1
|
Saito M, Saito K, Ishikita H. Structural and energetic insights into Mn-to-Fe substitution in the oxygen-evolving complex. iScience 2023; 26:107352. [PMID: 37520740 PMCID: PMC10382916 DOI: 10.1016/j.isci.2023.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Manganese (Mn) serves as the catalytic center for water splitting in photosystem II (PSII), despite the abundance of iron (Fe) on earth. As a first step toward why Mn and not Fe is employed by Nature in the water oxidation catalyst, we investigated the Fe4CaO5 cluster in the PSII protein environment using a quantum mechanical/molecular mechanical (QM/MM) approach, assuming an equivalence between Mn(III/IV) and Fe(II/III). Substituting Mn with Fe resulted in the protonation of μ-oxo bridges at sites O2 and O3 by Arg357 and D1-His337, respectively. While the Mn4CaO5 cluster exhibits distinct open- and closed-cubane S2 conformations, the Fe4CaO5 cluster lacks this variability due to an equal spin distribution over sites Fe1 and Fe4. The absence of a low-barrier H-bond between a ligand water molecule (W1) and D1-Asp61 in the Fe4CaO5 cluster may underlie its incapability for ligand water deprotonation, highlighting the relevance of Mn in natural water splitting.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Kanda T, Ishikita H. Redox Potentials of Iron-Sulfur Clusters in Type I Photosynthetic Reaction Centers. J Phys Chem B 2023; 127:4998-5004. [PMID: 37226417 PMCID: PMC10259448 DOI: 10.1021/acs.jpcb.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Indexed: 05/26/2023]
Abstract
The electron transfer pathways in type I photosynthetic reaction centers, such as photosystem I (PSI) and reaction centers from green sulfur bacteria (GsbRC), are terminated by two Fe4S4 clusters, FA and FB. The protein structures are the basis of understanding how the protein electrostatic environment interacts with the Fe4S4 clusters and facilitates electron transfer. Using the protein structures, we calculated the redox potential (Em) values for FA and FB in PSI and GsbRC, solving the linear Poisson-Boltzmann equation. The FA-to-FB electron transfer is energetically downhill in the cyanobacterial PSI structure, while it is isoenergetic in the plant PSI structure. The discrepancy arises from differences in the electrostatic influences of conserved residues, including PsaC-Lys51 and PsaC-Arg52, located near FA. The FA-to-FB electron transfer is slightly downhill in the GsbRC structure. Em(FA) and Em(FB) exhibit similar levels upon isolation of the membrane-extrinsic PsaC and PscB subunits from the PSI and GsbRC reaction centers, respectively. The binding of the membrane-extrinsic subunit at the heterodimeric/homodimeric reaction center plays a key role in tuning Em(FA) and Em(FB).
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
4
|
Kanda T, Saito K, Ishikita H. Mechanism of Mixed-Valence Fe 2.5+···Fe 2.5+ Formation in Fe 4S 4 Clusters in the Ferredoxin Binding Motif. J Phys Chem B 2022; 126:3059-3066. [PMID: 35435680 PMCID: PMC9059760 DOI: 10.1021/acs.jpcb.2c01320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most low-potential Fe4S4 clusters exist in the conserved binding sequence CxxCxxC (CnCn+3Cn+6). Fe(II) and Fe(III) at the first (Cn) and third (Cn+6) cysteine ligand sites form a mixed-valence Fe2.5+···Fe2.5+ pair in the reduced Fe(II)3Fe(III) cluster. Here, we investigate the mechanism of how the conserved protein environment induces mixed-valence pair formation in the Fe4S4 clusters, FX, FA, and FB in photosystem I, using a quantum mechanical/molecular mechanical approach. Exchange coupling between Fe sites is predominantly determined by the shape of the Fe4S4 cluster, which is stabilized by the preorganized protein electrostatic environment. The backbone NH and CO groups in the conserved CxxCxxC and adjacent helix regions orient along the FeCn···FeC(n+6) axis, generating an electric field and stabilizing the FeCn(II)FeC(n+6)(III) state in FA and FB. The overlap of the d orbitals via -S- (superexchange) is observed for the single FeCn(II)···FeC(n+6)(III) pair, leading to the formation of the mixed-valence Fe2.5+···Fe2.5+ pair. In contrast, several superexchange Fe(II)···Fe(III) pairs are observed in FX due to the highly symmetric pair of the CDGPGRGGTC sequences. This is likely the origin of FX serving as an electron acceptor in the two electron transfer branches.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Valer L, Rossetto D, Scintilla S, Hu YJ, Tomar A, Nader S, Betinol IO, Mansy S. Methods to identify and characterize iron-sulfur oligopeptides in water. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron-sulfur clusters are ubiquitous cofactors that mediate central biological processes. However, despite their long history, these metallocofactors remain challenging to investigate when coordinated to small (≤ six amino acids) oligopeptides in aqueous solution. In addition to being often unstable in vitro, iron-sulfur clusters can be found in a wide variety of forms with varied characteristics, which makes it difficult to easily discern what is in solution. This difficulty is compounded by the dynamics of iron-sulfur peptides, which frequently coordinate multiple types of clusters simultaneously. To aid investigations of such complex samples, a summary of data from multiple techniques used to characterize both iron-sulfur proteins and peptides is provided. Although not all spectroscopic techniques are equally insightful, it is possible to use several, readily available methods to gain insight into the complex composition of aqueous solutions of iron-sulfur peptides.
Collapse
Affiliation(s)
- Luca Valer
- University of Trento, 19034, Trento, Trentino-Alto Adige, Italy
| | | | | | - Yin Juan Hu
- University of Alberta, 3158, Chemistry, Edmonton, Alberta, Canada
| | - Anju Tomar
- University of Trento, 19034, Trento, Trentino-Alto Adige, Italy
| | - Serge Nader
- University of Alberta, 3158, Chemistry, Edmonton, Alberta, Canada
| | | | - Sheref Mansy
- University of Alberta, 3158, Chemistry, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Kanda T, Saito K, Ishikita H. Electron Acceptor-Donor Iron Sites in the Iron-Sulfur Cluster of Photosynthetic Electron-Transfer Pathways. J Phys Chem Lett 2021; 12:7431-7438. [PMID: 34338530 DOI: 10.1021/acs.jpclett.1c01896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In photosystem I, two electron-transfer pathways via quinones (A1A and A1B) are merged at the iron-sulfur Fe4S4 cluster FX into a single pathway toward the other two Fe4S4 clusters FA and FB. Using a quantum mechanical/molecular mechanical approach, we identify the redox-active Fe sites in the clusters. In FA and FB, the Fe site, which does not belong to the CxxCxxCxxxCP motif, serves as an electron acceptor/donor. FX has two independent electron acceptor Fe sites for A- and B-branch electron transfers, depending on the Asp-B575 protonation state, which causes the A1A-to-FX electron transfer to be uphill and the A1B-to-FX electron transfer to be downhill. The two asymmetric electron-transfer pathways from A1 to FX and the separation of the electron acceptor and donor Fe sites are likely associated with the specific role of FX in merging the two electron transfer pathways into the single pathway.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
7
|
Walters KA, Golbeck JH. Designing a modified clostridial 2[4Fe-4S] ferredoxin as a redox coupler to directly link photosystem I with a Pt nanoparticle. PHOTOSYNTHESIS RESEARCH 2020; 143:165-181. [PMID: 31643016 DOI: 10.1007/s11120-019-00679-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A methodology previously developed in our laboratory utilized an aliphatic hydrocarbon terminated by thiol groups to tether two redox proteins, i.e., the [4Fe-4S] cluster FB of photosystem I (PS I) and the distal [4Fe-4S] cluster of a [FeFe]-hydrogenase, to create a biohybrid dihydrogen-generating complex. These studies guided the design of a modified 2[4Fe-4S] cluster ferredoxin from Clostridium pasteurianum (CpFd) containing two externally facing cysteine residues in close proximity to each [4Fe-4S] cluster that replaces the aliphatic hydrocarbon dithiol tether. The advantage of using a protein is the potential to create a coupled dihydrogen-generating system in vivo. The wild-type CpFdWT and variants CpFdS11C/D40C, CpFdP20C/P49C, CpFdD7S/D36S, CpFdS11C/D40C/D7S/D36S and CpFdP20C/P49C/D7S/D36S were expressed in Escherichia coli and found to contain ~ 8 Fe and ~ 8 S atoms. The absorption spectra of the wild-type and CpFd variants displayed a peak centered at ~ 390 nm characteristic of a S → Fe charge transfer band that diminishes upon reduction with Na-dithionite. Low-temperature X-band EPR studies of the Na-dithionite-reduced wild-type and CpFd variants showed a complex spectrum indicative of two magnetically coupled [4Fe-4S]1+ clusters. EPR-monitored redox titrations of CpFdWT, CpFdD7S/D36S, CpFdS11C/D40C, CpFdP20C/P49C, CpFdS11C/D40C/D7S/D36S and CpFdP20C/P49C/D7S/D36S revealed redox potentials of - 412 ± 8 mV, - 395 ± 4 mV, - 408 ± 7 mV, - 426 ± 11 mV, - 384 ± 4 mV and - 423 ± 4 mV, respectively. The in vitro PS I-CpFdS11C/D40C/D7S/D36S-Pt nanoparticle complex was the highest performer, generating dihydrogen at a rate of 3.25 μmol H2 mg Chl-1 h-1 or 278.8 mol H2 mol PS I-1 h-1 under continuous illumination.
Collapse
Affiliation(s)
- Karim A Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S328 Frear Building, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S328 Frear Building, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Kim JD, Pike DH, Tyryshkin AM, Swapna GVT, Raanan H, Montelione GT, Nanda V, Falkowski PG. Minimal Heterochiral de Novo Designed 4Fe-4S Binding Peptide Capable of Robust Electron Transfer. J Am Chem Soc 2018; 140:11210-11213. [PMID: 30141918 DOI: 10.1021/jacs.8b07553] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ambidoxin is a designed, minimal dodecapeptide consisting of alternating L and D amino acids that binds a 4Fe-4S cluster through ligand-metal interactions and an extensive network of second-shell hydrogen bonds. The peptide can withstand hundreds of oxidation-reduction cycles at room temperature. Ambidoxin suggests how simple, prebiotic peptides may have achieved robust redox catalysis on the early Earth.
Collapse
Affiliation(s)
- J Dongun Kim
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers , the State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Douglas H Pike
- Center for Advanced Biotechnology and Medicine , Rutgers, the State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers , the State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine , Rutgers, the State University of New Jersey , Piscataway , New Jersey 08854 , United States.,Department of Molecular Biology and Biochemistry, Rutgers , the State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Hagai Raanan
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers , the State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine , Rutgers, the State University of New Jersey , Piscataway , New Jersey 08854 , United States.,Department of Molecular Biology and Biochemistry, Rutgers , the State University of New Jersey , Piscataway , New Jersey 08854 , United States.,Department of Biochemistry and Molecular Biology , Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine , Rutgers, the State University of New Jersey , Piscataway , New Jersey 08854 , United States.,Department of Biochemistry and Molecular Biology , Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers , the State University of New Jersey , New Brunswick , New Jersey 08901 , United States.,Department of Earth and Planetary Sciences, Rutgers , the State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
9
|
Hoppe A, Pandelia ME, Gärtner W, Lubitz W. [Fe4S4]- and [Fe3S4]-cluster formation in synthetic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1414-22. [DOI: 10.1016/j.bbabio.2011.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 12/31/2022]
|
10
|
Niklas J, Gopta O, Epel B, Lubitz W, Antonkine ML. Investigation of the Stationary and Transient A(1) Radical in Trp --> Phe Mutants of Photosystem I. APPLIED MAGNETIC RESONANCE 2010; 38:187-203. [PMID: 20495604 PMCID: PMC2860100 DOI: 10.1007/s00723-009-0112-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/25/2009] [Indexed: 05/29/2023]
Abstract
Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A(1) site is pi-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these tryptophan residues are changed to phenylalanine. The time-resolved optical data show that backward electron transfer from the terminal electron acceptors to P(700) (.+) is affected in the A- and B-branch mutants, both at ambient and cryogenic temperatures. These results suggest that the quinones in both branches take part in electron transport at all temperatures. The electron-nuclear double resonance (ENDOR) spectra of the spin-correlated radical pair P(700) (.+)A(1) (.-) and the photoaccumulated radical anion A(1) (.-), recorded at cryogenic temperature, allowed the identification of characteristic resonances belonging to protons of the methyl group, some of the ring protons and the proton hydrogen-bonded to phylloquinone in the wild type and both mutants. Significant changes in PS I isolated from the A-branch mutant are detected, while PS I isolated from the B-branch mutant shows the spectral characteristics of wild-type PS I. A possible short-lived B-branch radical pair cannot be detected by EPR due to the available time resolution; therefore, only the A-branch quinone is observed under conditions typically employed for EPR and ENDOR spectroscopies.
Collapse
Affiliation(s)
- Jens Niklas
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Oxana Gopta
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorob’evi Gori, 119899 Moscow, Russia
| | - Boris Epel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Mikhail L. Antonkine
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Antonkine ML, Koay MS, Epel B, Breitenstein C, Gopta O, Gärtner W, Bill E, Lubitz W. Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe–4S] clusters in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:995-1008. [DOI: 10.1016/j.bbabio.2009.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/23/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
12
|
Koay M, Antonkine M, Gärtner W, Lubitz W. Modelling Low-Potential [Fe4S4] Clusters in Proteins. Chem Biodivers 2008; 5:1571-1587. [DOI: 10.1002/cbdv.200890145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Antonkine ML, Maes EM, Czernuszewicz RS, Breitenstein C, Bill E, Falzone CJ, Balasubramanian R, Lubner C, Bryant DA, Golbeck JH. Chemical rescue of a site-modified ligand to a [4Fe–4S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:712-24. [PMID: 17434441 DOI: 10.1016/j.bbabio.2007.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/21/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Chemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S](1+,2+) cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S](1+,2+) clusters termed F(A) and F(B). In the C13G/C33S variant of PsaC, glycine has replaced cysteine at position 13 creating a protein that is missing one of the ligating amino acids to iron-sulfur cluster F(B). Using a variety of analytical techniques, including non-heme iron and acid-labile sulfur assays, and EPR, resonance Raman, and Mössbauer spectroscopies, we showed that the C13G/C33S variant of PsaC binds two [4Fe-4S](1+,2+) clusters, despite the absence of one of the biological ligands. (19)F NMR spectroscopy indicated that the external thiolate replaces cysteine 13 as a substitute ligand to the F(B) cluster. The finding that site-modified [4Fe-4S](1+,2+) clusters can be chemically rescued with external thiolates opens new opportunities for modulating their properties in proteins. In particular, it provides a mechanism to attach an additional electron transfer cofactor to the protein via a bound, external ligand.
Collapse
Affiliation(s)
- Mikhail L Antonkine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arnesano F, Banci L, Bertini I, Capozzi F, Ciofi-Baffoni S, Ciurli S, Luchinat C, Mangani S, Rosato A, Turano P, Viezzoli MS. An Italian contribution to structural genomics: Understanding metalloproteins. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2006.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:283-310. [PMID: 15975545 DOI: 10.1016/j.bbabio.2005.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 04/12/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
16
|
Golbeck JH. The binding of cofactors to photosystem I analyzed by spectroscopic and mutagenic methods. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:237-56. [PMID: 12524325 DOI: 10.1146/annurev.biophys.32.110601.142356] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on cofactor-ligand and protein-protein interactions within the photosystem I reaction center. The topics include a description of the electron transfer cofactors, the mode of binding of the cofactors to protein-bound ligands, and a description of intraprotein contacts that ultimately allow photosystem I to be assembled (in cyanobacteria) from 96 chlorophylls, 22 carotenoids, 2 phylloquinones, 3 [4Fe-4S] clusters, and 12 polypeptides. During the 15 years that have elapsed from the first report of crystals to the atomic-resolution X-ray crystal structure, cofactor-ligand interactions and protein-protein interactions were systematically being explored by spectroscopic and genetic methods. This article charts the interplay between these disciplines and assesses how good the early insights were in light of the current structure of photosystem I.
Collapse
Affiliation(s)
- John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
17
|
Antonkine ML, Jordan P, Fromme P, Krauss N, Golbeck JH, Stehlik D. Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 2003; 327:671-97. [PMID: 12634061 DOI: 10.1016/s0022-2836(03)00145-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The X-ray structure of Photosystem I (PS I) from Synechococcus elongatus was recently solved at 2.5A resolution (PDB entry 1JB0). It provides a structural model for the stromal subunits PsaC, PsaD and PsaE, which comprise the "stromal ridge" of PS I. In a separate set of studies the three-dimensional solution structures of the unbound, recombinant PsaC (PDB entry 1K0T) and PsaE (PDB entries 1PSF, 1QP2 and 1GXI) subunits were solved by NMR. The PsaC subunit of PS I is a small (9.3 kDa) protein that harbors binding sites for two [4Fe-4S] clusters F(A) and F(B), which are the terminal electron acceptors in PS I. Comparison of the PsaC structure in solution with that in the X-ray structure of PS I reveals significant differences between them which are summarized and evaluated here. Changes in the magnetic properties of [4Fe-4S] centers F(A) and F(B) are related to changes in the protein structure of PsaC, and they are further influenced by the presence of PsaD. Based on experimental evidence, three assembly stages are analyzed: PsaC(free), PsaC(only), PsaC(PS I). Unbound, recombinant PsaD, studied by NMR, has only a few elements of secondary structure and no stable three-dimensional structure in solution. When PsaD is bound in PS I, it has a well-defined three-dimensional structure. For PsaE the three-dimensional structure is very similar in solution and in the PS I-bound form, with the exception of two loop regions. We suggest that the changes in the structures of PsaC and PsaD are caused by the sequential formation of multiple networks of contacts between the polypeptides of the stromal ridge and between those polypeptides and the PsaA/PsaB core polypeptides. The three-dimensional structure of the C(2)-symmetric F(X)-binding loops on PsaA and PsaB were also analyzed and found to be significantly different from the binding sites of other proteins that contain interpolypeptide [4Fe-4S] clusters. The aim of this work is to relate contact information to structural changes in the proteins and to propose a model for the assembly of the stromal ridge of PS I based on this analysis.
Collapse
Affiliation(s)
- Mikhail L Antonkine
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ferredoxin and flavodoxin are soluble proteins which are reduced by the terminal electron acceptors of photosystem I. The kinetics of ferredoxin (flavodoxin) photoreduction are discussed in detail, together with the last steps of intramolecular photosystem I electron transfer which precede ferredoxin (flavodoxin) reduction. The present knowledge concerning the photosystem I docking site for ferredoxin and flavodoxin is described in the second part of the review.
Collapse
Affiliation(s)
- P Sétif
- Section de Bioénergétique and CNRS URA 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, 91191, Gif sur Yvette, France.
| |
Collapse
|
19
|
Vassiliev IR, Antonkine ML, Golbeck JH. Iron-sulfur clusters in type I reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:139-60. [PMID: 11687212 DOI: 10.1016/s0005-2728(01)00197-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.
Collapse
Affiliation(s)
- I R Vassiliev
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 310 South Frear Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
20
|
Webba da Silva M, Sham S, Gorst CM, Calzolai L, Brereton PS, Adams MW, La Mar GN. Solution NMR characterization of the thermodynamics of the disulfide bond orientational isomerism and its effect of cluster electronic properties for the hyperthermostable three-iron cluster ferredoxin from the archaeon Pyrococcus furiosus. Biochemistry 2001; 40:12575-83. [PMID: 11601981 DOI: 10.1021/bi0106179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamics and dynamics of the Cys21-Cys48 disulfide "S" if "R" conformational isomerism in the three-iron, single cubane cluster ferredoxin (Fd) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) have been characterized by (1)H NMR spectroscopy in both water and water/methanol mixed solvents. The mean interconversion rate at 25 degrees C is 3 x 10(3) s(-1) and DeltaG(298) = -0.2 kcal/mol [DeltaH = 4.0 kcal/mol; DeltaS = 14 cal/(mol.K)], with the S orientation as the more stable form at low temperature (< 0 degrees C) but the R orientation predominating at >100 degrees C, where the organism thrives. The distinct pattern of ligated Cys beta-proton contact shifts for the resolved signals and their characteristic temperature behavior for the forms of the 3Fe Fd with alternate disulfide orientations have been analyzed to determine the influences of disulfide orientation and methanol cosolvent on the topology of the inter-iron spin coupling in the 3Fe cluster. The Cys21-Cys48 disulfide orientation influences primarily the spin couplings involving the iron ligated to Cys17, whose carbonyl oxygen is a hydrogen bond acceptor to the Cys21 peptide proton. Comparison of the Cys beta-proton contact shift pattern for the alternate disulfide orientations with the pattern exhibited upon cleaving the disulfide bridge confirms an earlier [Wang, P.-L., Calzolai, L., Bren, K. L., Teng, Q., Jenney, F. E., Jr., Brereton, P. S., Howard, J. B., Adams, M. W. W., and La Mar, G. N. (1999) Biochemistry 38, 8167-8178] proposal that the structure of the same Fd with the R disulfide orientation resembles that of the Fd upon cleaving the disulfide bond.
Collapse
Affiliation(s)
- M Webba da Silva
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Chitnis PR. PHOTOSYSTEM I: Function and Physiology. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:593-626. [PMID: 11337410 DOI: 10.1146/annurev.arplant.52.1.593] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem I is the light-driven plastocyanin-ferredoxin oxidoreductase in the thylakoid membranes of cyanobacteria and chloroplasts. In recent years, sophisticated spectroscopy, molecular genetics, and biochemistry have been used to understand the light conversion and electron transport functions of photosystem I. The light-harvesting complexes and internal antenna of photosystem I absorb photons and transfer the excitation energy to P700, the primary electron donor. The subsequent charge separation and electron transport leads to the reduction of ferredoxin. The photosystem I proteins are responsible for the precise arrangement of cofactors and determine redox properties of the electron transfer centers. With the availability of genomic information and the structure of photosystem I, one can now probe the functions of photosystem I proteins and cofactors. The strong reductant produced by photosystem I has a central role in chloroplast metabolism, and thus photosystem I has a critical role in the metabolic networks and physiological responses in plants.
Collapse
Affiliation(s)
- Parag R Chitnis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011; e-mail:
| |
Collapse
|