1
|
Rainho MDA, Mencalha AL, Thole AA. Hypoxia effects on cancer stem cell phenotype in colorectal cancer: a mini-review. Mol Biol Rep 2021; 48:7527-7535. [PMID: 34637098 DOI: 10.1007/s11033-021-06809-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is ranked third most incident and second most deadly around the world, and even though treatments significantly developed over the years, overall survival remains low. This scenario has the contribution of cancer stem cells (CSC), a subpopulation of the heterogeneous tumor bulk, considered to be responsible for the tumor maintenance, conventional therapies resistance, metastasis, and recurrence. In this regard, hypoxia appears as an important component of tumor microenvironment and CSC niche, being associated with a worse prognosis. Therefore, it is vital the study of hypoxia influence on CSC phenotype in CRC. The aim of this mini-review article is to present a brief overview on this field. Recent articles discoursed about CSC molecular regulation, signalling pathways, methods for the study of the topic, as well as molecules and drugs capacity of inhibiting the interplay of hypoxia-CSC. Finally, the studies demonstrated important results, extensively accessing the topics of cellular and molecular regulation and therapeutic intervention, being morphology an area to be more explored.
Collapse
Affiliation(s)
- Mateus de Almeida Rainho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Andre Luiz Mencalha
- LABICAN - Laboratory of Cancer Biology, Biometry and Biophysics Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra Alves Thole
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Multi-Lens Arrays (MLA)-Assisted Photothermal Effects for Enhanced Fractional Cancer Treatment: Computational and Experimental Validations. Cancers (Basel) 2021; 13:cancers13051146. [PMID: 33800182 PMCID: PMC7962441 DOI: 10.3390/cancers13051146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Colorectal cancer is one of the most common cancers and the third leading cause of cancer-related deaths in the United States. As a non- or minimally invasive cancer treatment, photothermal therapy (PTT) has been widely used to generate irreversible thermal injuries in tumors. However, conventional PTT employs an end-firing flat fiber to deliver laser energy, leading to the incomplete removal of tumor tissues due to an uneven beam distribution over the tumor surface. Multi-lens arrays (MLA) generate multiple micro-beams to uniformly distribute laser energy on the tissue surface. Therefore, the application of MLA for PTT in cancer affords a spatially enhanced distribution of micro-beams and laser-induced temperature in the tumor. The purpose of the current study is to computationally and experimentally demonstrate the therapeutic benefits of MLA-assisted fractional PTT on colorectal cancer, in comparison to flat fiber-based PTT. Abstract Conventional photothermal therapy (PTT) for cancer typically employs an end-firing flat fiber (Flat) to deliver laser energy, leading to the incomplete treatment of target cells due to a Gaussian-shaped non-uniform beam profile. The purpose of the current study is to evaluate the feasibility of multi-lens arrays (MLA) for enhanced PTT by delivering laser light in a fractional micro-beam pattern. Computational and experimental evaluations compare the photothermal responses of gelatin phantoms and aqueous dye solutions to irradiations with Flat and MLA. In vivo colon cancer models have been developed to validate the therapeutic capacity of MLA-assisted irradiation. MLA yields 1.6-fold wider and 1.9-fold deeper temperature development in the gelatin phantom than Flat, and temperature monitoring identified the optimal treatment condition at an irradiance of 2 W/cm2 for 180 s. In vivo tests showed that the MLA group was accompanied by complete tumor eradication, whereas the Flat group yielded incomplete removal and significant tumor regrowth 14 days after PTT. The proposed MLA-assisted PTT spatially augments photothermal effects with the fractional micro-beams on the tumor and helps achieve complete tumor removal without recurrence. Further investigations are expected to optimize treatment conditions with various wavelengths and photosensitizers to warrant treatment efficacy and safety for clinical translation.
Collapse
|
3
|
Imatinib exhibit synergistic pleiotropy in the prevention of colorectal cancer by suppressing proinflammatory, cell survival and angiogenic signaling. Cell Signal 2020; 76:109803. [PMID: 33022360 DOI: 10.1016/j.cellsig.2020.109803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Recent global incidences and mortality rates have placed colorectal cancer (CRC) at third and second positions, respectively, among both sexes of all ages. Resistance during chemotherapy is a big problem in the treatment and disease-free survival of CRC patients. Discovery of new anticancer drug(s) is a time taking process and therefore, invites studies for repurposing the known therapeutics. The present study was conceived to analyze the anticancer role of Imatinib in experimental CRC at early stages. Different experimental procedures e.g. tumor incidences or histoarchitectural changes, gene and protein expression analysis, estimations of intracellular calcium, ROS, mitochondrial membrane potential, apoptotic index and molecular docking was performed to support the hypothesis. It was observed that Imatinib could function as an immunomodulator by breaking the feed-back loop between the proinflammatory cytokines (IL-1β and TNF-α) and transcription factors (NF-κB, Jak3/Stat3) knowingly involved in increased cell proliferation during tumorigenesis via activating different intracellular signaling. Also, Imatinib could independently deregulate the other cell survival and proliferation signaling e.g. PI3-K/Akt/mTOR, Wnt/β-catenin and MAPK. Proinflammatory cytokines orchestrated intracellular signaling also involve angiogenic factors to be upregulated during CRC which were also seemed to be independently suppressed by Imatinib. Restoration of physiological apoptosis by increasing the release of intracellular calcium to generate ROS thereby reducing the mitochondrial membrane potential for the release of cytochrome c and activation of caspase-3 was also reported with Imatinib administration. Thus, it may be suggested that Imatinib show synergistic pleiotropy in suppressing the interlinked tumorigenic signaling pathways independently.
Collapse
|
4
|
Kuzmich A, Rakitina O, Didych D, Potapov V, Zinovyeva M, Alekseenko I, Sverdlov E. Novel Histone-Based DNA Carrier Targeting Cancer-Associated Fibroblasts. Polymers (Basel) 2020; 12:E1695. [PMID: 32751200 PMCID: PMC7464289 DOI: 10.3390/polym12081695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Nuclear proteins, like histone H2A, are promising non-viral carriers for gene delivery since they are biocompatible, biodegradable, bear intrinsic nuclear localization signal, and are easy to modify. The addition of surface-protein-binding ligand to histone H2A may increase its DNA delivery efficiency. Tumor microenvironment (TME) is a promising target for gene therapy since its surface protein repertoire is more stable than that of cancer cells. Cancer-associated fibroblasts (CAFs) are important components of TME, and one of their surface markers is beta-type platelet-derived growth factor receptor (PDGFRβ). In this study, we fused histone H2A with PDGFRβ-binding peptide, YG2, to create a novel non-viral fibroblast-targeting DNA carrier, H2A-YG2. The transfection efficiency of histone complexes with pDNA encoding a bicistronic reporter (enhanced green fluorescent protein, EGFP, and firefly luciferase) in PDGFRβ-positive and PDGFRβ-negative cells was estimated by luciferase assay and flow cytometry. The luciferase activity, percentage of transfected cells, and overall EGFP fluorescence were increased due to histone modification with YG2 only in PDGFRβ-positive cells. We also estimated the internalization efficiency of DNA-carrier complexes using tetramethyl-rhodamine-labeled pDNA. The ligand fusion increased DNA internalization only in the PDGFRβ-positive cells. In conclusion, we demonstrated that the H2A-YG2 carrier targeted gene delivery to PDGFRβ-positive tumor stromal cells.
Collapse
Affiliation(s)
- Alexey Kuzmich
- Institute of Molecular Genetics, Russian Academy of Sciences; 2, Kurchatov Square, 123182 Moscow, Russia; (I.A.); (E.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Olga Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Dmitry Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Victor Potapov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Marina Zinovyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Irina Alekseenko
- Institute of Molecular Genetics, Russian Academy of Sciences; 2, Kurchatov Square, 123182 Moscow, Russia; (I.A.); (E.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
- FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 117198 Moscow, Russia
| | - Eugene Sverdlov
- Institute of Molecular Genetics, Russian Academy of Sciences; 2, Kurchatov Square, 123182 Moscow, Russia; (I.A.); (E.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| |
Collapse
|
5
|
Kotlarz A, Przybyszewska M, Swoboda P, Neska J, Miłoszewska J, Grygorowicz MA, Kutner A, Markowicz S. Imatinib inhibits the regrowth of human colon cancer cells after treatment with 5-FU and cooperates with vitamin D analogue PRI-2191 in the downregulation of expression of stemness-related genes in 5-FU refractory cells. J Steroid Biochem Mol Biol 2019; 189:48-62. [PMID: 30772447 DOI: 10.1016/j.jsbmb.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
Conventional cytotoxic drugs preferentially eliminate differentiated cancer cells but spare relatively more resistant stem-like cancer cells capable to initiate recurrence. Due to cancer cell plasticity, the stem-like phenotype can be also acquired by cancer cells refractory to treatment with cytotoxic drugs. We investigated whether drugs inhibiting receptor tyrosine kinases could be used to target human colon cancer cells initiating cancer regrowth following conventional cytotoxic treatment. The moderately differentiated cell line HT-29 and poorly differentiated cell line HCT-116 were exposed to 5-fluorouracil (5-FU). Cells that resisted the exposure to 5-FU were subsequently treated with imatinib or sunitinib. Both drugs reduced clonogenicity of 5-FU-refractory cells under normoxic and hypoxic culture conditions. The expression of numerous stemness-related genes was upregulated in cancer cells following the exposure to 5-FU, and remained at a high level in 5-FU-refractory cells undergoing renewal under normoxia, but decreased spontaneously under hypoxia. Imatinib downregulated the expression of stemness-related genes in cells undergoing renewal under normoxia. A combination of imatinib with PRI-2191, an analogue of 1,25-dihydroxyvitamin D3, downregulated stemness-related genes in HCT-116/5-FU cells more efficiently than imatinib alone. A synthetic analogue of 1,25-dihydroxyvitamin D2 (PRI-1906) abolished the effect of imatinib on gene expression in HCT-116/5-FU cells undergoing renewal under normoxia. Sunitinib promoted shift of phenotype of HT-29/5-FU cells undergoing renewal toward stem-like one. It suggests that the phenotype shift toward stemness induced by sequential sunitinib treatment following 5-FU treatment could increase a risk of cancer recurrence. In contrast to sunitinib, imatinib could be used both to interfere with cancer regrowth after conventional chemotherapy and to downregulate the expression of stemness-related genes in residual colon cancer cells capable to initiate cancer recurrence. The findings suggest that imatinib could also be combined with vitamin D analogue PRI-2191 to prevent recurrence more efficiently than imatinib alone and to compensate for vitamin D deficiency resulting from imatinib treatment.
Collapse
Affiliation(s)
- Agnieszka Kotlarz
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| | - Małgorzata Przybyszewska
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| | - Paweł Swoboda
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| | - Jacek Neska
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| | - Joanna Miłoszewska
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| | - Monika Anna Grygorowicz
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| | - Andrzej Kutner
- Pharmacology Department, Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland.
| | - Sergiusz Markowicz
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, 5 WK Roentgen Str., 02-781 Warszawa, Poland.
| |
Collapse
|