1
|
Qiao Y, Ganguly G, Booth CH, Branson JA, Ditter AS, Lussier DJ, Moreau LM, Russo DR, Sergentu DC, Shuh DK, Sun T, Autschbach J, Minasian SG. Enhanced 5f-δ bonding in [U(C 7H 7) 2] -: C K-edge XAS, magnetism, and ab initio calculations. Chem Commun (Camb) 2021; 57:9562-9565. [PMID: 34546232 DOI: 10.1039/d1cc03414f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5f covalency in [U(C7H7)2]- was probed with carbon K-edge X-ray absorption spectroscopy (XAS) and electronic structure theory. The results revealed U 5f orbital participation in δ-bonding in both the ground- and core-excited states; additional 5f ϕ-mixing is observed in the core-excited states. Comparisons with U(C8H8)2 show greater δ-covalency for [U(C7H7)2]-.
Collapse
Affiliation(s)
- Yusen Qiao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gaurab Ganguly
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jacob A Branson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. .,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Alexander S Ditter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Daniel J Lussier
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. .,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Dominic R Russo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. .,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | - David K Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Taoxiang Sun
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Smiles DE, Batista ER, Booth CH, Clark DL, Keith JM, Kozimor SA, Martin RL, Minasian SG, Shuh DK, Stieber SCE, Tyliszczak T. The duality of electron localization and covalency in lanthanide and actinide metallocenes. Chem Sci 2020; 11:2796-2809. [PMID: 34084340 PMCID: PMC8157540 DOI: 10.1039/c9sc06114b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Previous magnetic, spectroscopic, and theoretical studies of cerocene, Ce(C8H8)2, have provided evidence for non-negligible 4f-electron density on Ce and implied that charge transfer from the ligands occurs as a result of covalent bonding. Strong correlations of the localized 4f-electrons to the delocalized ligand π-system result in emergence of Kondo-like behavior and other quantum chemical phenomena that are rarely observed in molecular systems. In this study, Ce(C8H8)2 is analyzed experimentally using carbon K-edge and cerium M5,4-edge X-ray absorption spectroscopies (XAS), and computationally using configuration interaction (CI) calculations and density functional theory (DFT) as well as time-dependent DFT (TDDFT). Both spectroscopic approaches provide strong evidence for ligand → metal electron transfer as a result of Ce 4f and 5d mixing with the occupied C 2p orbitals of the C8H8 2- ligands. Specifically, the Ce M5,4-edge XAS and CI calculations show that the contribution of the 4f1, or Ce3+, configuration to the ground state of Ce(C8H8)2 is similar to strongly correlated materials such as CeRh3 and significantly larger than observed for other formally Ce4+ compounds including CeO2 and CeCl6 2-. Pre-edge features in the experimental and TDDFT-simulated C K-edge XAS provide unequivocal evidence for C 2p and Ce 4f covalent orbital mixing in the δ-antibonding orbitals of e2u symmetry, which are the unoccupied counterparts to the occupied, ligand-based δ-bonding e2u orbitals. The C K-edge peak intensities, which can be compared directly to the C 2p and Ce 4f orbital mixing coefficients determined by DFT, show that covalency in Ce(C8H8)2 is comparable in magnitude to values reported previously for U(C8H8)2. An intuitive model is presented to show how similar covalent contributions to the ground state can have different impacts on the overall stability of f-element metallocenes.
Collapse
Affiliation(s)
- Danil E Smiles
- Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | | | - Corwin H Booth
- Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - David L Clark
- Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Stosh A Kozimor
- Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | | | - David K Shuh
- Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | | | - Tolek Tyliszczak
- Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
3
|
Minasian SG, Keith JM, Batista ER, Boland KS, Clark DL, Kozimor SA, Martin RL, Shuh DK, Tyliszczak T. New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory. Chem Sci 2014. [DOI: 10.1039/c3sc52030g] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
4
|
Walter MD, Booth CH, Lukens WW, Andersen RA. Cerocene Revisited: The Electronic Structure of and Interconversion Between Ce2(C8H8)3 and Ce(C8H8)2. Organometallics 2009. [DOI: 10.1021/om7012327] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc D. Walter
- Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Corwin H. Booth
- Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Wayne W. Lukens
- Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Richard A. Andersen
- Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| |
Collapse
|
5
|
Amberger HD, Edelmann FT, Gottfriedsen J, Herbst-Irmer R, Jank S, Kilimann U, Noltemeyer M, Reddmann H, Schäfer M. Synthesis, Molecular, and Electronic Structure of (η8-C8H8)Ln(scorpionate) Half-Sandwich Complexes: An Experimental Key to a Better Understanding of f-Element-Cyclooctatetraenyl Bonding. Inorg Chem 2008; 48:760-72. [DOI: 10.1021/ic801765n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanns-Dieter Amberger
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Frank T. Edelmann
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Jochen Gottfriedsen
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Stefan Jank
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Ulrike Kilimann
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Mathias Noltemeyer
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Hauke Reddmann
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Martina Schäfer
- Institut für Anorganische and Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
6
|
Hager JS, Zahardis J, Pagni RM, Compton RN, Li J. Raman under nitrogen. The high-resolution Raman spectroscopy of crystalline uranocene, thorocene, and ferrocene. J Chem Phys 2004; 120:2708-18. [PMID: 15268415 DOI: 10.1063/1.1637586] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The utility of recording Raman spectroscopy under liquid nitrogen, a technique we call Raman under nitrogen (RUN), is demonstrated for ferrocene, uranocene, and thorocene. Using RUN, low-temperature (liquid nitrogen cooled) Raman spectra for these compounds exhibit higher resolution than previous studies, and new vibrational features are reported. The first Raman spectra of crystalline uranocene at 77 K are reported using excitation from argon (5145 A) and krypton (6764 A) ion lasers. The spectra obtained showed bands corresponding to vibrational transitions at 212, 236, 259, 379, 753, 897, 1500, and 3042 cm(-1), assigned to ring-metal-ring stretching, ring-metal tilting, out-of-plane CCC bending, in-plane CCC bending, ring-breathing, C-H bending, CC stretching and CH stretching, respectively. The assigned vibrational bands are compared to those of uranocene in THF, (COT)2-, and thorocene. All vibrational frequencies of the ligands, except the 259 cm(-1) out-of-plane CCC bending mode, were found to increase upon coordination. A broad, polarizable band centered about approximately 460 cm(-1) was also observed. The 460 cm(-1) band is greatly enhanced relative to the vibrational Raman transitions with excitations from the krypton ion laser, which is indicative of an electronic resonance Raman process as has been shown previously. The electronic resonance Raman band is observed to split into three distinct bands at 450, 461, and 474 cm(-1) with 6764 A excitation. Relativistic density functional theory is used to provide theoretical interpretations of the measured spectra.
Collapse
Affiliation(s)
- J Stewart Hager
- Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
7
|
Amberger HD, Reddmann H, Jank S, Lopes M, Marques N. Crystal Field Strengths, Nephelauxetic Effects, and Experimentally Based Molecular Orbital Schemes (in the f Range) of Selected Cyclopentadienyl Complexes of Samarium(III). Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200300309] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Amberger HD, Reddmann H, Jank S, Zhang L, Edelstein NM. Zur Elektronenstruktur metallorganischer Komplexe der f-Elemente LII. Magnetochemische, optische und magnetooptische Charakterisierung von (η5-Cp)3Tm·THF. J Organomet Chem 2002. [DOI: 10.1016/s0022-328x(02)01421-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Li J, Bursten BE. Relativistic Density Functional Study of the Geometry, Electronic Transitions, Ionization Energies, and Vibrational Frequencies of Protactinocene, Pa(η8-C8H8)2. J Am Chem Soc 1998. [DOI: 10.1021/ja9821145] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Li
- Contribution from the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Bruce E. Bursten
- Contribution from the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
10
|
Amberger HD, Jank S, Edelmann FT. Zur Elektronenstruktur metallorganischer Komplexe der f-Elemente XLVI. J Organomet Chem 1998. [DOI: 10.1016/s0022-328x(98)00409-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
AMBERGER VHD, JANK S, REDDMANN H, EDELMANN FT. Zur Elektronenstruktur metallorganischer Komplexe der f-Elemente 39. Experimentelle Erfassung und Simulation des Kristallfeld-Aufspaltungsmusters von (η 8-Cyclooctatetraenyl) [hydrotris(3,5-dimethylpyrazol-1-yl)borato]-praseodym(III) {(COT)Pr[HB(Me 2pz) 3]}. Mol Phys 1996. [DOI: 10.1080/00268979609484527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Bursten BE, Strittmatter RJ. Cyclopentadienylkomplexe der Actinoide: Bindungsverhältnisse und Elektronenstruktur. Angew Chem Int Ed Engl 1991. [DOI: 10.1002/ange.19911030905] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Burns CJ, Bursten BE. Covalency in f-Element Organometallic Complexes: Theory and Experiment. COMMENT INORG CHEM 1989. [DOI: 10.1080/02603598908035804] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
JØrgensen C, Faucher M, Garcia D. The “ligand field” energy differences between 4f orbitals are mainly provided by the kinetic energy operator. Chem Phys Lett 1986. [DOI: 10.1016/0009-2614(86)80334-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yamaguchi S, Spiro TG. Electronic and vibrational resonance Raman spectra of octamethyluranocene. Chem Phys Lett 1984. [DOI: 10.1016/0009-2614(84)80177-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|