1
|
Loeffler CR, Spielmeyer A. Faster ciguatoxin extraction methods for toxicity screening. Sci Rep 2024; 14:21715. [PMID: 39289443 PMCID: PMC11408646 DOI: 10.1038/s41598-024-72708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Ciguatera poisoning (CP) is a severe global public health problem caused by the consumption of seafood products contaminated with ciguatoxins (CTXs). The growing demand for seafood products requires high-throughput testing for CTX-susceptible seafood, however complex extraction and slow cleanup methods inhibit this goal. Herein, several methods for extracting CTXs from fish tissue were established and compared; these methods are sensitive, specific, and valid while achieving higher sample extraction throughput than currently established protocols. The trial fish material was generated from multiple species, with different physical conditions (wet and freeze-dried tissue), and naturally contaminated with various CTXs (i.e., CTX-1B, CTX-3C, and C-CTX-1), thus ensuring these methods are robust and broadly applicable. The extraction methods used were based on mechanical maceration with acetone or methanol or enzymatic digestion followed by acetone and ethyl acetate extraction. Crude extracts were investigated for CTX-like toxicity using an in vitro mouse neuroblastoma (N2a) cell-based assay (CBA). Among the three methods, there was no significant difference in toxin estimates (p = 0.219, two-way ANOVA), indicating their interchangeability. For speed (> 16 samples/day), accuracy (100%), and CTX analog retention confirmation by liquid chromatography-tandem mass spectrometry (LC‒MS/MS), the preferred extraction methods were both methanol and enzyme-based. All extraction methods post hoc confirmation of CTX analogs successfully met international seafood market-based CTX contaminant guidance. These methods can drastically increase global CTX screening capabilities and subsequently relieve sample processing bottlenecks, inhibiting environmental and human health-based CTX analysis.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Astrid Spielmeyer
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Tang JQ, Shen QH, Han YY, Wu Y, He XF, Li DW, Huang Y. Analysis of research status and trends on marine benthic dinoflagellate toxins: A bibliometric study based on web of science database and VOSviewer. ENVIRONMENTAL RESEARCH 2023; 238:117179. [PMID: 37748671 DOI: 10.1016/j.envres.2023.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Marine benthic dinoflagellate toxins, potent bioactive compounds with wide-ranging presence in marine ecosystems, have surged in response to global climate change and human activities, prompting an urgent and imperative inquiry. This study conducts an in-depth review of contemporary research concerning these toxins, employing meticulous bibliometric analysis. Leveraging a dataset of 736 relevant literatures sourced from the Web of Science (spanning from 2000 to May 2023), our analysis delves comprehensively into the scientific discourse surrounding these toxic compounds. Employing tools such as VOSviewer, co-citation analysis, co-occurrence analysis, and cluster analysis, our study yields nuanced insights into the intricate characteristics and trajectories of the field. The co-citation analysis underscores the pivotal role played by benthic and epiphytic dinoflagellates like Ostreopsis and Gambierdiscus in shaping prevailing research trends. Our study identifies four distinct research directions, encompassing the domains of ecology, toxicology, toxin production, and taxonomy. Moreover, it traces the evolutionary journey of research stages, marking the transition from a focus on taxonomy to an emphasis on unraveling molecular mechanisms. The culmination of our comprehensive analysis yields three pertinent research recommendations: a call for widescale global studies, the advancement of rapid toxin monitoring techniques, and a deeper exploration of the factors influencing toxin synthesis and toxicity. These findings provide invaluable insights to researchers grappling with the complex realm of harmful algal blooms and substantially enrich the understanding of this pivotal and pressing field.
Collapse
Affiliation(s)
- Jing-Qian Tang
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou, 510632, China
| | - Qian-Hui Shen
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou, 510632, China
| | - Yao-Yao Han
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou, 510632, China
| | - Yang Wu
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou, 510632, China
| | - Xiang-Feng He
- Library of Zhuhai Campus, Jinan University, Zhuhai, 519070, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Yong Huang
- Library of Zhuhai Campus, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
3
|
Li Q, Mahmudiono T, Mohammadi H, Nematollahi A, Hoseinvandtabar S, Mehri F, Hasanzadeh V, Limam I, Fakhri Y, Thai VN. Concentration ciguatoxins in fillet of fish: A global systematic review and meta-analysis. Heliyon 2023; 9:e18500. [PMID: 37554806 PMCID: PMC10404960 DOI: 10.1016/j.heliyon.2023.e18500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In the current study, an attempt was made to meta-analyze and discuss the concentration of ciguatoxins (CTXs) in fillets of fish based on country and water resources subgroups. The search was conducted in Scopus and PubMed, Embase and Web of Science to retrieve papers about the concentration of CTXs in fillet fish until July 2022. Meta-analysis concentration of CTXs was conducted based on countries and water resources subgroups in the random effects model (REM). The sort of countries based on the pooled concentration of CTXs was Kiribati (3.904 μg/kg) > Vietnam (1.880 μg/kg) > Macaronesia (1.400 μg/kg) > French (1.261 μg/kg) > China (0.674 μg/kg) > Japan (0.572 μg/kg) > USA (0.463 μg/kg) > Spain (0.224 μg/kg) > UK (0.170 μg/kg) > Fiji (0.162 μg/kg) > Mexico (0.150 μg/kg) > Australia (0.138 μg/kg) > Portugal (0.011 μg/kg). CTXs concentrations in all countries are higher than the safe limits of CTX1C (0.1 μg/kg). However, based on the safe limits of CTX1P, the concentrations of CTXs in just Portugal meet the regulation level (0.01 μg/kg). The minimum and maximum concentrations of CTXs were as observed in Selvagens Islands (0.011 μg/kg) and St Barthelemy (7.875 μg/kg) respectively. CTXs concentrations in all water resources are higher than safe limits of CTX1C (0.1 μg/kg) and CTX1B (0.01 μg/kg). Therefore, it is recommended to carry out continuous control pans of CTXs concentration in fish in different countries and water sources.
Collapse
Affiliation(s)
- Qingxiao Li
- College of Grain Engineering, Henan Industry and Trade Vocational College, Zhengzhou,451191, Henan Province, China
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vajihe Hasanzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Katikou P. Digital Technologies and Open Data Sources in Marine Biotoxins' Risk Analysis: The Case of Ciguatera Fish Poisoning. Toxins (Basel) 2021; 13:692. [PMID: 34678985 PMCID: PMC8539326 DOI: 10.3390/toxins13100692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, digital technologies influence information dissemination in all business sectors, with great emphasis put on exploitation strategies. Public administrations often use information systems and establish open data repositories, primarily supporting their operation but also serving as data providers, facilitating decision-making. As such, risk analysis in the public health sector, including food safety authorities, often relies on digital technologies and open data sources. Global food safety challenges include marine biotoxins (MBs), being contaminants whose mitigation largely depends on risk analysis. Ciguatera Fish Poisoning (CFP), in particular, is a MB-related seafood intoxication attributed to the consumption of fish species that are prone to accumulate ciguatoxins. Historically, CFP occurred endemically in tropical/subtropical areas, but has gradually emerged in temperate regions, including European waters, necessitating official policy adoption to manage the potential risks. Researchers and policy-makers highlight scientific data inadequacy, under-reporting of outbreaks and information source fragmentation as major obstacles in developing CFP mitigation strategies. Although digital technologies and open data sources provide exploitable scientific information for MB risk analysis, their utilization in counteracting CFP-related hazards has not been addressed to date. This work thus attempts to answer the question, "What is the current extent of digital technologies' and open data sources' utilization within risk analysis tasks in the MBs field, particularly on CFP?", by conducting a systematic literature review of the available scientific and grey literature. Results indicate that the use of digital technologies and open data sources in CFP is not negligible. However, certain gaps are identified regarding discrepancies in terminology, source fragmentation and a redundancy and downplay of social media utilization, in turn constituting a future research agenda for this under-researched topic.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate General of Rural Development, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
| |
Collapse
|
5
|
Extraction and LC-MS/MS Analysis of Ciguatoxins: A Semi-Targeted Approach Designed for Fish of Unknown Origin. Toxins (Basel) 2021; 13:toxins13090630. [PMID: 34564634 PMCID: PMC8473320 DOI: 10.3390/toxins13090630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Ciguatoxins (CTXs) are polyether marine biotoxins that can cause ciguatera poisoning (CP) after the consumption of fish or invertebrates containing sub ppb levels; concentrations that present a challenge for current extraction and analysis methods. Here, a newly developed and (partly) validated single-day extraction protocol is presented. First, the fish sample is broken-down by enzymatic digestion, followed by extraction and extract clean-up by defatting and two solid-phase extractions. Final extracts were investigated using two different CTX-analysis methods; an in vitro cytotoxicity assay (N2a-assay) and by LC-MS/MS. Validation was performed for both fillet and freeze-dried samples of snapper, parrotfish, and grouper spiked with CTX1B, 52-epi-54-deoxyCTX1B, 54-deoxyCTX1B, and CTX3C. Based on recovery rates (35–88%) and matrix effects (66–116%) determined by LC-MS/MS, the enzyme protocol is applicable to various matrices. The protocol was applied to naturally contaminated fish tissue (Lutjanus bohar) obtained during a CP incident in Germany. Several potential CTX congeners were identified by a two-tier LC-MS/MS approach (screening of sodium adducts, high-resolution or low-resolution confirmation via ammonium adducts). Inclusion of >30 known CTX congeners into the LC-MS/MS methods and single-day sample preparation make the method suitable for analysis of ciguatera suspect samples at sub ppb levels also with undisclosed CTX profiles.
Collapse
|
6
|
Habibi N, Uddin S, Bottein MYD, Faizuddin M. Ciguatera in the Indian Ocean with Special Insights on the Arabian Sea and Adjacent Gulf and Seas: A Review. Toxins (Basel) 2021; 13:525. [PMID: 34437396 PMCID: PMC8402595 DOI: 10.3390/toxins13080525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The dinoflagellates of the genus Gambierdiscus are found in almost all oceans and seas between the coordinates 35° N and 35° S. Gambierdiscus and Fukuyoa are producers of ciguatoxins (CTXs), which are known to cause foodborne disease associated with contaminated seafood. The occurrence and effects of CTXs are well described in the Pacific and the Caribbean. However, historically, their properties and presence have been poorly documented in the Indian Ocean (including the Bay of Bengal, Andaman Sea, and the Gulf). A higher occurrence of these microorganisms will proportionately increase the likelihood of CTXs entering the food chain, posing a severe threat to human seafood consumers. Therefore, comprehensive research strategies are critically important for developing effective monitoring and risk assessments of this emerging threat in the Indian Ocean. This review presents the available literature on ciguatera occurrence in the region and its adjacent marginal waters: aiming to identify the data gaps and vectors.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | | | - Mohd Faizuddin
- Gulf Geoinformation Solutions, Sharjah, United Arab Emirates;
| |
Collapse
|
7
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
8
|
Consumers of mislabeled tropical fish exhibit increased risks of ciguatera intoxication: A report on substitution patterns in fish imported at Frankfurt Airport, Germany. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Oshiro N, Tomikawa T, Kuniyoshi K, Kimura K, Kojima T, Yasumoto T, Asakura H. Detection of Ciguatoxins from Fish Introduced into a Wholesale Market in Japan. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 62:8-13. [DOI: 10.3358/shokueishi.62.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Takumi Tomikawa
- National Institute of Health Sciences
- Graduate School of Science and Technology, Teikyo University of Science
| | | | | | - Takashi Kojima
- Fuculty of Life & Environmental Sciences, Teikyo University of Science
| | | | | |
Collapse
|
10
|
Bresnan E, Arévalo F, Belin C, Branco MAC, Cembella AD, Clarke D, Correa J, Davidson K, Dhanji-Rapkova M, Lozano RF, Fernández-Tejedor M, Guðfinnsson H, Carbonell DJ, Laza-Martinez A, Lemoine M, Lewis AM, Menéndez LM, Maskrey BH, McKinney A, Pazos Y, Revilla M, Siano R, Silva A, Swan S, Turner AD, Schweibold L, Provoost P, Enevoldsen H. Diversity and regional distribution of harmful algal events along the Atlantic margin of Europe. HARMFUL ALGAE 2021; 102:101976. [PMID: 33875184 DOI: 10.1016/j.hal.2021.101976] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The IOC-ICES-PICES Harmful Algal Event Database (HAEDAT) was used to describe the diversity and spatiotemporal distribution of harmful algal events along the Atlantic margin of Europe from 1987 - 2018. The majority of events recorded are caused by Diarrhetic Shellfish Toxins (DSTs). These events are recorded annually over a wide geographic area from southern Spain to northern Scotland and Iceland, and are responsible for annual closures of many shellfish harvesting areas. The dominant causative dinoflagellates, members of the morphospecies 'Dinophysis acuminata complex' and D. acuta, are common in the waters of the majority of countries affected. There are regional differences in the causative species associated with PST events; the coasts of Spain and Portugal with the dinoflagellates Alexandrium minutum and Gymnodinium catenatum, north west France/south west England/south Ireland with A. minutum, and Scotland/Faroe Islands/Iceland with A. catenella. This can influence the duration and spatial scale of PST events as well as the toxicity of shellfish. The diatom Pseudo-nitzschia australis is the most widespread Domoic Acid (DA) producer, with records coming from Spain, Portugal, France, Ireland and the UK. Amnesic Shellfish Toxins (ASTs) have caused prolonged closures for the scallop fishing industry due to the slow depuration rate of DA. Amendments to EU shellfish hygiene regulations introduced between 2002 and 2005 facilitated end-product testing and sale of adductor muscle. This reduced the impact of ASTs on the scallop fishing industry and thus the number of recorded HAEDAT events. Azaspiracids (AZAs) are the most recent toxin group responsible for events to be characterised in the ICES area. Events associated with AZAs have a discrete distribution with the majority recorded along the west coast of Ireland. Ciguatera Poisoning (CP) has been an emerging issue in the Canary Islands and Madeira since 2004. The majority of aquaculture and wild fish mortality events are associated with blooms of the dinoflagellate Karenia mikimotoi and raphidophyte Heterosigma akashiwo. Such fish killing events occur infrequently yet can cause significant mortalities. Interannual variability was observed in the annual number of HAEDAT areas with events associated with individual shellfish toxin groups. HABs represent a continued risk for the aquaculture industry along the Atlantic margin of Europe and should be accounted for when considering expansion of the industry or operational shifts to offshore areas.
Collapse
Affiliation(s)
- Eileen Bresnan
- Marine Scotland Marine Laboratory, Aberdeen, AB11 9DB, U.K..
| | - Fabiola Arévalo
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Catherine Belin
- Institut français de recherche pour l'exploitation de la mer (IFREMER) VIGIES F-44311, Nantes, France
| | - Maria A C Branco
- Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisboa, Portugal
| | | | - Dave Clarke
- Marine Institute, Rinville, Oranmore, Galway, H91 R673, Ireland
| | - Jorge Correa
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Keith Davidson
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, U.K
| | | | | | | | | | | | - Aitor Laza-Martinez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
| | - Maud Lemoine
- Institut français de recherche pour l'exploitation de la mer (IFREMER) VIGIES F-44311, Nantes, France
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | - Luz Mamán Menéndez
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Huelva, Spain
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | - April McKinney
- Agri-Food and Biosciences Institute, Belfast, BT9 5PX, U.K
| | - Yolanda Pazos
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Marta Revilla
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), E-20110 Pasaia, Spain
| | - Raffaele Siano
- Institut français de recherche pour l'exploitation de la mer (IFREMER), DYNECO F-29280 Plouzané, France
| | - Alexandra Silva
- Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisboa, Portugal
| | - Sarah Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, U.K
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | | | | | - Henrik Enevoldsen
- IOC Science and Communication Centre on Harmful Algae, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
11
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
12
|
Difficulties in DNA barcoding-based authentication of snapper products due to ambiguous nucleotide sequences in public databases. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Epidemiology and Toxicology of Ciguatera Poisoning in the Colombian Caribbean. Mar Drugs 2020; 18:md18100504. [PMID: 33019517 PMCID: PMC7601626 DOI: 10.3390/md18100504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/02/2023] Open
Abstract
Ciguatera is a food intoxication caused by the consumption of primarily coral fish; these species exist in large numbers in the seas that surround the Colombian territory. The underreported diagnosis of this clinical entity has been widely highlighted due to multiple factors, such as, among others, ignorance by the primary care practitioner consulted for this condition as well as clinical similarity to secondary gastroenteric symptoms and common food poisonings of bacterial, parasitic or viral etiology. Eventually, it was found that people affected by ciguatoxins had trips to coastal areas hours before the onset of symptoms. Thanks to multiple studies over the years, it has been possible to identify the relation between toxigenic dinoflagellates and seagrasses, as well as its incorporation into the food chain, starting by fish primarily inhabiting reef ecosystems and culminating in the intake of these by humans. Identifying the epidemiological link, its cardinal symptoms and affected systems, such as gastrointestinal, the peripheral nervous system and, fortunately with a low frequency, the cardiovascular system, leads to a purely clinical diagnostic impression without necessitating further complementary studies; in addition, what would also help fight ciguatera poisoning is performing an adequate treatment of the symptoms right from the start, without underestimating or overlooking any associated complications.
Collapse
|
14
|
Desel H. Vergiftungsdokumentation und ‑berichterstattung in Deutschland. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:1287-1294. [DOI: 10.1007/s00103-019-03021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|