1
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
2
|
Morris R, Butler L, Perkins A, Kershaw NJ, Babon JJ. The Role of LNK (SH2B3) in the Regulation of JAK-STAT Signalling in Haematopoiesis. Pharmaceuticals (Basel) 2021; 15:ph15010024. [PMID: 35056081 PMCID: PMC8781068 DOI: 10.3390/ph15010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
LNK is a member of the SH2B family of adaptor proteins and is a non-redundant regulator of cytokine signalling. Cytokines are secreted intercellular messengers that bind to specific receptors on the surface of target cells to activate the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signalling pathway. Activation of the JAK-STAT pathway leads to proliferative and often inflammatory effects, and so the amplitude and duration of signalling are tightly controlled. LNK binds phosphotyrosine residues to signalling proteins downstream of cytokines and constrains JAK-STAT signalling. Mutations in LNK have been identified in a range of haematological and inflammatory diseases due to increased signalling following the loss of LNK function. Here, we review the regulation of JAK-STAT signalling via the adaptor protein LNK and discuss the role of LNK in haematological diseases.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Liesl Butler
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-9345-2960; Fax: +61-3-9347-0852
| |
Collapse
|
3
|
SH2B3 (LNK) rs3184504 polymorphism is correlated with JAK2 V617F-positive myeloproliferative neoplasms. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Background: Pathogenesis and phenotypic diversity in myeloproliferative neoplasms (MPN) cannot be fully explained by the currently known acquired mutations alone. Some susceptible germline variants of different genes have been proved to be associated with the development of these diseases. The goal of our study was to evaluate the association between the rs3184504 polymorphism of SH2B3 (LNK) gene (p.R262W, c.784T>C) and the risk of developing the four typical MPN - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), and chronic myeloid leukemia (CML).
Material and methods: We investigated the SH2B3 rs3184504 T>C polymorphism by real-time PCR in 1901 MPN patients (575 with PV, 798 with ET, 251 with PMF, and 277 with CML), all of them harboring one of the specific driver mutations - JAK2 V617F or CALR in case of PV, ET and PMF, or BCR-ABL1 in case of CML, and 359 controls.
Results: Overall, the TT homozygous genotype was significantly associated with BCR-ABL1-negative MPN (OR = 1.34; 95% CI = 1.03-1.74; crude p-value = 0.02; adjusted p-value = 0.04). The most significant association was seen in case of PV (OR = 1.54; 95% CI = 1.14-2.06; crude p-value = 0.004; adjusted p-value = 0.024). Also, SH2B3 rs3184504 correlated significantly with JAK2 V617F-positive MPN (OR = 1.36; 95% CI = 1.04-1.77; crude p-value = 0.02; adjusted p-value = 0.08), but not with those CALR-positive. ET (regardless of molecular subtype) and CML were not correlated with SH2B3 rs3184504.
Conclusions: The SH2B3 rs3184504 polymorphism is associated with risk of MPN development, especially PV. This effect is restricted to JAK2 V617F-positive PV and PMF only.
Collapse
|
4
|
Dondi E, Sibarita JB, Varin-Blank N, Velazquez L. The adaptor protein APS modulates BCR signalling in mature B cells. Cell Signal 2020; 73:109673. [PMID: 32470518 DOI: 10.1016/j.cellsig.2020.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022]
Abstract
Activation process of mature B cell is predominantly driven by specific BCR-mediated pathways, switched on and off all through late B cell differentiation stages. Mice deficient for APS, a member of the Lnk/SH2B family of adaptor proteins, showed that this adaptor plays a BCR-mediated regulatory role in mature B cells. However, the intermediates involved in this adaptor modulating functions in B cells are still unknown. In the present study, we investigated the role of APS in regulating BCR signalling notably through cytoskeleton remodeling in mature B cells. Herein, we showed that APS function is stage specific, as it exclusively intervenes in mature B cells. Upon activation, APS colocalizes with the BCR and associates with important regulators of BCR signalling, such as Syk and Cbl kinase. Importantly, APS interferes, as a scaffold protein, with the stability of Syk kinase by recruiting Cbl. This function is mainly mediated by APS SH2 domain, which regulates BCR-evoked cell dynamics. Our findings thus reveal that APS plays a regulatory role in BCR-induced responses by specifically modulating its interacting partners, which positions APS as a relevant modulator of BCR signalling in mature B cells.
Collapse
Affiliation(s)
- Elisabetta Dondi
- INSERM, U978, UFR SMBH, Bobigny, France; Comue USPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| | - Jean-Baptiste Sibarita
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France; CNRS UMR, 5297 Bordeaux, France
| | - Nadine Varin-Blank
- INSERM, U978, UFR SMBH, Bobigny, France; Comue USPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France.
| | - Laura Velazquez
- INSERM, U978, UFR SMBH, Bobigny, France; Comue USPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France.
| |
Collapse
|
5
|
LNK promotes the growth and metastasis of triple negative breast cancer via activating JAK/STAT3 and ERK1/2 pathway. Cancer Cell Int 2020; 20:124. [PMID: 32322171 PMCID: PMC7160949 DOI: 10.1186/s12935-020-01197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background LNK adaptor protein is a crucial regulator of normal hematopoiesis, which down-regulates activated tyrosine kinases at the cell surface resulting in an antitumor effect. To date, little studies have examined activities of LNK in solid tumors except ovarian cancer. Methods Clinical tissue chips were obtained from 16 clinical patients after surgery. Western blotting assay and quantitative real time PCR was performed to measure the expression of LNK. We investigate the in vivo and vitro effect of LNK in Triple Negative Breast Cancer by using cell proliferation、migration assays and an in vivo murine xenograft model. Western blotting assay was performed to investigate the mechanism of LNK in triple negative breast cancer. Results We found that the levels of LNK expression were elevated in high grade triple-negative breast cancer through Clinical tissue chips. Remarkably, overexpression of LNK can promote breast cancer cell proliferation and migration in vivo and vitro, while silencing of LNK show the opposite phenomenon. We also found that LNK can promote breast cancer cell to proliferate and migrate via activating JAK/STAT3 and ERK1/2 pathway. Conclusions Our results suggest that the adaptor protein LNK acts as a positive signal transduction modulator in TNBC.
Collapse
|
6
|
Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017. [PMID: 28637459 PMCID: PMC5480189 DOI: 10.1186/s12964-017-0177-y] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays critical roles in orchestrating of immune system, especially cytokine receptors and they can modulate the polarization of T helper cells. This pathway is regulated by an array of regulator proteins, including Suppressors of Cytokine Signaling (SOCS), Protein Inhibitors of Activated STATs (PIAS) and Protein Tyrosine Phosphatases (PTPs) determining the initiation, duration and termination of the signaling cascades. Dysregulation of the JAK-STAT pathway in T helper cells may result in various immune disorders. In this review, we represent how the JAK-STAT pathway is generally regulated and then in Th cell subsets in more detail. Finally, we introduce novel targeted strategies as promising therapeutic approaches in the treatment of immune disorders. Studies are ongoing for identifying the other regulators of the JAK-STAT pathway and designing innovative therapeutic strategies. Therefore, further investigation is needed.
Collapse
Affiliation(s)
- Farhad Seif
- ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,Department of immunology, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of immunology, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Aazami
- Department of immunology, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Sedighi
- Department of immunology, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Bahar
- Department of immunology, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia 2017; 31:1661-1670. [PMID: 28484264 DOI: 10.1038/leu.2017.139] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Malignant hematological diseases are mainly because of the occurrence of molecular abnormalities leading to the deregulation of signaling pathways essential for precise cell behavior. High-resolution genome analysis using microarray and large-scale sequencing have helped identify several important acquired gene mutations that are responsible for such signaling deregulations across different hematological malignancies. In particular, the genetic landscape of classical myeloproliferative neoplasms (MPNs) has been in large part completed with the identification of driver mutations (targeting the cytokine receptor/Janus-activated kinase 2 (JAK2) pathway) that determine MPN phenotype, as well as additional mutations mainly affecting the regulation of gene expression (epigenetics or splicing regulators) and signaling. At present, most efforts concentrate in understanding how all these genetic alterations intertwine together to influence disease evolution and/or dictate clinical phenotype in order to use them to personalize diagnostic and clinical care. However, it is now evident that factors other than somatic mutations also play an important role in MPN disease initiation and progression, among which germline predisposition (single-nucleotide polymorphisms and haplotypes) may strongly influence the occurrence of MPNs. In this context, the LNK inhibitory adaptor protein encoded by the LNK/SH2B adaptor protein 3 (SH2B3) gene is the target of several genetic variations, acquired or inherited in MPNs, lymphoid leukemia and nonmalignant hematological diseases, underlying its importance in these pathological processes. As LNK adaptor is a key regulator of normal hematopoiesis, understanding the consequences of LNK variants on its protein functions and on driver or other mutations could be helpful to correlate genotype and phenotype of patients and to develop therapeutic strategies to target this molecule. In this review we summarize the current knowledge of LNK function in normal hematopoiesis, the different SH2B3 mutations reported to date and discuss how these genetic variations may influence the development of hematological malignancies.
Collapse
Affiliation(s)
- N Maslah
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - B Cassinat
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - E Verger
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - J-J Kiladjian
- Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France.,APHP, Centre d'investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - L Velazquez
- INSERM UMRS-MD1197, Institut André Lwoff/Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
8
|
Lee JH, Lee SH, Lee HS, Ji ST, Jung SY, Kim JH, Bae SS, Kwon SM. Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:459-66. [PMID: 27610032 PMCID: PMC5014992 DOI: 10.4196/kjpp.2016.20.5.459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
Abstract
Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than Lnk–/– MSCs. An ex vivo adipogenic differentiation assay showed that Lnk–/– MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R–Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) and its adipogenic target genes (LPL and FABP4) significantly decreased in Lnk–/– MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the IGF-1/Akt/PPAR-γ pathway.
Collapse
Affiliation(s)
- Jun Hee Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.; Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
| | - Hyang Seon Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seung Taek Ji
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seok Yun Jung
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan Natinoal University, Yangsan 50612, Korea.; Research Institute of Convergence Biomedical Science and Technology, Pusan National University, Yangsan Hospital, Yangsan 50612, Korea
| | - Sun Sik Bae
- Department of Pharmacology, Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|