1
|
Fodor Duric L, Basic Jukic N, Vujicic B. Comparison of Autologous and Allogeneic Adipose-Derived Stem Cells in Kidney Transplantation: Immunological Considerations and Therapeutic Efficacy. J Clin Med 2024; 13:5763. [PMID: 39407823 PMCID: PMC11476955 DOI: 10.3390/jcm13195763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Regenerative medicine shows significant potential in treating kidney diseases through the application of various types of stem and progenitor cells, including mesenchymal stem cells (MSCs), renal stem/progenitor cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Stem cells possess the unique ability to repair injured organs and improve impaired functions, making them a key element in the research of therapies for kidney tissue repair and organ regeneration. In kidney transplantation, reperfusion injury can cause tissue destruction, leading to an initially low glomerular filtration rate and long-term impact on function by creating irreversible interstitial fibrosis. MSCs have proven useful in repairing early tissue injury in animal models of kidney, lung, heart, and intestine transplantation. The use of stem cell therapies in solid organ transplantation raises the question of whether autologous or allogeneic cells should be preferred. Adipose-derived stem cells (ASCs), characterized by the lack of HLA Class II molecules and low expression of HLA Class I and co-stimulatory signals, are considered immune-privileged. However, the actual risk of graft rejection associated with allogeneic ASCs remains unclear. It has been demonstrated that donor-derived ASCs can promote the development of Treg cells in vitro, and some degree of tolerance induction has been observed in vivo. Nevertheless, a study comparing the efficacy of autologous and allogeneic ASCs in a rat model with a total MHC mismatch for kidney transplantation showed that donor-derived administration of ASCs did not improve the grafts' survival and was associated with increased mortality through an immunologically mediated mechanism. Given the lack of data, autologous ASCs appear to be a safer option in this research context. The aim of this review was to examine the differences between autologous and allogeneic ASCs in the context of their application in kidney transplantation therapies, considering potential immune reactions and therapeutic efficacy. Some have argued that ASCs harvested from end-stage renal disease (ESRD) patients may have lower regenerative potential due to the toxic effects of uremia, potentially limiting their use in transplantation settings. However, evidence suggests that the beneficial properties of ASCs are not affected by uremia or dialysis. Indeed, some investigators have demonstrated that ASCs harvested from chronic kidney disease (CKD) patients exhibit normal characteristics and function, maintaining consistent proliferative capacity and genetic stability over time, even after prolonged exposure to uremic serum Furthermore, no differences were observed in the response of ASCs to immune activation or their inhibitory effect on the proliferation of alloantigen-activated peripheral blood mononuclear cells between patients with normal or impaired renal function. This review presents the current achievements in stem cell research aimed at treating kidney diseases, highlighting significant progress and ongoing efforts in the development of stem cell-based therapies. Despite the encouraging results, further research is needed to overcome the current limitations and fully realize the potential of these innovative treatments. Advances in this field are crucial for developing effective therapies that can address the complex challenges associated with kidney damage and failure.
Collapse
Affiliation(s)
- Ljiljana Fodor Duric
- Medicol Polyclinic, School of Medicine, Croatian Catholic Unoversity, 10000 Zagreb, Croatia
| | - Nikolina Basic Jukic
- Department of Nephrology, Dialysis and Kidney Transplantation, Clinical Hospital Center Zagreb, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Bozidar Vujicic
- Department of Nephrology, Dialysis and Kidney Transplantation, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
2
|
Guo Y, Zheng B, Tian P, Zheng J, Li Y, Ding X, Xue W, Ding C. HLA class II antibody activation of endothelial cells induces M2 macrophage differentiation in peripheral blood. Clin Exp Nephrol 2023; 27:309-320. [PMID: 36611129 DOI: 10.1007/s10157-022-02307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Donor-specific human leukocyte antigen (HLA) class II antibodies (HLA-II Abs) combined with allogeneic endothelial cells (ECs) mediate high-risk rejection in kidney transplant patients. Macrophage accumulation is a significant histological feature of antibody-mediated rejection (AMR) in kidney transplant patients. Here, we further investigated the effect of HLA-II Abs on macrophage phenotypes to provide theoretical basis for clinical treatment of AMR. METHODS We prepared an experimental model containing HLA-II Ab-stimulated microvascular ECs and peripheral blood mononuclear cells (PBMCs) co-culture and explored the potential relationship of HLA-II Ab, ECs activation, and macrophage differentiation. Immune phenotype of macrophage subsets was analyzed and quantified by flow cytometry. HLA-II Ab activation of ECs induces M2 macrophage differentiation signal pathways which were investigated by qPCR and western blotting. RESULTS The stimulation of ECs by F(ab')2 fragment of HLA-II Abs led to phosphorylation of PI3K, Akt, and mTOR, which mediated IL-10, ICAM-1, VCAM-1 secretion. The enhanced ICAM-1 and IL-10 promoted the migration of PBMCs and their differentiation into CD68+ and CD163+ (M2-type) macrophages, respectively, but not CD86+ macrophages. CONCLUSION These findings revealed the PI3K/Akt/mTOR signal pathways activated by HLA-II Abs in ECs and the immune regulation ability of HLA-II Abs to induce PBMC differentiation.
Collapse
Affiliation(s)
- Yingcong Guo
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China.
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Lu Q, Hou Q, Cao K, Sun X, Liang Y, Gu M, Xue X, Zhao AZ, Dai C. Complement factor B in high glucose-induced podocyte injury and diabetic kidney disease. JCI Insight 2021; 6:147716. [PMID: 34622800 PMCID: PMC8525650 DOI: 10.1172/jci.insight.147716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The role and mechanisms for upregulating complement factor B (CFB) expression in podocyte dysfunction in diabetic kidney disease (DKD) are not fully understood. Here, analyzing Gene Expression Omnibus GSE30528 data, we identified genes enriched in mTORC1 signaling, CFB, and complement alternative pathways in podocytes from patients with DKD. In mouse models, podocyte mTOR complex 1 (mTORC1) signaling activation was induced, while blockade of mTORC1 signaling reduced CFB upregulation, alternative complement pathway activation, and podocyte injury in the glomeruli. Knocking down CFB remarkably alleviated alternative complement pathway activation and DKD in diabetic mice. In cultured podocytes, high glucose treatment activated mTORC1 signaling, stimulated STAT1 phosphorylation, and upregulated CFB expression, while blockade of mTORC1 or STAT1 signaling abolished high glucose–upregulated CFB expression. Additionally, high glucose levels downregulated protein phosphatase 2Acα (PP2Acα) expression, while PP2Acα deficiency enhanced high glucose–induced mTORC1/STAT1 activation, CFB induction, and podocyte injury. Taken together, these findings uncover a mechanism by which CFB mediates podocyte injury in DKD.
Collapse
Affiliation(s)
| | | | - Kai Cao
- Center for Kidney Disease and
| | - Xiaoli Sun
- Department of Clinical Genetics, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | - Xian Xue
- Department of Clinical Genetics, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chunsun Dai
- Center for Kidney Disease and.,Department of Clinical Genetics, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Multiplex gene analysis reveals T-cell and antibody-mediated rejection-specific upregulation of complement in renal transplants. Sci Rep 2021; 11:15464. [PMID: 34326417 PMCID: PMC8322413 DOI: 10.1038/s41598-021-94954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In renal transplantation, complement is involved in ischemia reperfusion injury, graft rejection and dysfunction. However, it is still unclear how induction of complement and its activation are initiated. Using allograft biopsies of a well-characterized cohort of 28 renal transplant patients with no rejection (Ctrl), delayed graft function (DGF), acute T-cell-mediated (TCMR) or antibody-mediated rejection (ABMR) we analyzed differences in complement reaction. For that mRNA was isolated from FFPE sections, quantified with a multiplex gene expression panel and correlated with transplant conditions and follow-up of patients. Additionally, inflammatory cells were quantified by multiplex immunohistochemistry. In allograft biopsies with TCMR and ABMR gene expression of C1QB was 2-4 fold elevated compared to Ctrl. In TCMR biopsies, mRNA counts of several complement-related genes including C1S, C3, CFB and complement regulators CFH, CR1 and SERPING1 were significantly increased compared to Ctrl. Interestingly, expression levels of about 75% of the analyzed complement related genes correlated with cold ischemia time (CIT) and markers of inflammation. In conclusion, this study suggest an important role of complement in transplant pathology which seems to be at least in part triggered by CIT. Multiplex mRNA analysis might be a useful method to refine diagnosis and explore new pathways involved in rejection.
Collapse
|