1
|
Roger M, Biaso F, Castelle CJ, Bauzan M, Chaspoul F, Lojou E, Sciara G, Caffarri S, Giudici-Orticoni MT, Ilbert M. Spectroscopic characterization of a green copper site in a single-domain cupredoxin. PLoS One 2014; 9:e98941. [PMID: 24932914 PMCID: PMC4059628 DOI: 10.1371/journal.pone.0098941] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.
Collapse
Affiliation(s)
- Magali Roger
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Frédéric Biaso
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Cindy J. Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Marielle Bauzan
- Unité de Fermentation, Institut de Microbiologie de la Méditerranée, CNRS-FR 3479, Aix Marseille Université, Marseille, France
| | - Florence Chaspoul
- Unité Chimie Physique, Prévention des Risques et Nuisances Technologiques, Faculté de Pharmacie, CNRS-UMR 7263, Aix-Marseille Université, Marseille, France
| | - Elisabeth Lojou
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Giuliano Sciara
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Stefano Caffarri
- Unité de Biologie Végétale et Microbiologie Environnementales, CNRS-UMR 7265, CEA, Aix Marseille Université, Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Marianne Ilbert
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
2
|
Dinarieva TY, Trashin SA, Kahnt J, Karyakin AA, Netrusov AI. Purification and characterization of azurin from the methylamine-utilizing obligate methylotroph Methylobacillus flagellatusKT. Can J Microbiol 2012; 58:516-22. [DOI: 10.1139/w2012-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylamine dehydrogenase (MADH) and azurin were purified from the periplasmic fraction of the methylamine-grown obligate methylotroph Methylobacillus flagellatus KT. The molecular mass of the purified azurin was 16.3 kDa, as measured by SDS–PAGE, or 13 920 Da as determined by MALDI–TOF mass spectrometry. Azurin of M. flagellatus KT contained 1 copper atom per molecule and had an absorption maximum at 620 nm in the oxidized state. The redox potential of azurin measured at pH 7.0 by square-wave voltammetry was +275 mV versus normal hydrogen electrode. MADH reduced azurin in the presence of methylamine, indicating that this cupredoxin is likely to be the physiological electron acceptor for MADH in the electron transport chain of the methylotroph. A scheme of electron transport functioning in M. flagellatus KТ during methylamine oxidation is proposed.
Collapse
Affiliation(s)
- Tatiana Y. Dinarieva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Lenin’s Hills, Moscow 119991, Russian Federation
| | - Stanislav A. Trashin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Lenin’s Hills, Moscow 119991, Russian Federation
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
| | - Arkady A. Karyakin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Lenin’s Hills, Moscow 119991, Russian Federation
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Lenin’s Hills, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Inoue T, Suzuki S, Nishio N, Yamaguchi K, Kataoka K, Tobari J, Yong X, Hamanaka S, Matsumura H, Kai Y. The significance of the flexible loop in the azurin (Az-iso2) from the obligate methylotroph Methylomonas sp. strain J. J Mol Biol 2003; 333:117-24. [PMID: 14516747 DOI: 10.1016/j.jmb.2003.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The obligate methylotroph Methylomonas sp. strain J produces two azurins (Az-iso1 and Az-iso2) as candidates for electron acceptor from methylamine dehydrogenase (MADH) in the electron-transfer process involving the oxidation of methylamine to formaldehyde and ammonia. The X-ray crystallographic study indicated that Az-iso2 gives two types of crystals (form I and form II) with polyethylene glycol (PEG4000) and ammonium sulfate as the precipitants, respectively. Comparison between the two Az-iso2 structures in forms I and II reveals the remarkable structural changes at the top surface of the molecule around the copper atom. Az-iso2 possesses Gly43 instead of Val43 or Ala43, which is unique among all other azurins around the copper ligand His46, inducing the remarkable structural change in the loop region from Gly37 to Gly43. When the structure of Az-iso2 is superimposed on that of amicyanin in the ternary complex composed of MADH, amicyanin, and cytochrome c(551), the loop of Az-iso2 deeply overlaps with the light subunit of MADH. However, the Az-iso2 molecule is probably able to avoid any steric hindrance with the cognate MADH to form the complex for intermolecular electron-transfer reaction, since the loop containing Gly43 is flexible. We discuss why the electron-transfer activity of Az-iso2 is fivefold higher than that of Az-iso1.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|