1
|
Zakaria NH, Saad N, Che Abdullah CA, Mohd Esa N. The Antiproliferative Effect of Chloroform Fraction of Eleutherine bulbosa (Mill.) Urb. on 2D- and 3D-Human Lung Cancer Cells (A549) Model. Pharmaceuticals (Basel) 2023; 16:936. [PMID: 37513848 PMCID: PMC10384492 DOI: 10.3390/ph16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Since lung cancer is the leading cause of cancer-related death worldwide, research is being conducted to discover anticancer agents as its treatment. Eleutherine bulbosa, a Dayak folklore medicine, exhibited anticancer effects against several cancer cells; however, its anticancer potency against lung cancer cells has not been explored yet. This study aims to determine the anticancer potency of E. bulbosa bulbs against lung cancer cells (A549) using 2D and 3D culture models, as well as determine its active compounds using gas chromatography-mass spectrometry (GC-MS) analysis. Three fractions of E. bulbosa bulbs, namely chloroform, n-hexane, and ethyl acetate, were tested for cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and CellTiter-Glo. The antiproliferative effects of the most cytotoxic fraction against the 2D culture model were determined by a clonogenic survival assay and propidium iodide/Hoechst 33342 double staining, whereas the effects against the 3D culture model were determined by microscopy, flow cytometry, and gene expression analysis. The chloroform fraction is the most cytotoxic against A549 cells than other fractions, and it inhibited colony formation and induced apoptosis of A549 cells. The chloroform fraction also inhibited the growth of the A549 spheroid by suppressing the spheroid size, inducing apoptosis, reducing the proportion of CD44 lung cancer stem cells, causing arrest at the S phase of the cell cycle, and suppressing the expression of the SOX2 and MYC genes. Furthermore, the GC-MS analysis detected 20 active compounds in the chloroform fraction, including the major compounds of eleutherine and isoeleutherine. In conclusion, the chloroform fraction of E. bulbosa bulbs exhibit its antiproliferative effect on 2D and 3D culture models of A549 cells, suggesting it could be a lung cancer chemopreventive agent.
Collapse
Affiliation(s)
- Nur Hannan Zakaria
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Che Azurahanim Che Abdullah
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Nan F, Nan W, Yu Z, Wang H, Cui X, Jiang S, Zhang X, Li J, Wang Z, Zhang S, Wang B, Li Y. Polygalacin D inhibits the growth of hepatocellular carcinoma cells through BNIP3L-mediated mitophagy and endogenous apoptosis pathways. Chin J Nat Med 2023; 21:346-358. [PMID: 37245873 DOI: 10.1016/s1875-5364(23)60452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 05/30/2023]
Abstract
Platycodon grandiflorum (Jacq.) A. DC. is a famous medicinal plant commonly used in East Asia. Triterpene saponins isolated from P. grandiflorum are the main biologically active compounds, among which polygalacin D (PGD) has been reported to be an anti-tumor agent. However, its anti-tumor mechanism against hepatocellular carcinoma is unknown. This study aimed to explore the inhibitory effect of PGD in hepatocellular carcinoma cells and related mechanisms of action. We found that PGD exerted significant inhibitory effect on hepatocellular carcinoma cells through apoptosis and autophagy. Analysis of the expression of apoptosis-related proteins and autophagy-related proteins revealed that this phenomenon was attributed to the mitochondrial apoptosis and mitophagy pathways. Subsequently, using specific inhibitors, we found that apoptosis and autophagy had mutually reinforcing effects. In addition, further analysis of autophagy showed that PGD induced mitophagy by increasing BCL2 interacting protein 3 like (BNIP3L) levels.In vivo experiments demonstrated that PGD significantly inhibited tumor growth and increased the levels of apoptosis and autophagy in tumors. Overall, our findings showed that PGD induced cell death of hepatocellular carcinoma cells primarily through mitochondrial apoptosis and mitophagy pathways. Therefore, PGD can be used as an apoptosis and autophagy agonist in the research and development of antitumor agents.
Collapse
Affiliation(s)
- Fulong Nan
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Wenlong Nan
- China Animal Health and Epidemiology Center, Qingdao 266000, China
| | - Zhongjie Yu
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Hui Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Xiaoni Cui
- Sino-Cell Biomed Co., Ltd., Qingdao 266000, China
| | - Shasha Jiang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Xianjuan Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Jun Li
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Zhifei Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Shuyun Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Bin Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China.
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130000, China.
| |
Collapse
|
3
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in Cancer Cells by a Novel Ciprofloxacin Derivative via RIPK1/RIPK3/MLKL Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227993. [PMID: 36432094 PMCID: PMC9694631 DOI: 10.3390/molecules27227993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Fluoroquinolones (FQs) are synthetic broad-spectrum antimicrobial agents that have been recently repurposed to anticancer candidates. Designing new derivatives of FQs with different moieties to target DNA topoisomerases could improve their anticancer efficacy. The present study aimed to synthesize a novel ciprofloxacin derivative, examine its anticancer activity against HepG2 and A549 cancer cells, and investigate the possible molecular mechanism underlying this activity by examining its ability to inhibit the topo I/II activity and to induce the apoptotic and necro-apoptotic pathways. Molecular docking, cell viability, cell migration, colony formation, cell cycle, Annexin V, lactate dehydrogenase (LDH) release, ELISA, and western blotting assays were utilized. Molecular docking results showed that this novel ciprofloxacin derivative exerted dual topo I and topo II binding and inhibition. It significantly inhibited the proliferation of A549 and HepG2 cancer cells and decreased their cell migration and colony formation abilities. In addition, it significantly increased the % of apoptotic cells, caused cell cycle arrest at G2/M phase, and elevated the LDH release levels in both cancer cells. Furthermore, it increased the expression of cleaved caspase 3, RIPK1, RIPK3, and MLKL proteins. This novel ciprofloxacin derivative exerted substantial dual inhibition of topo I/II enzyme activities, showed antiproliferative activity, suppressed the cell migration and colony formation abilities for A549 and HepG2 cancer cells and activated the apoptotic pathway. In addition, it initiated another backup deadly pathway, necro-apoptosis, through the activation of the RIPK1/RIPK3/MLKL pathway.
Collapse
|
5
|
Chiu CC, Chen YC, Bow YD, Chen JYF, Liu W, Huang JL, Shu ED, Teng YN, Wu CY, Chang WT. diTFPP, a Phenoxyphenol, Sensitizes Hepatocellular Carcinoma Cells to C2-Ceramide-Induced Autophagic Stress by Increasing Oxidative Stress and ER Stress Accompanied by LAMP2 Hypoglycosylation. Cancers (Basel) 2022; 14:cancers14102528. [PMID: 35626132 PMCID: PMC9139631 DOI: 10.3390/cancers14102528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Chemotherapy is the major treatment modality for advanced or unresectable hepatocellular carcinoma (HCC). Unfortunately, chemoresistance carries a poor prognosis in HCC patients. Exogenous ceramide, a sphingolipid, has been well documented to exert anticancer effects; however, recent reports showed ceramide resistance, which limits the development of the ceramide-based cancer treatment diTFPP, a novel phenoxyphenol compound that has been shown to sensitize HCC cells to ceramide treatment. Here, we further clarified the mechanism underlying diTFPP-mediated sensitization of HCC to C2-ceramide-induced stresses, including oxidative stress, ER stress, and autophagic stress, especially the modulation of LAMP2 glycosylation, the lysosomal membrane protein that is crucial for autophagic fusion. This study may shed light on the mechanism of ceramide resistance and help in the development of adjuvants for ceramide-based cancer therapeutics. Abstract Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the leading cause of cancer-related mortality worldwide. Chemotherapy is the major treatment modality for advanced or unresectable HCC; unfortunately, chemoresistance results in a poor prognosis for HCC patients. Exogenous ceramide, a sphingolipid, has been well documented to exert anticancer effects. However, recent reports suggest that sphingolipid metabolism in ceramide-resistant cancer cells favors the conversion of exogenous ceramides to prosurvival sphingolipids, conferring ceramide resistance to cancer cells. However, the mechanism underlying ceramide resistance remains unclear. We previously demonstrated that diTFPP, a novel phenoxyphenol compound, enhances the anti-HCC effect of C2-ceramide. Here, we further clarified that treatment with C2-ceramide alone increases the protein level of CERS2, which modulates sphingolipid metabolism to favor the conversion of C2-ceramide to prosurvival sphingolipids in HCC cells, thus activating the unfolded protein response (UPR), which further initiates autophagy and the reversible senescence-like phenotype (SLP), ultimately contributing to C2-ceramide resistance in these cells. However, cotreatment with diTFPP and ceramide downregulated the protein level of CERS2 and increased oxidative and endoplasmic reticulum (ER) stress. Furthermore, insufficient LAMP2 glycosylation induced by diTFPP/ceramide cotreatment may cause the failure of autophagosome–lysosome fusion, eventually lowering the threshold for triggering cell death in response to C2-ceramide. Our study may shed light on the mechanism of ceramide resistance and help in the development of adjuvants for ceramide-based cancer therapeutics.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.C.); (Y.-C.C.); (J.Y.-F.C.); (W.L.); (E.-D.S.); (C.-Y.W.)
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.C.); (Y.-C.C.); (J.Y.-F.C.); (W.L.); (E.-D.S.); (C.-Y.W.)
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.C.); (Y.-C.C.); (J.Y.-F.C.); (W.L.); (E.-D.S.); (C.-Y.W.)
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.C.); (Y.-C.C.); (J.Y.-F.C.); (W.L.); (E.-D.S.); (C.-Y.W.)
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.C.); (Y.-C.C.); (J.Y.-F.C.); (W.L.); (E.-D.S.); (C.-Y.W.)
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan;
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.C.); (Y.-C.C.); (J.Y.-F.C.); (W.L.); (E.-D.S.); (C.-Y.W.)
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wen-Tsan Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7651); Fax: +886-7-312-6992
| |
Collapse
|
6
|
Valdez L, Cheng B, Gonzalez D, Rodriguez R, Campano P, Tsin A, Fang X. Combined treatment with niclosamide and camptothecin enhances anticancer effect in U87 MG human glioblastoma cells. Oncotarget 2022; 13:642-658. [PMID: 35548329 PMCID: PMC9084225 DOI: 10.18632/oncotarget.28227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laura Valdez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Benxu Cheng
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Daniela Gonzalez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Reanna Rodriguez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Paola Campano
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Andrew Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
7
|
Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer. J Control Release 2021; 335:369-388. [PMID: 34058270 DOI: 10.1016/j.jconrel.2021.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
In spite of huge developments in cancer treatment, versatile combinational formulations of different chemotherapeutic agents to enhance anticancer activity while reducing systemic toxicity still remains a challenge. In this regard, in the current study, an amphiphilic hyaluronic acid-b-polycaprolactone diblock copolymer was synthesized using "click chemistry". The synthesized copolymer was self-assembled to form polymersomal structures for co-encapsulation of hydrophilic doxorubicin (DOX) and hydrophobic camptothecin (CPT) in their interior aqueous compartment and their bilayer, respectively with 1:10 and 1:1 ratios. The prepared polymersomal combinational formulation surrounded by hyaluronic acid brush as hydrophilic segment, could provide active targeting of the system against CD44 marker expressed on the surface of cancerous cells. The hyaluronic acid shell could also provide flexible chemistry for the conjugation of therapeutic FOXM1-specific DNA aptamer (Forkhead Box M1; against transcription factor FOXM1) on the surface of polymersomes in order to further suppress cancerous cell proliferation. The obtained results demonstrated that the prepared co-formulation provided sustained, controlled release of the entrapped drugs during 200 h. In vitro cytotoxicity experiments on non-small cell lung cancer, A549 and SK-MES-1 cell lines, demonstrated that the co-formulation of DOX and CPT provided synergistic effect and significantly higher cytotoxicity in comparison with free drugs. The cytotoxicity experiment also indicated that the aptamer conjugation on the co-formulations surface could significantly increase the cytotoxicity and induce apoptosis in combination therapy on both A549 and SK-MES-1 cell lines while aptamer-conjugated blank NPs did not show any cytotoxicity which emphasizes on the sensitization capability of the FOXM1 DNA aptamer against non-small cell lung cancer. Furthermore, it was shown that the co-formulation with or without aptamer renders the formulation specific tumor accumulation in vivo 24 h post-administration, assisting the combination synergy observed in vitro to be translated to in vivo antitumor efficacy. This combinatorial delivery platform strongly offers a novel approach for the synergistic controlled transportation of several chemotherapeutics for the treatment of non-small cell lung cancer.
Collapse
|
8
|
The Phenoxyphenol Compound diTFPP Mediates Exogenous C 2-Ceramide Metabolism, Inducing Cell Apoptosis Accompanied by ROS Formation and Autophagy in Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2021; 10:antiox10030394. [PMID: 33807856 PMCID: PMC7998835 DOI: 10.3390/antiox10030394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe disease that accounts for 80% of liver cancers. Chemotherapy is the primary therapeutic strategy for patients who cannot be treated with surgery or who have late-stage HCC. C2-ceramide is an effective reagent that has been found to inhibit the growth of many cancer types. The metabolism of C2-ceramide plays a vital role in the regulation of cell death/cell survival. The phenoxyphenol compound 4-{2,3,5,6-tetrafluoro-4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy)phenyl]phenoxy}phenol (diTFPP) was found to have a synergistic effect with C2-ceramide, resulting in considerable cell death in the HA22T HCC cell line. diTFPP/C2-ceramide cotreatment induced a two- to threefold increase in cell death compared to that with C2-ceramide alone and induced pyknosis. Annexin V/7-aminoactinomycin D (7AAD) double staining and Western blotting indicated that apoptosis was involved in diTFPP/C2-ceramide cotreatment-mediated cell death. We next analyzed transcriptome alterations in diTFPP/C2-ceramide-cotreated HA22T cells with next-generation sequencing (NGS). The data indicated that diTFPP treatment disrupted sphingolipid metabolism, inhibited cell cycle-associated gene expression, and induced autophagy and reactive oxygen species (ROS)-responsive changes in gene expression. Additionally, we assessed the activation of autophagy with acridine orange (AO) staining and observed alterations in the expression of the autophagic proteins LC3B-II and Beclin-1, which indicated autophagy activation after diTFPP/C2-ceramide cotreatment. Elevated levels of ROS were also reported in diTFPP/C2-ceramide-treated cells, and the expression of the ROS-associated proteins SOD1, SOD2, and catalase was upregulated after diTFPP/C2-ceramide treatment. This study revealed the potential regulatory mechanism of the novel compound diTFPP in sphingolipid metabolism by showing that it disrupts ceramide metabolism and apoptotic sphingolipid accumulation.
Collapse
|
9
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
10
|
Hong FU, Castro M, Linse K. Tumor-specific lytic path “hyperploid progression mediated death”: Resolving side effects through targeting retinoblastoma or p53 mutant. World J Clin Oncol 2020; 11:854-867. [PMID: 33312882 PMCID: PMC7701912 DOI: 10.5306/wjco.v11.i11.854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
A major advance was made to reduce the side effects of cancer therapy via the elucidation of the tumor-specific lytic path “hyperploid progression-mediated death” targeting retinoblastoma (Rb) or p53-mutants defective in G1 DNA damage checkpoint. The genetic basis of human cancers was uncovered through the cloning of the tumor suppressor Rb gene. It encodes a nuclear DNA-binding protein whose self-interaction is regulated by cyclin-dependent kinases. A 3D-structure of Rb dimer is shown, confirming its multimeric status. Rb assumes a central role in cell cycle regulation and the “Rb pathway” is universally inactivated in human cancers. Hyperploidy refers to a state in which cells contain one or more extra chromosomes. Hyperploid progression occurs due to continued cell-cycling without cytokinesis in G1 checkpoint-defective cancer cells. The evidence for the triggering of hyperploid progression-mediated death in RB-mutant human retinoblastoma cells is shown. Hence, the very genetic mutation that predisposes to cancer can be exploited to induce lethality. The discovery helped to establish the principle of targeted cytotoxic cancer therapy at the mechanistic level. By triggering the lytic path, targeted therapy with tumor specificity at the genetic level can be developed. It sets the stage for systematically eliminating side effects for cytotoxic cancer therapy.
Collapse
Affiliation(s)
- Frank-Un Hong
- Department of Research and Development, Bio-Synthesis, Lewisville, TX 75057, United States
| | - Miguel Castro
- Department of Research and Development, Bio-Synthesis, Lewisville, TX 75057, United States
| | - Klaus Linse
- Department of Research and Development, Bio-Synthesis, Lewisville, TX 75057, United States
| |
Collapse
|
11
|
The Phenoxyphenol Compound 4-HPPP Selectively Induces Antiproliferation Effects and Apoptosis in Human Lung Cancer Cells through Aneupolyploidization and ATR DNA Repair Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5167292. [PMID: 32089770 PMCID: PMC7024103 DOI: 10.1155/2020/5167292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is a leading cause of cancer death worldwide, and non-small-cell lung cancer (NSCLC) accounts for 85% of lung cancer, which is highly metastatic, leading to the poor survival rate of patients. We recently reported that 4-[4-(4-hydroxyphenoxy)phenoxy]phenol (4-HPPP), a phenoxyphenol, exerts antihepatoma effects by inducing apoptosis and autophagy. In this study, we further examined the effect of 4-HPPP and its analogs on NSCLC cells. Colony formation assays showed that 4-HPPP exerts selective cytotoxicity against NSCLC H1299 cells; furthermore, the inhibitory effect of 4-HPPP on the proliferation and migration of NSCLC cells was validated using an in vivo zebrafish-based tumor xenograft assay. The flow cytometry-based dichlorofluorescein diacetate (DCF-DA) assays indicated that 4-HPPP caused an increase in reactive oxygen species (ROS) in NSCLC cells, and Western blot assays showed that the major ROS scavenging enzymes superoxide dismutases- (SODs-) 1/2 were upregulated, whereas peroxidase (PRX) was downregulated. Furthermore, 4-HPPP caused both aneuploidization and the accumulation of γH2AX, a sensor of DNA damage, as well as the activation of double-strand break (DSB) markers, especially Ataxia-telangiectasia-mutated and Rad3-related (ATR) in NSCLC cells. Our present work suggests that the antiproliferative effects of 4-HPPP on lung cancer cells could be due to its phenoxyphenol structure, and 4-HPPP could be a candidate molecule for treating NSCLC by modulating ROS levels and lowering the threshold of polyploidy-specific cell death in the future.
Collapse
|
12
|
Fathy M, Fawzy MA, Hintzsche H, Nikaido T, Dandekar T, Othman EM. Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules 2019; 24:molecules24213979. [PMID: 31684176 PMCID: PMC6865178 DOI: 10.3390/molecules24213979] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Eugenol is a phytochemical present in different plant products, e.g., clove oil. Traditionally, it is used against a number of different disorders and it was suggested to have anticancer activity. In this study, the activity of eugenol was evaluated in a human cervical cancer (HeLa) cell line and cell proliferation was examined after treatment with various concentrations of eugenol and different treatment durations. Cytotoxicity was tested using lactate dehydrogenase (LDH) enzyme leakage. In order to assess eugenol’s potential to act synergistically with chemotherapy and radiotherapy, cell survival was calculated after eugenol treatment in combination with cisplatin and X-rays. To elucidate its mechanism of action, caspase-3 activity was analyzed and the expression of various genes and proteins was checked by RT-PCR and western blot analyses. Eugenol clearly decreased the proliferation rate and increased LDH release in a concentration- and time-dependent manner. It showed synergistic effects with cisplatin and X-rays. Eugenol increased caspase-3 activity and the expression of Bax, cytochrome c (Cyt-c), caspase-3, and caspase-9 and decreased the expression of B-cell lymphoma (Bcl)-2, cyclooxygenase-2 (Cox-2), and interleukin-1 beta (IL-1β) indicating that eugenol mainly induced cell death by apoptosis. In conclusion, eugenol showed antiproliferative and cytotoxic effects via apoptosis and also synergism with cisplatin and ionizing radiation in the human cervical cancer cell line.
Collapse
Affiliation(s)
- Moustafa Fathy
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Henning Hintzsche
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany.
- Institute of Pharmacology and Toxicology, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany.
| | - Toshio Nikaido
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany.
| |
Collapse
|
13
|
Tu L, Long X, Song W, Lv Z, Zeng H, Wang T, Liu X, Dong J, Xu P. MiR-34c acts as a tumor suppressor in non-small cell lung cancer by inducing endoplasmic reticulum stress through targeting HMGB1. Onco Targets Ther 2019; 12:5729-5739. [PMID: 31410019 PMCID: PMC6647009 DOI: 10.2147/ott.s206932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the role of miR-34c in lung cancer. Methods The levels of microRNA-34c (miR-34c) expression in non-small cell lung cancer (NSCLC) tissue and cell lines were examined by the qRT-PCR assay. High mobility group box 1 (HMGB1) expression in NSCLC was assessed by immunohistochemical analysis (IHC), qRT-PCR, and Western blot assays. The effects of miR-34c overexpression or HMGB1 knockdown on cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry analysis, respectively. Cellular reactive oxygen species (ROS) production in NSCLC cells was detected using a ROS kit. The levels of Bax, p-ERK, eIF2α, GADD153, and IRE1α expression in treated NSCLC cells were measured by Western blot assays. In addition, the interaction between miR-34c and HMGB1 was verified by the dual-luciferase reporter assay. Results miR-34c was only slightly expressed, while HMGB1 was highly expressed in NSCLC tissues and cell lines. Overexpression of miR-34c or knockdown of HMGB1 inhibited cell proliferation, promoted cell apoptosis, and induced ER stress in NSCLC cells. In terms of mechanism, miR-34c negatively regulated HMGB1 expression by directly targeting the 3ʹ-untranslated region (UTR) of HMGB1 mRNA. In addition, we proved that HMGB1 overexpression could block the effects of miR-34c on NSCLC cell proliferation, apoptosis, and ER stress. Conclusion miR-34c may suppress NSCLC tumors by targeting HMGB1 mRNA, promoting endoplasmic reticulum stress, and increasing ROS levels. Our findings suggest that miR-34c has a role in NSCLC.
Collapse
Affiliation(s)
- Li Tu
- Department of Respiratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, People's Republic of China.,Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Xiang Long
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Weidong Song
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Zhongdong Lv
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Huadong Zeng
- Department of Respiratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, People's Republic of China
| | - Tiezhu Wang
- Department of Respiratory Medicine, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, People's Republic of China
| | - Xianglu Liu
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Juanni Dong
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Ping Xu
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| |
Collapse
|
14
|
Chiu YH, Hsu SH, Hsu HW, Huang KC, Liu W, Wu CY, Huang WP, Chen JYF, Chen BH, Chiu CC. Human non‑small cell lung cancer cells can be sensitized to camptothecin by modulating autophagy. Int J Oncol 2018; 53:1967-1979. [PMID: 30106130 PMCID: PMC6192723 DOI: 10.3892/ijo.2018.4523] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a prevalent disease and is one of the leading causes of mortality worldwide. Despite the development of various anticancer drugs, the prognosis of lung cancer is relatively poor. Metastasis of lung cancer, as well as chemoresistance, is associated with a high mortality rate for patients with lung cancer. Camptothecin (CPT) is a well-known anticancer drug, which causes cancer cell apoptosis via the induction of DNA damage; however, the cytotoxicity of CPT easily reaches a plateau at a relatively high dose in lung cancer cells, thus limiting its efficacy. The present study demonstrated that CPT may induce autophagy in two human non‑small cell lung cancer cell lines, H1299 and H460. In addition, the results of a viability assay and Annexin V staining revealed that CPT-induced autophagy could protect lung cancer cells from programmed cell death. Conversely, the cytotoxicity of CPT was increased when autophagy was blocked by 3-methyladenine treatment. Furthermore, inhibition of autophagy enhanced the levels of CPT-induced DNA damage in the lung cancer cell lines. Accordingly, these findings suggested that autophagy exerts a protective role in CPT-treated lung cancer cells, and the combination of CPT with a specific inhibitor of autophagy may be considered a promising strategy for the future treatment of lung cancer.
Collapse
Affiliation(s)
- Yi-Han Chiu
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan, R.O.C
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hsiao-Wei Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 252, Taiwan, R.O.C
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-Pang Huang
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chien-Chih Chiu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
15
|
Oxidative Stress in Kidney Diseases: The Cause or the Consequence? Arch Immunol Ther Exp (Warsz) 2017; 66:211-220. [PMID: 29214330 PMCID: PMC5956016 DOI: 10.1007/s00005-017-0496-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
Exaggerated oxidative stress (OS) is usually considered as a disturbance in regular function of an organism. The excessive levels of OS mediators may lead to major damage within the organism’s cells and tissues. Therefore, the OS-associated biomarkers may be considered as new diagnostic tools of various diseases. In nephrology, researchers are looking for alternative methods replacing the renal biopsy in patients with suspicion of chronic kidney disease (CKD). Currently, CKD is a frequent health problem in world population, which can lead to progressive loss of kidney function and eventually to end-stage renal disease. The course of CKD depends on the primary disease. It is assumed that one of the factors influencing the course of CKD might be OS. In the current work, we review whether monitoring the OS-associated biomarkers in nephrology patients can support the decision-making process regarding diagnosis, prognostication and treatment initiation.
Collapse
|