1
|
OsGGC2, Gγ Subunit of Heterotrimeric G Protein, Regulates Plant Height by Functionally Overlapping with DEP1 in Rice. PLANTS 2022; 11:plants11030422. [PMID: 35161403 PMCID: PMC8839887 DOI: 10.3390/plants11030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
Plant heterotrimeric G proteins have been shown to regulate the size of various organs. There are three types of Gγ subunits in plants: type A, consisting of a canonical Gγ domain; type B, possessing a plant-specific domain at the N-terminus of the Gγ domain; and type C, possessing a plant-specific domain at the C-terminal of the Gγ domain. There is one type A, one type B, and three type C of the five γ-subunits in the rice genome. In type C Gγ subunits, GS3, which controls grain size; DEP1, which controls plant height and panicle branching; and their homolog OsGGC2, which affects grain size, have been reported; however, the function of each gene, their interactions, and molecular mechanisms for the control of plant height have not yet been clarified. In this study, we generated loss-of-function mutants of DEP1 and OsGGC2, which have high homology and similar expression, and investigated their phenotypes. Since both dep1 and osggc2 mutants were dwarfed and the double mutants showed a synergistic phenotype, we concluded that both DEP1 and OsGGC2 are positive regulators of plant height and that their functions are redundant.
Collapse
|
2
|
Characterization of Heterotrimeric G Protein γ4 Subunit in Rice. Int J Mol Sci 2018; 19:ijms19113596. [PMID: 30441812 PMCID: PMC6274817 DOI: 10.3390/ijms19113596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
Heterotrimeric G proteins are the molecule switch that transmits information from external signals to intracellular target proteins in mammals and yeast cells. In higher plants, heterotrimeric G proteins regulate plant architecture. Rice harbors one canonical α subunit gene (RGA1), four extra-large GTP-binding protein genes (XLGs), one canonical β-subunit gene (RGB1), and five γ-subunit genes (tentatively designated RGG1, RGG2, RGG3/GS3/Mi/OsGGC1, RGG4/DEP1/DN1/qPE9-1/OsGGC3, and RGG5/OsGGC2) as components of the heterotrimeric G protein complex. Among the five γ-subunit genes, RGG1 encodes the canonical γ-subunit, RGG2 encodes a plant-specific type of γ-subunit with additional amino acid residues at the N-terminus, and the remaining three γ-subunit genes encode atypical γ-subunits with cysteine-rich C-termini. We characterized the RGG4/DEP1/DN1/qPE9-1/OsGGC3 gene product Gγ4 in the wild type (WT) and truncated protein Gγ4∆Cys in the RGG4/DEP1/DN1/qPE9-1/OsGGC3 mutant, Dn1-1, as littele information regarding the native Gγ4 and Gγ4∆Cys proteins is currently available. Based on liquid chromatography-tandem mass spectrometry analysis, immunoprecipitated Gγ4 candidates were confirmed as actual Gγ4. Similar to α-(Gα) and β-subunits (Gβ), Gγ4 was enriched in the plasma membrane fraction and accumulated in the developing leaf sheath. As RGG4/DEP1/DN1/qPE9-1/OsGGC3 mutants exhibited dwarfism, tissues that accumulated Gγ4 corresponded to the abnormal tissues observed in RGG4/DEP1/DN1/qPE9-1/OsGGC3 mutants.
Collapse
|
3
|
Nishiyama A, Matsuta S, Chaya G, Itoh T, Miura K, Iwasaki Y. Identification of Heterotrimeric G Protein γ3 Subunit in Rice Plasma Membrane. Int J Mol Sci 2018; 19:ijms19113591. [PMID: 30441767 PMCID: PMC6274724 DOI: 10.3390/ijms19113591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/02/2022] Open
Abstract
Heterotrimeric G proteins are important molecules for regulating plant architecture and transmitting external signals to intracellular target proteins in higher plants and mammals. The rice genome contains one canonical α subunit gene (RGA1), four extra-large GTP-binding protein genes (XLGs), one canonical β subunit gene (RGB1), and five γ subunit genes (tentatively named RGG1, RGG2, RGG3/GS3/Mi/OsGGC1, RGG4/DEP1/DN1/OsGGC3, and RGG5/OsGGC2). RGG1 encodes the canonical γ subunit; RGG2 encodes the plant-specific type of γ subunit with additional amino acid residues at the N-terminus; and the remaining three γ subunit genes encode the atypical γ subunits with cysteine abundance at the C-terminus. We aimed to identify the RGG3/GS3/Mi/OsGGC1 gene product, Gγ3, in rice tissues using the anti-Gγ3 domain antibody. We also analyzed the truncated protein, Gγ3∆Cys, in the RGG3/GS3/Mi/OsGGC1 mutant, Mi, using the anti-Gγ3 domain antibody. Based on nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the immunoprecipitated Gγ3 candidates were confirmed to be Gγ3. Similar to α (Gα) and β subunits (Gβ), Gγ3 was enriched in the plasma membrane fraction, and accumulated in the flower tissues. As RGG3/GS3/Mi/OsGGC1 mutants show the characteristic phenotype in flowers and consequently in seeds, the tissues that accumulated Gγ3 corresponded to the abnormal tissues observed in RGG3/GS3/Mi/OsGGC1 mutants.
Collapse
Affiliation(s)
- Aki Nishiyama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-Town, Fukui 910-1195, Japan.
| | - Sakura Matsuta
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-Town, Fukui 910-1195, Japan.
| | - Genki Chaya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-Town, Fukui 910-1195, Japan.
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-Town, Fukui 910-1195, Japan.
| | - Kotaro Miura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-Town, Fukui 910-1195, Japan.
| | - Yukimoto Iwasaki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-Town, Fukui 910-1195, Japan.
| |
Collapse
|
4
|
Zheng J, Zhang Y, Wang C. Molecular functions of genes related to grain shape in rice. BREEDING SCIENCE 2015; 65:120-6. [PMID: 26069441 PMCID: PMC4430511 DOI: 10.1270/jsbbs.65.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/28/2014] [Indexed: 05/23/2023]
Abstract
Because grain shape is an important component of rice grain yield, the discovery of genes related to rice grain shape has attracted much attention of rice breeding programs. In recent years, some of these genes have been cloned and studied. They have been found not only regulate grain shape by changing the shape of the spikelet hull, but also regulate endosperm development through control of cell division using different molecular mechanisms. In this paper, we review the recent research on genes related to rice grain shape and their possible regulatory mechanisms.
Collapse
Affiliation(s)
- Jia Zheng
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement,
Nanjing 210014,
China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement,
Nanjing 210014,
China
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement,
Nanjing 210014,
China
| |
Collapse
|
5
|
Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 2010; 37:3957-65. [DOI: 10.1007/s11033-010-0054-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 03/05/2010] [Indexed: 11/27/2022]
|
6
|
Izawa Y, Takayanagi Y, Inaba N, Abe Y, Minami M, Fujisawa Y, Kato H, Ohki S, Kitano H, Iwasaki Y. Function and expression pattern of the alpha subunit of the heterotrimeric G protein in rice. PLANT & CELL PHYSIOLOGY 2010; 51:271-81. [PMID: 20040584 DOI: 10.1093/pcp/pcp186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The d1 mutant, which is deficient for the heterotrimeric G-protein alpha subunit (Galpha) gene of rice, shows dwarfism and sets small round seeds. To determine whether dwarfism in d1 is due to a reduction in cell number or to shortened cell length, the cell number of the leaf sheath, the internode, the root and the lemma was compared between Nipponbare, a wild-type rice and d1-5, a d1 allele derived from Nipponbare. Our results indicate that the cell number was reduced in all organs analyzed in d1-5. In addition, cell enlargement was found in roots and lemma of d1-5, although the organ length in d1-5 was shorter than that of wild-type rice. These results suggest that rice Galpha participates in cell proliferation in rice. Western blot analyses using anti-Galpha antibody and RT-PCR analyses indicate that Galpha is mostly expressed in the developing organs. Galpha promoter activity studies using the GUS reporter gene confirmed that the expression of Galpha was highest in developing organs. We conclude that rice Galpha participates in the regulation of cell number in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Yuki Izawa
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka Kenjyojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Asakura Y, Kurosaki F. Cloning and expression of Dcga gene encoding alpha subunit of GTP-binding protein in carrot seedlings. Biol Pharm Bull 2007; 30:1800-4. [PMID: 17827744 DOI: 10.1248/bpb.30.1800] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A homology-based cloning strategy yielded a cDNA clone designated Dcga, presumably encoding alpha subunit of GTP-binding protein, from carrot (Daucus carota) seedlings. Molecular phylogenetic tree analysis of G protein alpha subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha proteins into specific subfamilies could not be applicable to the proteins from higher plants. The restriction digests prepared from genomic DNA of carrot showed one or two hybridized signals in Southern blot analyses, and the expression level of Dcga was appreciably decreased upon the exposure of carrot to high temperature or the prolonged treatment with salt. These results suggest that Dcga occurs as single or double copy genes in carrot genome, and its transcript might play specific roles in heat- and salt-induced responses of the plant.
Collapse
Affiliation(s)
- Yuki Asakura
- Laboratory of Plant Resource Sciences, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | | |
Collapse
|
8
|
Grabocka E, Wedegaertner PB. Functional consequences of G alpha 13 mutations that disrupt interaction with p115RhoGEF. Oncogene 2005; 24:2155-65. [PMID: 15735747 PMCID: PMC1351220 DOI: 10.1038/sj.onc.1208414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The G-protein alpha subunit, alpha(13), regulates cell growth and differentiation through the monomeric Rho GTPase. Alpha(13) activates Rho through direct stimulation of the guanine nucleotide exchange factor p115RhoGEF, which contains a regulator of G-protein signaling homology domain (RH) in its N-terminus. Through its RH domain, p115RhoGEF also functions as a GAP for G alpha(13). The mechanism for the G alpha(13)/p115RhoGEF interaction is not well understood. Here, we determined specific alpha(13) residues important for its interaction with p115RhoGEF. GST-pulldowns and co-immunoprecipitation assays revealed that individually mutating alpha(13) residues Lys204, Glu229, or Arg232 to opposite charge residues disrupts the interaction of activated alpha(13) with the RH domain of p115RhoGEF or full-length p115RhoGEF. We further demonstrate that mutation of Glu229, and to a lesser extent Lys204 or Arg232, disrupts the ability of activated alpha(13) to induce the recruitment of p115RhoGEF to the plasma membrane (PM) and to activate Rho-mediated serum response element-luciferase gene transcription. Interestingly, an alpha(13) mutant where a conserved Gly was mutated to a Ser (G205S) retained its ability to bind to p115RhoGEF, induce p115RhoGEF recruitment to the PM, and activate Rho-dependent signaling, even though identical Gly to Ser mutations in other alpha disrupt their interaction with regulator of G-protein signaling (RGS) proteins. These results demonstrate that, whereas several features of a typical alpha/RGS interaction are preserved in the alpha(13)/p115RhoGEF interaction, there are also significant differences.
Collapse
Affiliation(s)
| | - Philip B. Wedegaertner
- Corresponding address: Philip Wedegaertner, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 St., 839 BLSB, Philadelphia, PA 19107, tel: 215-503-3137, fax: 215-923-2117, e-mail:
| |
Collapse
|
9
|
Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 2004; 104:173-206. [PMID: 15556674 DOI: 10.1016/j.pharmthera.2004.08.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-protein-coupled receptors (GPCR) are involved in directly and indirectly controlling an extraordinary variety of physiological functions. Their key roles in cellular communication have made them the target for more than 60% of all currently prescribed drugs. Mutations in GPCR can cause acquired and inherited diseases such as retinitis pigmentosa (RP), hypo- and hyperthyroidism, nephrogenic diabetes insipidus, several fertility disorders, and even carcinomas. To date, over 600 inactivating and almost 100 activating mutations in GPCR have been identified which are responsible for more than 30 different human diseases. The number of human disorders is expected to increase given the fact that over 160 GPCR have been targeted in mice. Herein, we summarize the current knowledge relevant to understanding the molecular basis of GPCR function, with primary emphasis on the mechanisms underlying GPCR malfunction responsible for different human diseases.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Department of Molecular Biochemistry (Max-Planck-Institute Interim), Medical Faculty, University of Leipzig, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hirobe A, Fujisawa Y, Kato H, Iwasaki Y. Characterization of heterotrimeric G protein complexes in rice plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:320-31. [PMID: 15078334 DOI: 10.1111/j.1365-313x.2004.02046.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two genes in the rice genome were identified as those encoding the gamma subunits, gamma1 and gamma2, of heterotrimeric G proteins. Using antibodies against the recombinant proteins for the alpha, beta, gamma1, and gamma2 subunits of the G protein complexes, all of the subunits were proven to be localized in the plasma membrane in rice. Gel filtration of solubilized plasma membrane proteins showed that all of the alpha subunits were present in large protein complexes (about 400 kDa) containing the other subunits, beta, gamma1, and gamma2, and probably also some other proteins, whereas large amounts of the beta and gamma (gamma1 and gamma2) subunits were freed from the large complexes and took a 60-kDa form. A yeast two-hybrid assay and co-immunoprecipitation experiments showed that the beta subunit interacted tightly with the gamma1 and gamma2 subunits, and so the beta and gamma subunits appeared to form dimers in rice cells. Some dimers were associated with the alpha subunit, because few beta, gamma1, and gamma2 subunits were present in the 400-kDa complexes in a rice mutant, d1, which was lacking in the alpha subunit. When a constitutively active form of the alpha subunit was prepared by the exchange of one amino acid residue and introduced into d1, the mutagenized subunit was localized in the plasma membrane of the transformants and took a free, and not the 400-kDa, form.
Collapse
Affiliation(s)
- Chiyuki Kato
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjyojima, Matsuoka-cho, Yoshida-gun, Fukui 910-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hossain MS, Koba T, Harada K. Cloning and characterization of two full-length cDNAs, TaGA1 and TaGA2, encoding G-protein alpha subunits expressed differentially in wheat genome. Genes Genet Syst 2003; 78:127-38. [PMID: 12773813 DOI: 10.1266/ggs.78.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the present study, we identified and characterized two cDNAs, named TaGA1 and TaGA2, encoding alpha subunits of heterotrimeric G proteins synthesized from one-week-old seedling mRNAs of common wheat cv. S615 using RACE PCR and RT-PCR methods. The clone TaGA1 contained an open reading frame that encoded a protein consisting of 383 amino acid residues with a molecular mass of 51.3 kDa, whereas the clone TaGA2 contained an open reading frame encoding 390 amino acids with a molecular mass of 52.5 kDa. At the amino acid level, both cDNAs (TaGA1 and TaGA2) showed 70-96% and 30-40% homologies to plant and animal G-protein alpha (G alpha) subunits, respectively, and 97.7% homology to each other. The regions essential for binding to GTP were conserved among all G alpha subunits in higher plants and mammals examined. However, the C-terminal amino acid sequences of TaGA1 and TaGA2 were similar to those of cereal G alpha subunits (rice and barley) but were different from the analogous sequences of mammalian G alpha subunits as well as from those of the leguminous and Solanaeceous G alpha subunits. Southern analysis revealed that the hexaploid wheat genome contained three major copies of G alpha subunit gene with a few less homologous copies. The analysis of the expression for G alpha subunit genes in wheat showed that both TaGA1 and TaGA2 mRNAs were abundant in one-week-old seedlings, immature seeds harvested one-week after anthesis, young spikes and internodes, indicating constitutive expression patterns in all of the organs tested. Especially, young spikes and internodes exhibited increased levels of mRNA accumulation, suggesting that G alpha subunit gene is highly expressed in actively elongating and fast growing tissues. Moreover, both TaGA1 and TaGA2 showed genome-specific expressions in wheat and may participate in the light-regulated growth and development of the seedlings.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Laboratory of Genetics and Plant Breeding, Faculty of Horticulture, Graduate School of Science and Technology, Chiba University, Japan
| | | | | |
Collapse
|
12
|
Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 2002; 70:703-54. [PMID: 11395421 DOI: 10.1146/annurev.biochem.70.1.703] [Citation(s) in RCA: 366] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All cells have the capacity to evoke appropriate and measured responses to signal molecules (such as peptide hormones), environmental changes, and other external stimuli. Tremendous progress has been made in identifying the proteins that mediate cellular response to such signals and in elucidating how events at the cell surface are linked to subsequent biochemical changes in the cytoplasm and nucleus. An emerging area of investigation concerns how signaling components are assembled and regulated (both spatially and temporally), so as to control properly the specificity and intensity of a given signaling pathway. A related question under intensive study is how the action of an individual signaling pathway is integrated with (or insulated from) other pathways to constitute larger networks that control overall cell behavior appropriately. This review describes the signal transduction pathway used by budding yeast (Saccharomyces cerevisiae) to respond to its peptide mating pheromones. This pathway is comprised by receptors, a heterotrimeric G protein, and a protein kinase cascade all remarkably similar to counterparts in multicellular organisms. The primary focus of this review, however, is recent advances that have been made, using primarily genetic methods, in identifying molecules responsible for regulation of the action of the components of this signaling pathway. Just as many of the constituent proteins of this pathway and their interrelationships were first identified in yeast, the functions of some of these regulators have clearly been conserved in metazoans, and others will likely serve as additional models for molecules that carry out analogous roles in higher organisms.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | |
Collapse
|
13
|
Fujisawa Y, Kato H, Iwasaki Y. Structure and function of heterotrimeric G proteins in plants. PLANT & CELL PHYSIOLOGY 2001; 42:789-94. [PMID: 11522903 DOI: 10.1093/pcp/pce111] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heterotrimeric G proteins are mediators that transmit the external signals via receptor molecules to effector molecules. The G proteins consist of three different subunits: alpha, beta, and gamma subunits. The cDNAs or genes for all the alpha, beta, and gamma subunits have been isolated from many plant species, which has contributed to great progress in the study of the structure and function of the G proteins in plants. In addition, rice plants lacking the alpha subunit were generated by the antisense method and a rice mutant, Daikoku d1, was found to have mutation in the alpha-subunit gene. Both plants show abnormal morphology such as dwarfism, dark green leaf, and small round seed. The findings revealed that the G proteins are functional molecules regulating some body plans in plants. There is evidence that the plant G proteins participate at least in signaling of gibberellin at low concentrations. In this review, we summarize the currently known information on the structure of plant heterotrimeric G proteins and discuss the possible functions of the G proteins in plants.
Collapse
Affiliation(s)
- Y Fujisawa
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjyojima, Matsuoka-cho, Yoshida-gun, Fukui, 910-1195 Japan
| | | | | |
Collapse
|
14
|
The cerebellum-specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J Neurosci 2001. [PMID: 11150314 DOI: 10.1523/jneurosci.21-01-00010.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Munc13 proteins form a family of three, primarily brain-specific phorbol ester receptors (Munc13-1/2/3) in mammals. Munc13-1 is a component of presynaptic active zones in which it acts as an essential synaptic vesicle priming protein. In contrast to Munc13-1, which is present in most neurons throughout the rat and mouse CNS, Munc13-3 is almost exclusively expressed in the cerebellum. Munc13-3 mRNA is present in granule and Purkinje cells but absent from glia cells. Munc13-3 protein is localized to the synaptic neuropil of the cerebellar molecular layer but is not found in Purkinje cell dendrites, suggesting that Munc13-3, like Munc13-1, is a presynaptic protein at parallel fiber-Purkinje cell synapses. To examine the role of Munc13-3 in cerebellar physiology, we generated Munc13-3-deficient mutant mice. Munc13-3 deletion mutants exhibit increased paired-pulse facilitation at parallel fiber-Purkinje cell synapses. In addition, mutant mice display normal spontaneous motor activity but have an impaired ability to learn complex motor tasks. Our data demonstrate that Munc13-3 regulates synaptic transmission at parallel fiber-Purkinje cell synapses. We propose that Munc13-3 acts at a similar step of the synaptic vesicle cycle as does Munc13-1, albeit with less efficiency. In view of the present data and the well established vesicle priming function of Munc13-1, it is likely that Munc13-3-loss leads to a reduction in release probability at parallel fiber-Purkinje cell synapses by interfering with vesicle priming. This, in turn, would lead to increases in paired-pulse facilitation and could contribute to the observed deficit in motor learning.
Collapse
|