1
|
Li Y, Hou P, Li R, Li P, Ma Z, Wu H, Jiang Z. A functional study of the trehalase genes in Tribolium castaneum and their application in the construction of RNAi engineering bacteria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106315. [PMID: 40015907 DOI: 10.1016/j.pestbp.2025.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Tribolium castaneum, belonging to the order Coleoptera, family Tenebrionidae, is a global grain storage pest. The enzyme trehalase can catalyze trehalose decomposition and participate in chitin synthesis, which is of great significance in insect physiology and may be a key target for T. castaneum pest prevention and control. This study focused on T. castaneum and explored the function of its trehalase (TcTre) in test insects' growth and development process. We analyzed the roles of TcTre in different growth stages and tissues of T. castaneum by measuring its spatio and temporal expression patterns. The silencing of TcTre by RNAi technology reduced the transcription level of the target gene, affected the enzyme activity of trehalase, disturbed the sugar balance, blocked the pathway of chitin synthesis, and caused abnormal molting and wing development of the tested insects. Key genes about pest control such as TcTre1-1, TcTre1-3, and TcTre2 were screened, which caused the accumulated mortality of 53.33 %, 56.67 %, and 50.00 % respectively. Subsequently, an engineered bacterium, Tre-L4440-HT115 (DE3), was developed to efficiently express dsRNA and mediate insecticidal activity. The dsRNA produced by the bacterial solution, targeting TcTre1-1, TcTre1-3, and TcTre2 fragments for silencing, could cause the death of 44.44 %, 48.89 %, and 46.67 % of the test insects cumulatively. This advancement was aimed at reducing the production costs of dsRNA and laying a scientific foundation for the industrial development of nucleic acid pesticides for T. castaneum.
Collapse
Affiliation(s)
- Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Puxing Hou
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Ruyu Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Pei Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| | - Zhili Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
2
|
Bi J, Ma X, Jiang Y, Liu P, Gao R, Zhao T, Yuan X, Hao H, Li B, Wang Y. RNA interference-mediated silencing of GNBP2 reduces the immunity of stored pest Tribolium castaneum against bacteria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106230. [PMID: 40015839 DOI: 10.1016/j.pestbp.2024.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 03/01/2025]
Abstract
Gram-negative bacteria binding proteins (GNBPs) are involved in regulating the immune response of insects. The information on functions and mechanisms of insect GNBPs in innate immunity will contribute to biological control of pests. Tribolium castaneum is a serious, world-wide pest damaging stored food and feed products. However, the study on roles of GNBPs in T. castaneum innate immunity is relatively scarce. In this research, we identified TcGNBP2, a GNBP2 found in the cDNA library of T. castaneum. Spatiotemporal examination indicated that TcGNBP2 exhibited significant transcription in early pupae stages, and mainly distributed in two immune-related tissues, hemolymph and fatbody. After Escherichia coli or Staphylococcus aureus challenge, TcGNBP2 transcription levels increased significantly from 6 to 72 h. The binding ability of TcGNBP2 to lipopolysaccharide, peptidoglycan, and β-1,3-glucan was predicted by molecular docking analysis and confirmed by ELISA. The subsequent investigation revealed that TcGNBP2 exhibited binding affinity towards five distinct bacterial strains and demonstrated agglutination activity against four of them. Silencing of TcGNBP2 with RNA interference (RNAi) results in the inhibition of antimicrobial peptide gene expression and the prophenoloxidase cascade in beetles upon bacterial challenge, thereby attenuating the immune response of T. castaneum. The survival tests revealed that the knockdown of TcGNBP2 significantly compromised T. castaneum's resistance to bacterial infection. Our findings provide valuable insights into the regulatory mechanism of TcGNBP2 in the innate immunity of T. castaneum and offer a promising molecular target for RNAi-based management of insect pest.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiangjun Ma
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tong Zhao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xuexia Yuan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haining Hao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Pava-Ripoll M, Miller AK, Loechelt-Yoshioka HK, Ziobro GC, Ferguson M. Detection Limits of Insect Fragments in Spiked Whole Wheat Flour Using Multiplex Polymerase Chain Reaction (PCR). J Food Prot 2024; 87:100348. [PMID: 39154915 DOI: 10.1016/j.jfp.2024.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
The need for a sensitive molecular method to detect specific species of insect contaminants in food products remains a significant challenge in the food industry. This study evaluated the detection limit of a multiplex end-point PCR assay for detecting insects in food. The assay amplifies two fragments of the cytochrome oxidase subunit I gene (COI-Fa and COI-Fb) and one fragment of the protein-coding wingless (wg) gene found in insects. Five insect species, comprising three vectors of foodborne pathogens (the housefly, Musca domestica, the American cockroach, Periplaneta americana, and the pharaoh ant, Monomorium pharaonis) and two storage insect pests (the red flour beetle, Tribolium castaneum and the Indian meal moth, Plodia interpunctella), were spiked separately and in combination at levels of 1, 0.1, 0.01, and 0.001% in whole wheat flour. At spike levels greater than 0.01%, amplicon bands of expected sizes were seen in 100% of samples containing fragments from distinct insect species. At least 25% of spiked samples at the lowest spike level had amplicon bands, except for samples spiked with M. domestica. Results showed an 18.9% probability (with 11.3% and 30% lower and upper confidence limits, respectively) of detecting insect fragments at the lowest spike level (0.001%, corresponding to 3-22 fragments), which is far below the FDA's regulatory level of less than 75 fragments per 50 g of wheat flour. The intensity of amplicon bands in the gel images was higher at higher spike levels. However, this method is not quantitative enough to extrapolate the intensity of the amplicon bands to the number of insect fragments present in a sample. This multiplex assay was also evaluated in a variety of market food samples derived from plants and animals, showing its potential use in various food types. Overall, the sensitivity and specificity of this molecular approach suggest that it could be used in the future as a screening tool for detecting insect contaminants in food.
Collapse
Affiliation(s)
- Monica Pava-Ripoll
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, 5001 Campus Dr. College Park, MD. 20740, USA.
| | - Amy K Miller
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, 5001 Campus Dr. College Park, MD. 20740, USA
| | - Hans K Loechelt-Yoshioka
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Seattle Human and Animal Food Laboratory, 22201 23rd Dr. SE, Bothell, WA 98021, USA
| | - George C Ziobro
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, 5001 Campus Dr. College Park, MD. 20740, USA
| | - Martine Ferguson
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Analytics and Outreach, 5001 Campus Dr. College Park, MD. 20740, USA
| |
Collapse
|
4
|
Khalil M, Khizar M, Alshaya DS, Hameed A, Muhammad N, Binyameen M, Azeem M, Hussain M, Abbas Q, Attia KA, Shah TA. Insecticidal and Repellent Activity of Essential Oils from Seven Different Plant Species against Tribolium castaneum (Coleoptera: Tenebrionidae). INSECTS 2024; 15:755. [PMID: 39452331 PMCID: PMC11508915 DOI: 10.3390/insects15100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is the most destructive pest of stored grain commodities. To control the attack of this insect pest, it is important to develop non-hazardous alternatives to replace fumigants. This study examined the fumigant toxicity and repellent activity of seven essential oils (Chinopodium ambrosiodes, Pinus roxburghii, Zanthoxylum armatum, Lepidium sativum, Azadirachta indica, Baccharis teindalensis, and Origanum majorana) against adult T. castaneum under controlled laboratory conditions. The fumigant toxicity and repellent activities of essential oils were tested using five different doses (62.5, 125, 250, 500, and 1000 µg) in vapour-phase fumigation and four-arm olfactometer bioassays, respectively. In vapor-phase fumigation bioassays, mortality data were recorded after 24, 48, and 72 h. The results showed that C. ambrosiodes and P. roxburghii essential oils are potential fumigants against adult T. castaneum. In repellency bioassays, a one-week-old adult population of T. castaneum was used to test the repellency potential of the essential oils. The results indicated that C. ambrosiodes and P. roxburghii had significant repellency potential against T. castaneum. Overall, we conclude that these essential oils have strong repellent and fumigant properties and can be used as potential repellent compounds to deter the insects.
Collapse
Affiliation(s)
- Misha Khalil
- Department of Entomology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60000, Pakistan; (M.K.); (M.K.); (M.B.)
| | - Mishal Khizar
- Department of Entomology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60000, Pakistan; (M.K.); (M.K.); (M.B.)
- Entomological Research Sub-Station, Multan 60000, Pakistan; (M.H.); (Q.A.)
| | - Dalal Suleiman Alshaya
- Department of Biology, College of Science, Princes Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asifa Hameed
- Department of Entomology, Mango Research Institute, Multan 60000, Pakistan
| | - Noor Muhammad
- Central Cotton Research Institute, Multan 60000, Pakistan;
| | - Muhammad Binyameen
- Department of Entomology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60000, Pakistan; (M.K.); (M.K.); (M.B.)
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abottabad Campus, Abottabad 22060, Pakistan;
| | - Mussurat Hussain
- Entomological Research Sub-Station, Multan 60000, Pakistan; (M.H.); (Q.A.)
| | - Qaisar Abbas
- Entomological Research Sub-Station, Multan 60000, Pakistan; (M.H.); (Q.A.)
| | - Kotb A. Attia
- Centre of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh 1145, Saudi Arabia;
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
5
|
El Arroud FZ, El Fakhouri K, Zaarour Y, Griguer H, El Alami R, El Bouhssini M. Dielectric heating for controlling field and storage insect pests in host plants and food products with varying moisture content. Heliyon 2024; 10:e32765. [PMID: 38988521 PMCID: PMC11233960 DOI: 10.1016/j.heliyon.2024.e32765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
At the intersection of insect control and sustainability goals, dielectric heating emerges as a promising solution. In agriculture, where insect pests can reduce agricultural yields and the nutritional quality of crops under field and storage conditions. Chemical pesticides are often used to manage pests but owing to their deleterious consequences on humans and the environment, chemical-free treatments have become the preferred option. Among the existing options, applying radio frequency (RF) and microwave energy for the purpose of dielectric heating has proven to be a successful alternative to chemical pesticides for controlling some major insect pests. This review offers an overview of dielectric heating for pest control in both storage settings and field environments, which addresses pests that impact materials with varying moisture contents (MC). The review highlights the limitation of this technology in controlling insect pests within bulk materials, leading to non-uniform heating. Additionally, it discusses the application of this technology in managing pests affecting materials with high MC, which can result in the degradation of the host material's quality. The review suggests the combination of different techniques proven effective in enhancing heating uniformity, as well as leveraging the non-thermal effects of this technology to maintain the quality of the host material. This is the first review providing an overview of the challenges associated with employing this technology against high moisture content (MC) materials, making it more advantageous for controlling storage pests. Overall, the review indicates that research should particularly emphasize the utilization of this sustainable technology against insect pests that inflict damage on high (MC) substances.
Collapse
Affiliation(s)
- Fatima Zahrae El Arroud
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Karim El Fakhouri
- Agro BioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Youness Zaarour
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Hafid Griguer
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Rafiq El Alami
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Mustapha El Bouhssini
- Agro BioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| |
Collapse
|
6
|
Cheng Y, Liu Z, Xu B, Song P, Chao Z. Comprehensive metabolomic variations of hawthorn before and after insect infestation based on the combination analysis of 1H NMR and UPLC-MS. Curr Res Food Sci 2023; 7:100616. [PMID: 37881336 PMCID: PMC10594559 DOI: 10.1016/j.crfs.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Hawthorn, the sliced and dried ripe fruits of Crataegus pinnatifida Bge. Var. Major N. E. Br. (Rosaceae), is an edible and medicinal substance with a variety of health-promoting benefits. Hawthorn needs to be stored in warehouses after harvesting to meet people's perennial demand. However, it is easily infested by insects of Plodia interpunctella and Tribolium castaneum during storage, which inevitably leads to poor quality and causes adverse effects on people's health. So far, there has been no report on insect-infested hawthorn. In this study, we analyzed the changes of metabolites in hawthorn before and after insect infestation and screened out potential biomarkers to effectively and quickly detect the occurrence of insect infestation. A combination analysis of 1H nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify the primary and secondary metabolites. By the comparison of hawthorn and insect-infested hawthorn samples, it was found that the differences were mainly manifested in the content of metabolites. The metabolites of 32 and 1463 were identified by 1H NMR and UPLC-MS analysis, respectively. According to the parameters of VIP >1 and P < 0.05, 10 differential metabolites were screened from 1H NMR analysis. Based on the parameters of VIP >1.0, P < 0.05, and (FC) > 1 or < 1, 47 differential metabolites were screened from UPLC-MS analysis. Therefore, a total of 57 differential metabolites were considered as differential biomarkers. The heat map analysis showed that the content of some differential biomarkers with significant pharmacological activities decreased after insect infestation. Through receiver operating characteristic (ROC) curve assessment, 52 differential biomarkers (6 of 1H NMR analysis and 46 of UPLC-MS analysis) were screened to distinguish whether insect infestation occurred in hawthorn. This is the first report on the changes of metabolites between hawthorn and insect-infested hawthorn and on the screening of differential biomarkers for monitoring insects. These results contributed to evaluate quality of hawthorn and ensure food safety for consumers. It also laid a foundation for further research on the infestation mechanism and safe storage monitoring in hawthorn.
Collapse
Affiliation(s)
- Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pingping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
7
|
Wu Q, Tian Q, Zhang D, Zhang Y. Effect of Sitophilus zeamais (Coleoptera: Curculionidae) Infestation on the Protein Physicochemical and Structural Properties of Wheat Grain. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2092-2104. [PMID: 36287645 DOI: 10.1093/jee/toac168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Boring pests such as Sitophilus zeamais (S. zeamais) are major threats in grain storage. However, how these pests affect the proteins of stored grains remains largely unknown. Here we aimed to investigate the effect of S. zeamais infestation on wheat protein during postharvest storage. In this study, wheat grain infested by S. zeamais was sampled at egg (4 d), larval (20 d), pupal (35 d), and adult stages (45 d), respectively. The protein's physicochemical and structural properties and the edible quality of whole wheat noodle were analyzed. The results showed that S. zeamais infestation significantly decreased the quality of wheat protein by altering its constitution and structure properties. Especially, compared with the control, the content of wet and dry gluten, gluten index, sodium dodecyl sulfate sedimentation volume, sulfhydryl groups, and disulfide bonds in insect-infested wheat decreased by 19.40, 5.42, 18.40, 8.12, 29.13, and 14.30%, respectively, during the storage period of one life cycle of S. zeamais. Additionally, the proportions of wheat protein fractions (albumin [1.16-fold], globulin [0.96-fold], gliadin [1.16-fold], and glutenin [0.95-fold]) and secondary structures (α-helix [0.91-fold], β-fold [0.96-fold], β-turn [1.06-fold], and random coil [1.05-fold]) of protein changed significantly, and the gluten network structure was broken in S. zeamais-infested wheat. Furthermore, the color of whole wheat noodle became darker, cooking loss rate increased, and textural properties (hardness, adhesiveness, springiness, cohesiveness, chewiness, and resilience) decreased as well. The results in the present study provided new insights for analyzing the quality deterioration mechanism and further quality improvement of boring pests-infested wheat grain.
Collapse
Affiliation(s)
- Qiong Wu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Qisheng Tian
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Yurong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| |
Collapse
|
8
|
Cytotoxicity and Genotoxicity Evaluation of Some Stored Grain Insects and Their Infested Flour Using the BHK-21 Cell Line in an In Vitro Experimental Model. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6415310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Globally, stored grain is vulnerable to pest infestation, resulting in significant economic losses for some crops. Wheat is one of the most important crops in the world. Many sucking, piercing insects infect wheat in the form of grains or flour and may produce toxic residues that are harmful to human health. The current study aimed to estimate the safe use of four stored grain insects by evaluating the potential genotoxic effects and cytotoxicity of crushed insects (T. granarium, S. oryzae, R. dominica, and T. castaneum) and their flour residues. MTT and comet assays were conducted to assess the effects of six concentrations of insect flour residues (0, 6.5, 12.5, 25, 50, and 100%) on the baby hamster kidney cell line (BHK-21). The lowest BHK-21 cell viability was noted against T. granarium (LC50% 36.42 μg/ml) followed by T. castaneum flour (LC50% 46.73 μg/ml) compared to the control (LC50% 808.2 μg/ml). Significantly high DNA comet (%) was observed in the treatments of T. castaneum flour (18.8%), S. oryzae wheat (15.6%), T. granarium (15.4%), T. castaneum (13.6%), and T. granarium wheat (13.1%). FTIR spectra of stored grain insects and their flour residues identified various functional metabolite groups, including alkynes and phenols, which could enhance cell apoptosis and genotoxicity. T. granarium, T. castaneum, and their flour residues had the highest cytotoxic and genotoxic effects on the BHK-21 cell line. The current study concludes that insect residues in flour may have cytotoxic and genotoxic effects on living cells, potentially affecting public health, particularly after consuming T. granarium and T. castaneum-infested flour. Therefore, good storage of stored grains and their products is recommended.
Collapse
|