [PMID: 30214642 PMCID: PMC6130072 DOI: 10.1186/s41232-018-0083-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Morphological change in endothelial cells is an initial and crucial step in the process of establishing a functional vascular network. Following or associated with differentiation and proliferation, endothelial cells elongate and assemble into linear cord-like vessels, subsequently forming a perfusable vascular tube. In vivo and in vitro studies have begun to outline the underlying genetic and signaling mechanisms behind endothelial cell morphology regulation. This review focuses on the transcription factors and signaling pathways regulating endothelial cell behavior, involved in morphology, during vascular development.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- 1Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan.,2Present Address: Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan
| | - Minetaro Ogawa
- 1Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
| |
Collapse
|
16
|
The role of NR2C2 in the prolactinomas. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Prolactinomas are the most frequently observed pituitary adenomas. Prolactinomas invasion is a key risk factor associated with operation results, and it is highly correlated with clinical prognosis. Nuclear receptor subfamily 2 group C member 2 (NR2C2) first cloned from testis is involved in the invasion and metastasis of several human tumors. In 46 patients with prolactinamas, the expression levels of CCNB1, Notch2, and NR2C2 was determined with tissue micro-array (TMA). The association between NR2C2 levels and clinical parameters was established with univariate analysis. The levels of Notch2 and CCNB1 were analyzed by RT-PCR and western blot techniques.The average methylation levels of the NR2C2 promoter were 0.505 and 0.825 in invasive prolactinomas (IPA) and non-IPA groups, respectively (p = 0.013). Univariate analysis also showed that there is a significant relationship between high NR2C2 expression and invasion (x2 = 7.043, p = 0.008), prolactin granules (x2 = 8.712, p = 0.003), and tumor size (x2 = 4.261, p = 0.039.) With the knockdown of NR2C2, cell proliferation was inhibited. Genes related to epithelial-mesenchymal transition (EMT) induced the apoptosis in MMQ cells. In addition, the level of Notch2 and CCNB1 were down-regulated with the knockdown of NR2C2. Moreover, miR-129-5p reduced mRNA levels of NR2C2, and they inhibited cell proliferation by inducing apoptosis levels of MMQ cells. Our findings proved NR2C2 played the important role in tumorigenesis tumor invasion of prolactinomas; moreover, NR2C2 is identified as a potential target.
Collapse
|
17
|
Park JC, Chang IB, Ahn JH, Kim JH, Song JH, Moon SM, Park YH. Nerve Growth Factor Stimulates Glioblastoma Proliferation through Notch1 Receptor Signaling. J Korean Neurosurg Soc 2018; 61:441-449. [PMID: 29991107 PMCID: PMC6046576 DOI: 10.3340/jkns.2017.0219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
Objective Notch receptors are heterodimeric transmembrane proteins that regulate cell fate, such as differentiation, proliferation, and apoptosis. Dysregulated Notch pathway signaling has been observed in glioblastomas, as well as in other human malignancies. Nerve growth factor (NGF) is essential for cell growth and differentiation in the nervous system. Recent reports suggest that NGF stimulates glioblastoma proliferation. However, the relationship between NGF and Notch1 in glioblastomas remains unknown. Therefore, we investigated expression of Notch1 in a glioblastoma cell line (U87-MG), and examined the relationship between NGF and Notch1 signaling. Methods We evaluated expression of Notch1 in human glioblastomas and normal brain tissues by immunohistochemical staining. The effect of NGF on glioblastoma cell line (U87-MG) was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. To evaluate the relationship between NGF and Notch1 signaling, Notch1 and Hes1 expression were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To confirm the effects of NGF on Notch1 signaling, Notch1 and Hes1 small interfering RNAs (siRNAs) were used. Results In immunohistochemistry, Notch1 expression was higher in glioblastoma than in normal brain tissue. MTT assay showed that NGF stimulates U87-MG cells in a dose-dependent manner. RT-PCR and Western blot analysis demonstrated that Notch1 and Hes1 expression were increased by NGF in a dose-dependent manner. After transfection with Notch1 and Hes1 siRNAs, there was no significant difference between controls and 100 nM NGF-β, which means that U87-MG cell proliferation was suppressed by Notch1 and Hes1 siRNAs. Conclusion These results indicate that NGF stimulates glioblastoma cell proliferation via Notch1 signaling through Hes 1.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Joon Ho Song
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Young-Han Park
- Department of Obstetrics and Gynecology, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
18
|
Notch-out for breast cancer therapies. N Biotechnol 2017; 39:215-221. [DOI: 10.1016/j.nbt.2017.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/07/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
|
19
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
20
|
Perrone S, Zubeldia-Brenner L, Gazza E, Demarchi G, Baccarini L, Baricalla A, Mertens F, Luque G, Vankelecom H, Berner S, Becu-Villalobos D, Cristina C. Notch system is differentially expressed and activated in pituitary adenomas of distinct histotype, tumor cell lines and normal pituitaries. Oncotarget 2017; 8:57072-57088. [PMID: 28915655 PMCID: PMC5593626 DOI: 10.18632/oncotarget.19046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Pituitary adenomas are among the most frequent intracranial neoplasms and treatment depends on tumor subtype and clinical features. Unfortunately, non responder cases occur, then new molecular targets are needed. Notch system component expression and activation data are scarce in pituitary tumorigenesis, we therefore aimed to characterize Notch system in pituitary tumors of different histotype. In human pituitary adenomas we showed NOTCH1-4 receptors, JAGGED1 ligand and HES1 target gene expression with positive correlations between NOTCH1,2,4 and HES1, and NOTCH3 and JAGGED1 denoting Notch system activation in a subset of tumors. Importantly, NOTCH3 positive cells were higher in corticotropinomas and somatotropinomas compared to non functioning adenomas. In accordance, Notch activation was evidenced in AtT20 tumor corticotropes, with higher levels of NOTCH1-3 active domains, Jagged1 and Hes1 compared to normal pituitary. In the prolactinoma cell lines GH3 and MMQ, in vivo GH3 tumors and normal glands, Notch system activation was lower than in corticotropes. In MMQ cells only the NOTCH2 active domain was increased, whereas NOTCH1 active domain was higher in GH3 tumors. High levels of Jagged1 and Dll1 were found solely in GH3 cells, and Hes1, Hey1 and Hey2 were expressed in a model dependent pattern. Prolactinomas harbored by lacDrd2KO mice expressed high levels of NOTCH1 active domain and reduced Hes1. We show a differential expression of Notch system components in tumoral and normal pituitaries and specific Notch system involvement depending on adenoma histotype, with higher activation in corticotropinomas. These data suggest that targeting Notch pathway may benefit non responder pituitary adenomas.
Collapse
Affiliation(s)
- Sofia Perrone
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | | | - Elias Gazza
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Gianina Demarchi
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Leticia Baccarini
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Agustin Baricalla
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Freya Mertens
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, B-3000 Leuven, Belgium
| | - Guillermina Luque
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, 1428 Buenos Aires, Argentina
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, B-3000 Leuven, Belgium
| | - Silvia Berner
- Servicio de Neurocirugía, Clínica Santa Isabel, C1406GZJ Buenos Aires, Argentina
| | | | - Carolina Cristina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| |
Collapse
|
21
|
Angelousi A, Dimitriadis GK, Zografos G, Nölting S, Kaltsas G, Grossman A. Molecular targeted therapies in adrenal, pituitary and parathyroid malignancies. Endocr Relat Cancer 2017; 24:R239-R259. [PMID: 28400402 DOI: 10.1530/erc-16-0542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Tumourigenesis is a relatively common event in endocrine tissues. Currently, specific guidelines have been developed for common malignant endocrine tumours, which also incorporate advances in molecular targeted therapies (MTT), as in thyroid cancer and in gastrointestinal neuroendocrine malignancies. However, there is little information regarding the role and efficacy of MTT in the relatively rare malignant endocrine tumours mainly involving the adrenal medulla, adrenal cortex, pituitary, and parathyroid glands. Due to the rarity of these tumours and the lack of prospective studies, current guidelines are mostly based on retrospective data derived from surgical, locoregional and ablative therapies, and studies with systemic chemotherapy. In addition, in many of these malignancies the prognosis remains poor with individual patients responding differently to currently available treatments, necessitating the development of new personalised therapeutic strategies. Recently, major advances in the molecular understanding of endocrine tumours based on genomic, epigenomic, and transcriptome analysis have emerged, resulting in new insights into their pathogenesis and molecular pathology. This in turn has led to the use of novel MTTs in increasing numbers of patients. In this review, we aim to present currently existing and evolving data using MTT in the treatment of adrenal, pituitary and malignant parathyroid tumours, and explore the current utility and effectiveness of such therapies and their future evolution.
Collapse
Affiliation(s)
- Anna Angelousi
- Department of PathophysiologySector of Endocrinology, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios K Dimitriadis
- Division of Translational and Experimental MedicineUniversity of Warwick Medical School, Clinical Sciences Research Laboratories, Coventry, UK
| | - Georgios Zografos
- Third Department of SurgeryAthens General Hospital "Georgios Gennimatas", Athens, Greece
| | - Svenja Nölting
- Department of Internal Medicine IICampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Gregory Kaltsas
- Department of PathophysiologySector of Endocrinology, National & Kapodistrian University of Athens, Athens, Greece
- Division of Translational and Experimental MedicineUniversity of Warwick Medical School, Clinical Sciences Research Laboratories, Coventry, UK
- Department of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
| | - Ashley Grossman
- Department of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Vankelecom H, Roose H. The Stem Cell Connection of Pituitary Tumors. Front Endocrinol (Lausanne) 2017; 8:339. [PMID: 29255445 PMCID: PMC5722833 DOI: 10.3389/fendo.2017.00339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors in the pituitary gland are typically benign but cause serious morbidity due to compression of neighboring structures and hormonal disruptions. Overall, therapy efficiency remains suboptimal with negative impact on health and comfort of life, including considerable risk of therapy resistance and tumor recurrence. To date, little is known on the pathogenesis of pituitary tumors. Stem cells may represent important forces in this process. The pituitary tumors may contain a driving tumor stem cell population while the resident tissue stem cells may be directly or indirectly linked to tumor development and growth. Here, we will briefly summarize recent studies that afforded a glance behind the scenes of this stem cell connection. A better knowledge of the mechanisms underlying pituitary tumorigenesis is essential to identify more efficacious treatment modalities and improve clinical management.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
- *Correspondence: Hugo Vankelecom,
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
23
|
Liu C, Gao H, Cao L, Gui S, Liu Q, Li C, Li D, Gong L, Zhang Y. The role of FSCN1 in migration and invasion of pituitary adenomas. Mol Cell Endocrinol 2016; 419:217-24. [PMID: 26522130 DOI: 10.1016/j.mce.2015.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/27/2022]
Abstract
The prediction of invasion or malignant behavior in PAs remains challenging. FSCN1, an actin-bundling protein, is associated with increased risk of mortality and metastasis in various cancer types. The objective of the study was to evaluate the expression of FSCN1 in 312 PAs cases, and to analyze its association with clinicopathologic features and invasion of PAs, thus serving as a promoter of cancer invasion. In non-function PAs (NFPA), FSCN1 nuclear-positive cases were 53/97 in the invasive group (IPA), and 21/115 in the noninvasive group (nIPA) (ⅹ(2) = 30.65, p = 0.004). FSCN1 cytoplasm-positive cases were 36/97 in IPA, and 8/107 in nIPA (ⅹ(2) = 29.09, p = 0.000). In growth hormone adenomas (GHomas), FSCN1 nuclear-positive were 10/13 in IPA, and 3/37 in nIPA (ⅹ(2) = 23.67, p = 0.000). FSCN1 cytoplasm-positive were 8/13 in IPA, and 2/37 in nIPA (Table 3 ⅹ(2) = 18.94, p = 0.000). Overall, a significant difference was found between FSCN1 expression and tumor size (ⅹ(2) = 46.21, p = 0.000), not age (ⅹ(2) = 2.09, p = 0.148). In the high FSCN1 expression group, 27/137 cases (19.7%) had tumor recurrence, and 10/175 cases (5.7%) in low FSCN1 level (ⅹ(2) = 14.40 p = 0.000). Reduction of FSCN1 suppressed the invasion level of GH3 cells through transwells test. In addition, reduction of FSCN1 can obviously down-regulate the level of Notch1 and DLL3. Our data may help in deciding whether FSCN1 can be a predictor for invasion and recurrence of PAs.
Collapse
Affiliation(s)
- Chunhui Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Cao
- Neurosurgical Department of Beijing Tiantan Hospital, Beijing, China
| | - Songbai Gui
- Neurosurgical Department of Beijing Tiantan Hospital, Beijing, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Gong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Yavropoulou MP, Maladaki A, Topouridou K, Kotoula V, Poulios C, Daskalaki E, Foroglou N, Karkavelas G, Yovos JG. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas. Neurosci Lett 2015; 611:94-100. [PMID: 26620835 DOI: 10.1016/j.neulet.2015.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/18/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece.
| | - Anna Maladaki
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| | - Konstantina Topouridou
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| | - Vasiliki Kotoula
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Chris Poulios
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Emily Daskalaki
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Nikolaos Foroglou
- Department of Neurosurgery, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| | - George Karkavelas
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - John G Yovos
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|