1
|
Berryman Z, Bridger L, Hussaini HM, Rich AM, Atieh M, Tawse-Smith A. Titanium particles: An emerging risk factor for peri-implant bone loss. Saudi Dent J 2020; 32:283-292. [PMID: 32874068 PMCID: PMC7452065 DOI: 10.1016/j.sdentj.2019.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the presence of titanium particles in peri-implant tissues in cases diagnosed with peri-implantitis, and to identify immunological reactions that these particles may elicit. METHODS Ten peri-implant tissue biopsies of patients diagnosed clinically and radiographically with peri-implantitis were obtained from the archives of Oral Pathology Centre, University of Otago. The inclusion criteria involves: bleeding on probing, ≥6 mm probing depth and ≥3 mm radiographic bone loss around the dental implant. Peri-implant tissue samples were evaluated using scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) to identify of sites with/without titanium particles. Antibodies against human transforming growth factor beta 1 (TGF-β1), receptor activator of nuclear factor kappa-B ligand (RANKL), interleukin 33 (IL-33) and cluster of differentiation 68 (CD68) were used to stain the specimens. ImageJ software was used to standardise the sampling area, compare and characterise the inflammatory infiltrate in tissues with/without titanium particles. Inflammatory cytokines positivity was assessed using the immunoreactive scores (IRSs). RESULTS Light microscopy and SEM-EDS analysis identified titanium wear particles in 90% of the tissue samples, associated with a mixed chronic inflammatory infiltrate. Quantification analysis of RANKL revealed significantly higher IRS and intensity scores (p < 0.05) in areas containing titanium. High intensity, proportion and IRSs of TGF-β1 and IL-33 were observed in areas with titanium. CD68 had higher IRSs in the absence of titanium particles. CONCLUSIONS Significant overexpression of the cytokine RANKL was observed, with a trend for over-expression of IL-33 and TGF-B1 in areas with titanium. Further studies with large sample size and appropriate control group for quantification analysis is needed to confirm the role of titanium particles in initiating bone loss.
Collapse
Affiliation(s)
- Zoë Berryman
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Laura Bridger
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Haizal Mohd Hussaini
- Department of Oral Diagnostic and Surgical Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Alison M. Rich
- Department of Oral Diagnostic and Surgical Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Momen Atieh
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Andrew Tawse-Smith
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Lal S, Caseley EA, Hall RM, Tipper JL. Biological Impact of Silicon Nitride for Orthopaedic Applications: Role of Particle Size, Surface Composition and Donor Variation. Sci Rep 2018; 8:9109. [PMID: 29904079 PMCID: PMC6002550 DOI: 10.1038/s41598-018-27494-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
The adverse biological impact of orthopaedic wear debris currently limits the long-term safety of human joint replacement devices. We investigated the role of particle size, surface composition and donor variation in influencing the biological impact of silicon nitride as a bioceramic for orthopaedic applications. Silicon nitride particles were compared to the other commonly used orthopaedic biomaterials (e.g. cobalt-chromium and Ti-6Al-4V alloys). A novel biological evaluation platform was developed to simultaneously evaluate cytotoxicity, inflammatory cytokine release, oxidative stress, and genotoxicity potential of particles using peripheral blood mononuclear cells (PBMNCs) from individual human donors. Irrespective of the particle size, silicon nitride did not cause any adverse responses whereas cobalt-chromium wear particles caused donor-dependent cytotoxicity, TNF-α cytokine release, oxidative stress, and DNA damage in PBMNCs after 24 h. Despite being similar in size and morphology, silicon dioxide nanoparticles caused the release of significantly higher levels of TNF-α compared to silicon nitride nanoparticles, suggesting that surface composition influences the inflammatory response in PBMNCs. Ti-6Al-4V wear particles also released significantly elevated levels of TNF-α cytokine in one of the donors. This study demonstrated that silicon nitride is an attractive orthopaedic biomaterial due to its minimal biological impact on human PBMNCs.
Collapse
Affiliation(s)
- Saurabh Lal
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK.
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK.
| | - Emily A Caseley
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK
| | - Richard M Hall
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK
| | - Joanne L Tipper
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK
| |
Collapse
|
3
|
CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells. Toxicol Appl Pharmacol 2014; 281:125-35. [DOI: 10.1016/j.taap.2014.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
|
4
|
Zhang K, Yang SY, Yang S, Bai L, Li P, Liu D, Schurman JR, Wooley PH. Different influence of Ti, PMMA, UHMWPE, and Co-Cr particles on peripheral blood monocytes during periprosthetic inflammation. J Biomed Mater Res A 2014; 103:358-64. [PMID: 24659563 DOI: 10.1002/jbm.a.35176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Kai Zhang
- Department of Orthopaedics; Affiliated Hospital to Binzhou Medical College; Binzhou China
| | - Shang-You Yang
- Department of Biological Sciences; Wichita State University; Wichita Kansas 67214
- Orthopaedic Research Institute; Via Christi Hospital St. Francis; Wichita Kansas 67214
| | - Shuye Yang
- Department of Orthopaedics; Affiliated Hospital to Binzhou Medical College; Binzhou China
- Department of Biological Sciences; Wichita State University; Wichita Kansas 67214
| | - Ling Bai
- Orthopaedic Research Institute; Via Christi Hospital St. Francis; Wichita Kansas 67214
| | - Peng Li
- Department of Orthopaedics; Affiliated Hospital to Binzhou Medical College; Binzhou China
| | - Dong Liu
- Department of Orthopaedics; Affiliated Hospital to Binzhou Medical College; Binzhou China
| | | | - Paul H. Wooley
- Department of Biological Sciences; Wichita State University; Wichita Kansas 67214
- Orthopaedic Research Institute; Via Christi Hospital St. Francis; Wichita Kansas 67214
| |
Collapse
|
5
|
Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, Nich C, Yao Z, Egashira K, Yang F, Konttinen YT. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface 2014; 11:20130962. [PMID: 24478281 DOI: 10.1098/rsif.2013.0962] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants.
Collapse
Affiliation(s)
- S B Goodman
- Department of Orthopaedic Surgery, Stanford University, , Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nawroth I, Alsner J, Deleuran BW, Dagnaes-Hansen F, Yang C, Horsman MR, Overgaard J, Howard KA, Kjems J, Gao S. Peritoneal macrophages mediated delivery of chitosan/siRNA nanoparticle to the lesion site in a murine radiation-induced fibrosis model. Acta Oncol 2013; 52:1730-8. [PMID: 23020526 DOI: 10.3109/0284186x.2012.726373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation-induced fibrosis (RIF) is a dose-limiting complication of cancer radiotherapy and causes serious problems, i.e. restricted tissue flexibility, pain, ulceration or necrosis. Recently, we have successfully treated RIF in a mouse model by intraperitoneal administration of chitosan/siRNA nanoparticles directed towards silencing TNF alpha in local macrophage populations, but the mechanism for the therapeutic effect at the lesion site remains unclear. METHODS Using the same murine RIF model we utilized an optical imaging technique and fluorescence microscopy to investigate the uptake of chitosan/fluorescently labeled siRNA nanoparticles by peritoneal macrophages and their subsequent migration to the inflamed tissue in the RIF model. RESULTS We observed strong accumulation of the fluorescent signal in the lesion site of the irradiated leg up to 24 hours using the optical imaging system. We further confirm by immunohistochemical staining that Cy3 labeled siRNA resides in macrophages of the irradiated leg. CONCLUSION We provide a proof-of-concept for host macrophage trafficking towards the inflamed region in a murine RIF model, which thereby suggests that the chitosan/siRNA nanoparticle may constitute a general treatment for inflammatory diseases using the natural homing potential of macrophages to inflammatory sites.
Collapse
Affiliation(s)
- Isabel Nawroth
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University, Aarhus C , Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jiang Y, Jia T, Gong W, Wooley PH, Yang SY. Titanium particle-challenged osteoblasts promote osteoclastogenesis and osteolysis in a murine model of periprosthestic osteolysis. Acta Biomater 2013; 9:7564-72. [PMID: 23518478 DOI: 10.1016/j.actbio.2013.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Abstract
The current study investigates the interactive behavior of titanium alloy particle-challenged osteoblastic bone marrow stromal cells (BMSCs) and macrophage lineage cells in a murine knee-prosthesis failure model. BMSCs were isolated from male BALB/c mice femurs and induced in osteogenic medium. At 24h after isolation, BMSCs in complete induction medium were challenged with 1, 3 or 5mgml(-1) titanium particles for 7days. Culture media were collected at 2, 4 and 6days and cells were harvested at 7days for alkaline phosphatase (ALP) assay/stains. Cell proliferation in the presence of Ti particles was periodically evaluated by MTT assay. Mice implanted with titanium-pin tibial implants were given an intra-articular injection of 50μl medium containing 5×10(5) Ti particles-challenged bone-marrow-derived osteoblastic cells, followed by a repeat injection at 2weeks post-operation. Control mice with titanium-pin implants received a naïve osteoblastic cell transfusion. After sacrifice at 4weeks, the implanted knee joint of each group was collected for biomechanical pin-pullout testing, histological evaluation and reverse transcriptase polymerase chain reaction analysis of mRNA extracted from the joint tissues. Ti particles significantly stimulated the proliferation of BMSC-derived osteoblastic cells at both high and low particle concentrations (p<0.05), with no marked differences between the particle doses. ALP expression was diminished following Ti particle interactions, especially in the high-dose particle group (p<0.05). In addition, the culture media collected from short-term challenged (48h) osteoblasts significantly increased the numbers of TRAP+ cells when added to mouse peripheral blood monocytes cultures, in comparison with the monocytes cells receiving naïve osteoblasts media (p<0.05). Intra-articular introduction of the osteoblastic cells to the mouse pin-implant failure model resulted in reduced implant interfacial shear strength and thicker peri-implant soft-tissue formation, suggesting that titanium particles-challenged osteoblasts contributed to periprosthetic osteolysis. Comparison of the gene expression profiles among the peri-implant tissue samples following osteoblast injection did not find significant difference in RunX2 or Osterix/Sp7 between the groups. However, MMP-2, IL-1, TNF-α, RANKL, and TRAP gene expressions were elevated in the challenged-osteoblast group (p<0.05). In conclusion, titanium alloy particles were shown to interfere with the growth, maturation, and functions of the bone marrow osteoblast progenitor cells. Particle-challenged osteoblasts appear to express mediators that regulate osteoclastogenesis and peri-prosthetic osteolysis.
Collapse
|
8
|
Goodman SB, Gibon E, Yao Z. The basic science of periprosthetic osteolysis. Instr Course Lect 2013; 62:201-206. [PMID: 23395025 PMCID: PMC3766766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Total joint arthroplasty has revolutionized the treatment of arthritic and degenerative conditions for many joints in the body; however, wear debris is continuously generated with day-to-day use of an artificial joint. Excessive production of wear by-products induces a foreign body and chronic inflammatory reaction that accelerates periprosthetic bone destruction and inhibits bone formation. The specific biologic reaction is dependent on the type, amount, and characteristics of the by-products of wear, along with individual genetic variations. For polymeric and ceramic particles, the inflammatory reaction is generally nonspecific and nonimmune; however, with metallic by-products, a type IV, T lymphocyte-mediated, antigen-dependent immune reaction can occur in some patients. The production of proinflammatory cytokines, chemokines, reactive oxygen species, and other mediators is upregulated by wear particles. Animal models have shown that the biologic reaction to wear particles is systemic in nature, not a localized event. Mechanical stimuli and the presence of endotoxin also appear to be important. Efficacious biologic treatments of periprosthetic osteolysis are not yet available. Research continues with the hope that viable strategies for preventing and treating particle-induced osteolysis will be introduced in the future, thus mitigating the need for revision surgery.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University Medical Center, Redwood City, CA, USA
| | | | | |
Collapse
|
9
|
Combination gene therapy targeting on interleukin-1β and RANKL for wear debris-induced aseptic loosening. Gene Ther 2012; 20:128-35. [PMID: 22318091 PMCID: PMC3349796 DOI: 10.1038/gt.2012.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the efficacy of a combination gene therapy to repress interleukin-1 (IL-1) and receptor activator of nuclear factor NF-kappa B ligand (RANKL) for the treatment of particulate debris-induced aseptic loosening, and tried to explore the molecular mechanism of the exogenous gene modifications on osteoclastogenesis. RAW cells activated by titanium particles were transduced with DFG-IL-1Ra (retroviral vector encoding IL-1 receptor antagonist) and AAV-OPG (adeno-associated viral vectors-osteoprotegerin) individually or in combination for 4 weeks. Pro-inflammatory cytokines in culture media were determined by enzyme-linked immunosorbent assay, and gene expressions of RANK, IL-1β, c-Fos, TRAF6, JNK1 and CPK were examined using real-time PCR. An established knee-implant-failure mouse model was employed to evaluate the efficacy of the in vivo double-gene therapy. The surgical implantation of a titanium alloy pin into the proximal tibia was followed by monthly challenge with titanium debris. Peri-implant gene transfers of IL-1Ra and OPG (respectively or in combination) were given 3 weeks after surgery. The combination of OPG and IL-1Ra gene transfer exhibited strong synergetic effects in blockage of inflammation and osteoclastogenesis at 8 weeks after gene modification. The combination therapy reversed peri-implant bone resorption and restored implant stability when compared with either single gene transduction. Real-time PCR data indicated that the action of IL-1Ra gene therapy may be mediated via the JNK1 pathway, while the reduction of osteoclastogenesis by OPG gene modification may be regulated by c-Fos expression. In addition, both gene modifications resulted in significant diminishment of TRAF6 expression.
Collapse
|
10
|
Yang SY, Zhang K, Bai L, Song Z, Yu H, McQueen DA, Wooley PH. Polymethylmethacrylate and titanium alloy particles activate peripheral monocytes during periprosthetic inflammation and osteolysis. J Orthop Res 2011; 29:781-6. [PMID: 21437959 DOI: 10.1002/jor.21287] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/20/2010] [Indexed: 02/04/2023]
Abstract
We investigated the interactions of particulate PMMA or titanium alloy, patient blood monocytes, and periprosthetic tissues using a SCID-hu model of aseptic loosening. Periprosthetic tissues and bone chips obtained at revision surgery for loosening were transplanted into muscles of SCID mice. Peripheral blood monocytes (PBMCs) isolated from the same donors were fluorescently labeled and co-cultured with PMMA or Ti-6Al-4V particles before intraperitoneal injection. Control mice with periprosthetic tissue or non-inflammatory ligament xenografts received naive PBMCs transfusion. Mice were euthanized 2 weeks after PBMC transfusion. The human tissues were well accepted in SCID mice. Transfused fluorescent-labeled PBMCs were markedly accumulated in transplanted periprosthetic tissues. Multinucleated osteoclast-like cells were commonly seen within retrieved xenograft tissue, and focal bone erosions were ubiquitous. Total cell densities and CD68+ cells within the xenograft were significantly increased in mice transfused with PMMA and Ti-provoked PBMCs compared to the naïve PBMC animals (p < 0.05). Immunohistochemical staining identified much stronger positive IL-1 and TNF stains in xenografts from either PMMA or Ti-stimulated monocytes transfusion groups (p < 0.05). TRAP+ cells were found around bone chips in both activated-PBMCs groups, although markedly more aggregated TRAP+ cells in the PMMA-challenged group than in the titanium group (p < 0.05). MicroCT assessment confirmed the significant decrease of bone mineral density in chips interacted with activated-monocytes/osteoclasts. In conclusion, PMMA or titanium particles readily activate peripheral monocytes and promote the cell trafficking to the debris-containing prosthetic tissues. Particles-provoked PBMCs participated in and promoted the local inflammatory process, osteoclastogenesis, and bone resorption.
Collapse
Affiliation(s)
- Shang-You Yang
- Orthopaedic Research Institute, Via Christi Regional Medical Center, Wichita, Kansas, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Archibeck MJ, Jacobs JJ, Roebuck KA, Glant TT. The basic science of periprosthetic osteolysis. Instr Course Lect 2001; 50:185-95. [PMID: 11372314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Despite improvements in the techniques, materials, and fixation of total joint replacements, wear and its sequelae continue to be the main factors limiting the longevity and clinical success of arthroplasty. Since Charnley first recognized aseptic loosening in the early 1960s, a tremendous amount of information has been gained on the basic science of osteolysis. Tissue explant, animal, and cell culture studies have allowed development of an appreciation of the complexity of cellular interactions and chemical mediators involved in these processes. Cellular participants have been shown to include the macrophage, osteoblast, fibroblast, and osteoclast. The plethora of chemical mediators that are responsible for the cellular interactions and effects on bone primarily include PGE2, TNF-alpha, IL-1, and IL-6. Recent and ongoing work in the field of signaling pathways will continue to advance our understanding of the mechanisms of periprosthetic bone loss. Although initial animal studies are promising for the development of possible pharmacologic agents for the treatment and prevention of osteolysis, well controlled human trials are required.
Collapse
Affiliation(s)
- M J Archibeck
- Department of Orthopaedic Surgery, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois, USA
| | | | | | | |
Collapse
|