1
|
Putera I, Schrijver B, Ten Berge JCEM, Gupta V, La Distia Nora R, Agrawal R, van Hagen PM, Rombach SM, Dik WA. The immune response in tubercular uveitis and its implications for treatment: From anti-tubercular treatment to host-directed therapies. Prog Retin Eye Res 2023:101189. [PMID: 37236420 DOI: 10.1016/j.preteyeres.2023.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Tubercular uveitis (TB-uveitis) remains a conundrum in the uveitis field, which is mainly related to the diverse clinical phenotypes of TB-uveitis. Moreover, it remains difficult to differentiate whether Mycobacterium tuberculosis (Mtb) is present in the ocular tissues, elicits a heightened immune response without Mtb invasion in ocular tissues, or even induces an anti-retinal autoimmune response. Gaps in the immuno-pathological knowledge of TB-uveitis likely delay timely diagnosis and appropriate management. In the last decade, the immunopathophysiology of TB-uveitis and its clinical management, including experts' consensus to treat or not to treat certain conditions with anti-tubercular treatment (ATT), have been extensively investigated. In the meantime, research on TB treatment, in general, is shifting more toward host-directed therapies (HDT). Given the complexities of the host-Mtb interaction, enhancement of the host immune response is expected to boost the effectiveness of ATT and help overcome the rising burden of drug-resistant Mtb strains in the population. This review will summarize the current knowledge on the immunopathophysiology of TB-uveitis and recent advances in treatment modalities and outcomes of TB-uveitis, capturing results gathered from high- and low-burden TB countries with ATT as the mainstay of treatment. Moreover, we outline the recent progress of HDT development in the pulmonary TB field and discuss the possibility of its applicability to TB-uveitis. The concept of HDT might help direct future development of efficacious therapy for TB-uveitis, although more in-depth research on the immunoregulation of this disease is still necessary.
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Vishali Gupta
- Retina and Uvea Services, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rina La Distia Nora
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS University, Singapore; Singapore Eye Research Institute, Singapore; Moorfields Eye Hospital, London, United Kingdom
| | - P Martin van Hagen
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S M Rombach
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
3
|
Yudintceva NM, Bogolyubova IO, Muraviov AN, Sheykhov MG, Vinogradova TI, Sokolovich EG, Samusenko IA, Shevtsov MA. Application of the allogenic mesenchymal stem cells in the therapy of the bladder tuberculosis. J Tissue Eng Regen Med 2017; 12:e1580-e1593. [PMID: 28990734 DOI: 10.1002/term.2583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/26/2022]
Abstract
Urogenital tuberculosis (TB) often leads to contraction of the bladder, a reduction of the urinary reservoir capacity, and, in the latest stage, to real microcystitis up to full obliteration. Bladder TB Stage 4 is unsuitable for conservative therapy, and cystectomy with subsequent enteroplasty is indicated. In this study, using a model of bladder TB in New Zealand rabbits, the therapeutic efficacy of the interstitial injection of autologous bone-derived mesenchymal stem cells (MSCs) combined with standard anti-TB treatment in the restoration of the bladder function was demonstrated. For analysis of the MSC distribution in tissues, the latter were labelled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated the high intracellular incorporation of nanoparticles and the absence of cytotoxicity on MSC viability and proliferation. A single-dose administration of MSCs into the bladder mucosal layer significantly reduced the wall deformation and inflammation and hindered the development of fibrosis, which was proven by the subsequent histological assay. Confocal microscopy studies of the bladder cryosections confirmed the presence of superparamagnetic iron oxide nanoparticle-labelled MSCs in different bladder layers of the treated animals, thus indicating the role of stem cells in bladder regeneration.
Collapse
Affiliation(s)
- Natalia M Yudintceva
- Cell Technology Center, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Irina O Bogolyubova
- Cell Technology Center, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Alexandr N Muraviov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Magomed G Sheykhov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Tatiana I Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Evgenii G Sokolovich
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,Saint Petersburg University, St. Petersburg, Russia
| | - Igor A Samusenko
- Federal State Budgetary Institute «The Nikiforov Russian Center of Emergency and Radiation Medicine» (Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters), St. Petersburg, Russia
| | - Maxim A Shevtsov
- Cell Technology Center, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,First I.P. Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia.,Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Kolloli A, Subbian S. Host-Directed Therapeutic Strategies for Tuberculosis. Front Med (Lausanne) 2017; 4:171. [PMID: 29094039 PMCID: PMC5651239 DOI: 10.3389/fmed.2017.00171] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of morbidity and mortality in humans worldwide. Currently, the standard treatment for TB involves multiple antibiotics administered for at least 6 months. Although multiple antibiotics therapy is necessary to prevent the development of drug resistance, the prolonged duration of treatment, combined with toxicity of drugs, contributes to patient non-compliance that can leads to the development of drug-resistant Mtb (MDR and XDR) strains. The existence of comorbid conditions, including HIV infection, not only complicates TB treatment but also elevates the mortality rate of patients. These facts underscore the need for the development of new and/or improved TB treatment strategies. Host-directed therapy (HDT) is a new and emerging concept in the treatment of TB, where host response is modulated by treatment with small molecules, with or without adjunct antibiotics, to achieve better control of TB. Unlike antibiotics, HDT drugs act by directly modulating host cell functions; therefore, development of drug resistance by infecting Mtb is avoided. Thus, HDT is a promising treatment strategy for the management of MDR- and XDR-TB cases as well as for patients with existing chronic, comorbid conditions such as HIV infection or diabetes. Functionally, HDT drugs fine-tune the antimicrobial activities of host immune cells and limit inflammation and tissue damage associated with TB. However, current knowledge and clinical evidence is insufficient to implement HDT molecules as a stand-alone, without adjunct antibiotics, therapeutic modality to treat any form of TB in humans. In this review, we discuss the recent findings on small molecule HDT agents that target autophagy, vitamin D pathway, and anti-inflammatory response as adjunctive agents along with standard antibiotics for TB therapy. Data from recent publications show that this approach has the potential to improve clinical outcome and can help to reduce treatment duration. Thus, HDT can contribute to global TB control programs by potentially increasing the efficiency of anti-TB treatment.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, The State University of New Jersey, Newark, NJ, United States
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
5
|
Javan MR, Jalali nezhad AA, Shahraki S, Safa A, Aali H, Kiani Z. Cross-talk between the Immune System and Tuberculosis Pathogenesis; a Review with Emphasis on the Immune Based Treatment. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2016. [DOI: 10.15171/ijbsm.2016.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
6
|
Zumla A, Rao M, Dodoo E, Maeurer M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med 2016; 14:89. [PMID: 27301245 PMCID: PMC4908783 DOI: 10.1186/s12916-016-0635-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023] Open
Abstract
Treatment of multidrug-resistant tuberculosis (MDR-TB) is extremely challenging due to the virulence of the etiologic strains of Mycobacterium tuberculosis (M. tb), the aberrant host immune responses and the diminishing treatment options with TB drugs. New treatment regimens incorporating therapeutics targeting both M. tb and host factors are urgently needed to improve the clinical management outcomes of MDR-TB. Host-directed therapies (HDT) could avert destructive tuberculous lung pathology, facilitate eradication of M. tb, improve survival and prevent long-term functional disability. In this review we (1) discuss the use of HDT for cancer and other infections, drawing parallels and the precedent they set for MDR-TB treatment, (2) highlight preclinical studies of pharmacological agents commonly used in clinical practice which have HDT potential, and (3) outline developments in cellular therapy to promote clinically beneficial immunomodulation to improve treatment outcomes in patients with pulmonary MDR-TB. The use of HDTs as adjuncts to MDR-TB therapy requires urgent evaluation.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Martin Rao
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Ernest Dodoo
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Markus Maeurer
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden. .,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
7
|
Abstract
Tuberculosis (TB) is still a major global health problem. A third of the world’s population is infected with Mycobacterium tuberculosis. Only ~10% of infected individuals develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of TB require at least 6 months of treatment with multiple drugs. The management of latent TB infection and TB has become more challenging because of the spread of multidrug-resistant and extremely drug-resistant TB. Intensified efforts to find new TB drugs and immunotherapies are needed. Immunotherapies could modulate the immune system in patients with latent TB infection or active disease, enabling better control of M. tuberculosis replication. This review describes several types of potential immunotherapies with a focus on those which have been tested in humans.
Collapse
Affiliation(s)
- Getahun Abate
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology
| | - Daniel F Hoft
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology; Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
8
|
Dameshghi S, Zavaran-Hosseini A, Soudi S, Shirazi FJ, Nojehdehi S, Hashemi SM. Mesenchymal stem cells alter macrophage immune responses to Leishmania major infection in both susceptible and resistance mice. Immunol Lett 2015; 170:15-26. [PMID: 26703818 DOI: 10.1016/j.imlet.2015.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are attracted to inflammation site and switch immune system to modulate inflammatory responses. This ability makes MSCs the best candidate cells for stem cell therapy of infection diseases. Therefore, we aimed to evaluate the modulatory effect of adipose-derived MSCs (AD-MSCs) on macrophages in Leishmania (L.) major infection. Macrophages and MSCs were isolated from both susceptible (BALB/c) and resistance (C57BL/6) strains. After co-culture of AD-MSCs with macrophages using a transwell system, we assessed MSCs-educated macrophage responses to L. major infection. Our results indicated suppression in levels of tumor necrosis factor α (TNF-α) and interleukin 10 (IL-10) of MSCs co-cultured macrophages in response to L. major infection. To clarify the effects of this suppression on inflammatory conditions, TNF-α/IL-10 ratio was calculated, indicating an increase in TNF-α/IL-10 ratio in MSCs co-cultured groups. The higher TNF-α/IL-10 ratio was observed in BALB/c macrophages co-cultured with BALB/c MSCs. Nitric oxide (NO) assay presented a significant reduction in the supernatant of all MSCs co-cultured groups compared to control. We observed a significant reduction in phagocytosis of MSCs co-cultured groups in response to L. major infection without any significant differences in the phagocytic index. In conclusion, our results represented a new spectrum of immunomodulation induced by MSCs co-cultured with macrophages in response to L. major infection. The magnitude of immunoregulation was different between BALB/c and C57BL/6 strains. Our findings also showed that MSCs exerted potential effect of M1 polarization due to unequal decrease in levels of TNF-α and IL-10 when we considered TNF-α and IL-10as representatives of M1 and M2 phenotypes, respectively. Induction of inflammatory cytokine milieu and reduction in level of IL-10 provides a new hope for stem cell therapy of leishmaniasis in susceptible models.
Collapse
Affiliation(s)
- Safura Dameshghi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran-Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Jalali Shirazi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrzad Nojehdehi
- Immunology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|