1
|
Ye W, Tang Q, Zhou T, Zhou C, Fan C, Wang X, Wang C, Zhang K, Liao G, Zhou W. Design, synthesis and biological evaluation of the positional isomers of the galactose conjugates able to target hepatocellular carcinoma cells via ASGPR-mediated cellular uptake and cytotoxicity. Eur J Med Chem 2024; 264:115988. [PMID: 38039790 DOI: 10.1016/j.ejmech.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.
Collapse
Affiliation(s)
- Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Tiantian Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Cui Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Guochao Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Zhao F, Qian Y, Li H, Yang Y, Wang J, Yu W, Li M, Cheng W, Shan L. Amentoflavone-loaded nanoparticles enhanced chemotherapy efficacy by inhibition of AKR1B10. NANOTECHNOLOGY 2022; 33:385101. [PMID: 35697009 DOI: 10.1088/1361-6528/ac7810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic nanoparticles can be combined with different anticancer drugs to achieve a synergistic therapy and avoid the limitations of traditional medicine and thus have clinical prospects for cancer. Herein, an effective nanoplatform was developed for self-assembling AMF@DOX-Fe3+-PEG nanoparticles (ADPF NPs) via the coordination of ferric ions (Fe3+), amentoflavone (AMF), doxorubicin (DOX), and PEG-polyphenol. The ADPF NPs possessed high drug loading efficiency, good stability and dispersion in water, prolonged blood circulation, and pH-dependent release, which leading to targeted drug transport and enhanced drug accumulation in the tumor. The AMF from the ADPF NPs could inhibit the expression of the Aldo-keto reductase family 1B10 (AKR1B10) and nuclear factor-kappa B p65 (NF-κB p65), which reduced the cardiotoxicity induced by DOX and enhanced the chemotherapy efficacy. This study established a new strategy of combining drug therapy with a nanoplatform. This new strategy has a wide application prospect in clinical tumor therapy.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Yumei Qian
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Hongxia Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Yang Yang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Weixiong Yu
- Anhui Xinximeng Biological Technology Co., Ltd, Suzhou 234000, People's Republic of China
| | - Min Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Wei Cheng
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| |
Collapse
|
3
|
Alam Khan S, Jawaid Akhtar M. Structural modification and strategies for the enhanced doxorubicin drug delivery. Bioorg Chem 2022; 120:105599. [DOI: 10.1016/j.bioorg.2022.105599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
|
4
|
Qian Y, Zhao F, Wang J, Li H, Xu L, Wang W, Yu W, Shan L. Myricetin-Based Self-Assembled Nanoparticles for Tumor Synergistic Therapy by Antioxidation Pathway. J Biomed Nanotechnol 2021; 17:2399-2412. [PMID: 34974863 DOI: 10.1166/jbn.2021.3197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanoplatforms are nano-scale systems that can transport different small molecular anticancer drugs or chemosensitization motif to accumulate in tumor cells without obvious side-effect in normal cells and achieve a synergistic therapy. In this paper the new self-assembled nanoparticles (NPs) merging doxorubicin (DOX) and myricetin (MYR) with ferric ions (Fe3+) and polyphenol was employed for forming the DOX@MYR-Fe3+ NP (FDMP NP). The FDMP NPs could reduce the DOX-induced toxicity in blood; and they could not cause damage to the heart and kidney tissues by the reasons that the MYR could enhance the anti-oxidation capability in normal cells, which resulted in preventing ROS-induced damage. Additionally, the FDMP NPs were characteristic of small size (37.70 ± 6.30 nm), high DOX loading efficiency (46.67 ± 1.58%), pH-controlled release and excellent stable pharmacokinetics, that inducing drug release and enhancing drug accumulation in the tumor. Moreover, the FDMP NPs could inhibit the expression of the hypoxia-inducible factor-1 α(HIF-1α) and the key angiogenesis mediator vascular endothelial growth factor (VEGF) both in vitro and in vivo, which succeed in preventing the generation of new blood vessel networks; that is the mechanism of the synergistic effect against tumors induced by FDMP NPs.
Collapse
Affiliation(s)
- Yumei Qian
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Fang Zhao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Hongxia Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Lisheng Xu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Weixiong Yu
- Anhui Xinximeng Biological Technology Co., Ltd., Suzhou 234000, People's Republic of China
| | - Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| |
Collapse
|
5
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
|
7
|
Matejczyk M, Świderski G, Świsłocka R, Rosochacki SJ, Lewandowski W. Seleno-l-methionine and l-ascorbic acid differentiate the biological activity of doxorubicin and its metal complexes as a new anticancer drugs candidate. J Trace Elem Med Biol 2018; 48:141-148. [PMID: 29773172 DOI: 10.1016/j.jtemb.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 01/03/2023]
Abstract
The most important problems of anti-cancer therapy include the toxicity of the drugs applied to healthy cells and the multi-drug cells resistance to chemotherapeutics. One of the most commonly used anticancer drugs is doxorubicin (DOX) used to treat certain leukemias and non-Hodgkin's lymphomas, as well as bladder, breast, stomach, lung, ovarian, thyroid, multiple myeloma and other cancers. Preliminary studies showed that metal complex with DOX improve its cytostatic activity with changes in their molecular structure and distribution of electrons, resulting in a substantial change of its biological activity (including antitumor activity). Thus, there is a chance to receiving derivatives of DOX with low toxicity for the healthy body cells, thus increasing its therapeutic selectivity. In the present study we examined the influence of Mn, Mg, Fe, Co and Ni, seleno-l-methionine and vitamin C on biological activity of DOX in prokaryotic model - Escherichia coli RFM443, with plasmid transcriptional fusion of recA promoter and luxCDABE as a reporter gene. Cytotoxic potency of tested chemicals was calculated on the basis of the bacteria culture growth inhibition (GI%) values. Genotoxic properties were calculated on the basis of the fold increase (FI) of relative luminescence units (RLU) values compared to control. Obtained results showed that doxorubicin metal complexes particularly with Ni, Co and Fe increased the cyto- and genotoxic activities of DOX. Bacteria culture supplemented with SeMet and vitamin C differentiate the DOX and its metal complexes toxicity. It seems, that DOX-Ni, DOX-Fe and DOX-Co complexes could be potent cytostatic drug candidates. Moreover, we noticed different sensitivity of recA::luxCDABE for 3 h and 24 h cultures of bacteria strain. It suggests, that the potency of genetic construct reactivity- recA::luxCDABE in E. coli depends on the growth-phase of bacterial culture.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland.
| | - Grzegorz Świderski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Stanisław Józef Rosochacki
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| |
Collapse
|
8
|
pH-responsive mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin against osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:142-153. [PMID: 29407142 DOI: 10.1016/j.msec.2017.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Oral or intravenous chemotherapy is an important strategy to treat metastatic cancer, but it may cause systemic toxicity for healthy tissue. Herein, we for the first time fabricated mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin (ZSM-5/CS/DOX) as drug delivery systems against osteosarcoma. The mesoporous ZSM-5 zeolites exhibited disk-like shapes with thicknesses of 100nm and diameters of 300nm, and the mesopores with pore sizes of 3.75nm were originated from desilication treatment. The pH-responsive ZSM-5/CS/DOX nanodisks possessed a great drug loading efficiency of 97.7%, and their controlled release trends of DOX were fitted well with the Korsmeyer-Peppas model. The DOX could be efficiently released the ZSM-5/CS/DOX nanodisks after cellular endocytosis and induced cancer cells apoptosis. Moreover, the pH-responsive drug carriers led to efficient tumor inhibition with low side effects, especially cardiac toxicity, as confirmed by pharmacokinetic study, serological examination and H&E staining assays. Therefore, the ZSM-5/CS/DOX nanodisks are a promising pH-responsive drug carrier for targeted cancer therapy.
Collapse
|
9
|
Jabłońska-Trypuć A, Świderski G, Krętowski R, Lewandowski W. Newly Synthesized Doxorubicin Complexes with Selected Metals-Synthesis, Structure and Anti-Breast Cancer Activity. Molecules 2017; 22:molecules22071106. [PMID: 28677642 PMCID: PMC6152354 DOI: 10.3390/molecules22071106] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/31/2022] Open
Abstract
Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn) on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX) at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Division of Sanitary Biology and Biotechnology, Faculty of Civil Engineering and Environmental Engineering, Białystok University of Technology, Wiejska 45E Street, Białystok 15-351, Poland.
| | - Grzegorz Świderski
- Division of Chemistry, Bialystok University of Technology, Białystok 15-351, Poland.
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Białystok 15-222, Poland.
| | | |
Collapse
|
10
|
Structural modifications in the sugar moiety as a key to improving the anticancer effectiveness of doxorubicin. Life Sci 2017; 178:1-8. [DOI: 10.1016/j.lfs.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 01/09/2023]
|
11
|
Corvaglia S, Guarnieri D, Pompa PP. Boosting the therapeutic efficiency of nanovectors: exocytosis engineering. NANOSCALE 2017; 9:3757-3765. [PMID: 28261714 DOI: 10.1039/c7nr00364a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we developed a new general strategy, which we named "exocytosis engineering", to strongly increase the intracellular persistence of nanocarriers and thus the effective dose of transported drugs. The strategy is based on the co-loading of a drug and an exocytosis inhibitor in the nanocarrier, to hinder the high tendency of cells to remove internalized nanocarriers, limiting the pharmacological efficiency of the nanoformulation. In particular, by using a well-known chemotherapeutic drug (doxorubicin) and an efficient exocytosis inhibitor (dimethilamyloride) co-loaded in mesoporous silica nanocarriers, we demonstrated a >6-fold increase in the intracellular dose of the drug (for the same administered dose), achieving a great improvement in its therapeutic action. A strong gain in the cytotoxic effect of the drug was, in fact, observed both in several tumor cell lines and in 3D tumor spheroids. The proposed approach is versatile and broadly applicable to several classes of nanocarriers and drugs, thus opening a fascinating outlook in nanomedicine.
Collapse
Affiliation(s)
- Stefania Corvaglia
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30-16163, Genova, Italy. and Center for Bio-Molecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Lecce, Italy
| | - Daniela Guarnieri
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30-16163, Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30-16163, Genova, Italy. and Center for Bio-Molecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Lecce, Italy
| |
Collapse
|
12
|
Wen X, Yang F, Ke QF, Xie XT, Guo YP. Hollow mesoporous ZSM-5 zeolite/chitosan ellipsoids loaded with doxorubicin as pH-responsive drug delivery systems against osteosarcoma. J Mater Chem B 2017; 5:7866-7875. [DOI: 10.1039/c7tb01830d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow mesoporous ZSM-5 zeolite/chitosan ellipsoids loaded with doxorubicin were firstly reported as novel pH-responsive drug delivery systems, and the controlled release of doxorubicin effectively treated osteosarcoma without systemic toxicity.
Collapse
Affiliation(s)
- Xi Wen
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Fan Yang
- Department of Orthopedic Surgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Xue-Tao Xie
- Department of Orthopedic Surgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|
13
|
Guarnieri D, Biondi M, Yu H, Belli V, Falanga AP, Cantisani M, Galdiero S, Netti PA. Tumor-activated prodrug (TAP)-conjugated nanoparticles with cleavable domains for safe doxorubicin delivery. Biotechnol Bioeng 2014; 112:601-11. [PMID: 25220931 DOI: 10.1002/bit.25454] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 09/05/2014] [Indexed: 11/08/2022]
Abstract
A major issue in chemotherapy is the lack of specificity of many antitumor drugs, which cause severe side effects and an impaired therapeutic response. Here we report on the design and characterization of model tumor activated prodrug-conjugated polystyrene (PS) nanoparticles (TAP-NPs) for the release of doxorubicin (Dox) triggered by matrix metalloprotease-2 (MMP2) enzyme, which is overexpressed in the extracellular matrix of tumors. In particular, TAP-NPs were produced by attaching Dox to poly(ethylene glycol) (PEG) through two MMP2-cleavable enzymes. The resulting adduct was then tethered to PS NPs. Results showed that Dox release was actually triggered by MMP2 cleavage and was dependent on enzyme concentration, with a plateau around 20 nM. Furthermore, significant cell cytotoxicity was observed towards three cell lines only in the presence of MMP2, but not in cells without enzyme pre-treatment, even after NP internalization by cells. These findings indicate the potential of TAP-NPs as suitable nanocarriers for an on demand, tumor--specific delivery of antitumor drugs after the response to an endogenous stimulus. Further advancements will focus on the translation of this production technology to biodegradable systems for the safe transport of cytotoxic drug to tumor tissues.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The connection between the toxicity of anthracyclines and their ability to modulate the P-glycoprotein-mediated transport in A549, HepG2, and MCF-7 cells. ScientificWorldJournal 2014; 2014:819548. [PMID: 24574923 PMCID: PMC3916056 DOI: 10.1155/2014/819548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/29/2013] [Indexed: 11/27/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of solid tumors. We compared the resistance of the most popular solid tumors, breast adenocarcinoma (MCF-7 cell line) and nonsmall cell lung (A549 cell line) hepatocellular liver carcinoma (HepG2 cells), to aclarubicin (ACL) and doxorubicin (DOX). This research aimed at determining the relation between the toxicity of ACL and DOX, their cell accumulation, and then effect on P-glycoprotein functionality. ACL is more cytotoxic for tumor cells compared to DOX. The intracellular concentration of drugs in cancer cells was dependent on the dose of the drugs and the time of incubation. The P-gp inhibitor Verapamil (V) increased DOX accumulation in all tested cell lines. By contrast, the intracellular level of ACL was not affected by this modifying agent. The assessment of the uptake of 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide (JC-1) or Rhodamine 123 (R123) allows the evaluation of the different influence of drugs on P-gp activity which is in agreement with the estimation of expression measured by MDR-1 shift assay. These data suggest that ACL is less P-gp dependent than DOX and consequently may be used in a clinical setting to increase treatment efficacy in resistant human tumors.
Collapse
|
15
|
La Ferla B, Airoldi C, Zona C, Orsato A, Cardona F, Merlo S, Sironi E, D'Orazio G, Nicotra F. Natural glycoconjugates with antitumor activity. Nat Prod Rep 2010; 28:630-48. [PMID: 21120227 DOI: 10.1039/c0np00055h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is one of the major causes of death worldwide. As a consequence, many different therapeutic approaches, including the use of glycosides as anticancer agents, have been developed. Various glycosylated natural products exhibit high activity against a variety of microbes and human tumors. In this review we classify glycosides according to the nature of their aglycone (non-saccharidic) part. Among them, we describe anthracyclines, aureolic acids, enediyne antibiotics, macrolide and glycopeptides presenting different strengths and mechanisms of action against human cancers. In some cases, the glycosidic residue is crucial for their activity, such as in anthracycline, aureolic acid and enediyne antibiotics; in other cases, Nature has exploited glycosylation to improve solubility or pharmacokinetic properties, as in the glycopeptides. In this review we focus our attention on natural glycoconjugates with anticancer properties. The structure of several of the carbohydrate moieties found in these conjugates and their role are described. The structure–activity relationship of some of these compounds, together with the structural features of their interaction with the biological targets, are also reported. Taken together, all this information is useful for the design of new potential anti-tumor drugs.
Collapse
Affiliation(s)
- Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano Bicocca, Piazza della Scienza 2, I-20126, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|