1
|
Komal S, Gao Y, Wang ZM, Yu QW, Wang P, Zhang LR, Han SN. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals (Basel) 2024; 17:1353. [PMID: 39458994 PMCID: PMC11510975 DOI: 10.3390/ph17101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial fibroblasts play a crucial role in heart structure and function. In recent years, significant progress has been made in understanding the epigenetic regulation of myocardial fibroblasts, which is essential for cardiac development, homeostasis, and disease progression. In healthy hearts, cardiac fibroblasts (CFs) play a crucial role in synthesizing the extracellular matrix (ECM) when in a dormant state. However, under pathological and environmental stress, CFs transform into activated fibroblasts known as myofibroblasts. These myofibroblasts produce an excess of ECM, which promotes cardiac fibrosis. Although multiple molecular mechanisms are associated with CF activation and myocardial dysfunction, emerging evidence highlights the significant involvement of epigenetic regulation in this process. Epigenetics refers to the heritable changes in gene expression that occur without altering the DNA sequence. These mechanisms have emerged as key regulators of myocardial fibroblast function. This review focuses on recent advancements in the understanding of the role of epigenetic regulation and emphasizes the impact of epigenetic modifications on CF activation. Furthermore, we present perspectives and prospects for future research on epigenetic modifications and their implications for myocardial fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.K.); (Y.G.); (Z.-M.W.); (Q.-W.Y.); (P.W.); (L.-R.Z.)
| |
Collapse
|
2
|
Kuang H, Yang L, Li Z, Wang J, Zheng K, Mei J, Sun H, Huang Y, Yang C, Luo W. DNA methyltransferase 3A induces the occurrence of oral submucous fibrosis by promoting the methylation of the von Hippel-Lindau. Oral Dis 2024; 30:2325-2336. [PMID: 37743610 DOI: 10.1111/odi.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is associated with malignant disorders. DNA methyltransferase 3A (DNMT3A) is a DNA methylesterase reported to be upregulated in multiple organs and shown to inhibit fibrosis. However, the detailed effect of DNMT3A on OSF remains unclear. METHODS To mimic OSF in vitro, oral fibroblasts were exposed to arecoline and molecular biological experiments were performed to detect the function of DNMT3A in OSF. RESULTS We found that von Hippel-Lindau (VHL) was downregulated and highly methylated in OSF. Arecoline remarkably increased the viability, invasiveness, and migration of oral fibroblasts, but upregulation of VHL partially reversed these effects. DNMT3A induces DNA hypermethylation in the VHL promoter, and VHL markedly inhibits the level of tenascin-C (TNC) by inducing the ubiquitination of TNC. TNC reversed the inhibitory effect of VHL upregulation on the differentiation of oral fibroblasts into myofibroblasts. CONCLUSION DNMT3A induces OSF by promoting methylation of the VHL promoter. Hence, our study provides novel insights into the discovery of novel strategies that can be employed against OSF.
Collapse
Affiliation(s)
- Huifang Kuang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Liyan Yang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Zhixin Li
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Jinrong Wang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Kaiyue Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Jie Mei
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Honglan Sun
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Yuqi Huang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Chao Yang
- Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
- Research and Development Department, Shenzhen Uni-Medica Technology Co., Ltd, Shenzhen, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Lin LC, Liu ZY, Tu B, Song K, Sun H, Zhou Y, Sha JM, Zhang Y, Yang JJ, Zhao JY, Tao H. Epigenetic signatures in cardiac fibrosis: Focusing on noncoding RNA regulators as the gatekeepers of cardiac fibroblast identity. Int J Biol Macromol 2024; 254:127593. [PMID: 37898244 DOI: 10.1016/j.ijbiomac.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Li Y, Ma L, Deng Y, Du Z, Guo B, Yue J, Liu X, Zhang Y. The Notch1/Hes1 signaling pathway affects autophagy by adjusting DNA methyltransferases expression in a valproic acid-induced autism spectrum disorder model. Neuropharmacology 2023; 239:109682. [PMID: 37543138 DOI: 10.1016/j.neuropharm.2023.109682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
As a pervasive neurodevelopmental disease, autism spectrum disorder (ASD) is caused by both hereditary and environmental elements. Research has demonstrated the functions of the Notch pathway and DNA methylation in the etiology of ASD. DNA methyltransferases DNMT3 and DNMT1 are responsible for methylation establishment and maintenance, respectively. In this study, we aimed to explore the association of DNA methyltransferases with the Notch pathway in ASD. Our results showed Notch1 and Hes1 were upregulated, while DNMT3A and DNMT3B were downregulated at the protein level in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA-induced ASD rats compared with Control (Con) group. However, the protein levels of DNMT3A and DNMT3B were augmented after treatment with 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester (DAPT), suggesting that abnormal Notch pathway activation may affect the expression of DNMT3A and DNMT3B. Besides, our previous findings revealed that the Notch pathway may participate in development of ASD by influencing autophagy. Therefore, we hypothesized the Notch pathway adjusts autophagy and contributes to ASD by affecting DNA methyltransferases. Our current results showed that after receiving the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-2'dc), the VPA + DAPT+5-Aza-2'dc (V + D + Aza) group exhibited reduced social interaction ability and increased stereotyped behaviors, and decreased expression of DNMT3A, DNMT3B and autophagy-related proteins, but did not show changes in Notch1 and Hes1 protein levels. Our results indicated that the Notch1/Hes1 pathway may adjust DNMT3A and DNMT3B expression and subsequently affect autophagy in the occurrence of ASD, providing new insight into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yanan Deng
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Bingqian Guo
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Jianing Yue
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Xianxian Liu
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
5
|
Grzeczka A, Graczyk S, Kordowitzki P. DNA Methylation and Telomeres-Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. Int J Mol Sci 2023; 24:15699. [PMID: 37958686 PMCID: PMC10650750 DOI: 10.3390/ijms242115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in humans. AF is characterized by irregular and increased atrial muscle activation. This high-frequency activation obliterates the synchronous work of the atria and ventricles, reducing myocardial performance, which can lead to severe heart failure or stroke. The risk of developing atrial fibrillation depends largely on the patient's history. Cardiovascular diseases are considered aging-related pathologies; therefore, deciphering the role of telomeres and DNA methylation (mDNA), two hallmarks of aging, is likely to contribute to a better understanding and prophylaxis of AF. In honor of Prof. Elizabeth Blackburn's 75th birthday, we dedicate this review to the discovery of telomeres and her contribution to research on aging.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Szosa Bydgoska 13, 87-100 Torun, Poland
| |
Collapse
|
6
|
Emon IM, Al-Qazazi R, Rauh MJ, Archer SL. The Role of Clonal Hematopoiesis of Indeterminant Potential and DNA (Cytosine-5)-Methyltransferase Dysregulation in Pulmonary Arterial Hypertension and Other Cardiovascular Diseases. Cells 2023; 12:2528. [PMID: 37947606 PMCID: PMC10650407 DOI: 10.3390/cells12212528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression without altering gene sequences in health and disease. DNA methyltransferases (DNMTs) are enzymes responsible for DNA methylation, and their dysregulation is both a pathogenic mechanism of disease and a therapeutic target. DNMTs change gene expression by methylating CpG islands within exonic and intergenic DNA regions, which typically reduces gene transcription. Initially, mutations in the DNMT genes and pathologic DNMT protein expression were found to cause hematologic diseases, like myeloproliferative disease and acute myeloid leukemia, but recently they have been shown to promote cardiovascular diseases, including coronary artery disease and pulmonary hypertension. We reviewed the regulation and functions of DNMTs, with an emphasis on somatic mutations in DNMT3A, a common cause of clonal hematopoiesis of indeterminant potential (CHIP) that may also be involved in the development of pulmonary arterial hypertension (PAH). Accumulation of somatic mutations in DNMT3A and other CHIP genes in hematopoietic cells and cardiovascular tissues creates an inflammatory environment that promotes cardiopulmonary diseases, even in the absence of hematologic disease. This review summarized the current understanding of the roles of DNMTs in maintenance and de novo methylation that contribute to the pathogenesis of cardiovascular diseases, including PAH.
Collapse
Affiliation(s)
- Isaac M. Emon
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| |
Collapse
|
7
|
Xu S, Zhang Y, Zhou G, Liu A. Bidirectional negative feedback actions of DNMT3A and miR-145 in regulating autophagy in cardiac fibroblasts and affecting myocardial fibrosis. J Bioenerg Biomembr 2023; 55:341-352. [PMID: 37610521 DOI: 10.1007/s10863-023-09980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Epigenetic regulation has crucial implications for myocardial fibrosis. It has been reported that autophagy, regulated by miR-145, is implicated in the proliferation and fibrosis of cardiac fibroblasts (CFs). However, how it works during the process remains unclear. This study explored the exact effects of epigenetic regulation of miR-145 expression on autophagy, proliferation, and fibrosis of CFs. To examine the expression levels of myocardial fibrosis markers (α-SMA and collagen I), autophagy-related proteins (LC3I, LC3II, p62), DNMT3A, and miR-145, qRT-PCR and western blot were employed. And the proliferation of CFs was detected by CCK-8 and ErdU. As for the determination of the binding relationship between DNMT3A and miR-145, dual-luciferase assay was conducted. Next, the detection of the methylation level of the pre-miR-145 promoter region was completed by MSP. And the verification of the effect of the DNMT3A/miR-145 axis on myocardial fibrosis was accomplished by constructing mouse myocardial infarction (MI) models based on the ligation of the left anterior descending method. In TGF-β1-activated CFs, remarkable up-regulation of DNMT3 and considerable down-regulation of miR-145 were observed. And further experiments indicated that DNMT3A was able to down-regulate miR-145 expression by maintaining the hypermethylation level of the pre-miR-145 promoter region. In addition, DNMT3A expression could be directly targeted and negatively modulated by miR-145. Moreover, in vitro cell experiments and mouse MI models demonstrated that DNMT3A overexpression could inhibit autophagy, and promote cell proliferation and fibrosis of CFs. However, this kind of effect could be reversed by miR-145 overexpression. In summary, myocardial fibroblast autophagy can be regulated by bidirectional negative feedback actions of DNMT3A and miR-145, thus affecting myocardial fibrosis. This finding will provide a potential target for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Shucan Xu
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Aijun Liu
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China.
| |
Collapse
|
8
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
9
|
Su HY, Yang JJ, Zou R, An N, Chen XC, Yang C, Yang HJ, Yao CW, Liu HF. Autophagy in peritoneal fibrosis. Front Physiol 2023; 14:1187207. [PMID: 37256065 PMCID: PMC10226653 DOI: 10.3389/fphys.2023.1187207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Peritoneal dialysis (PD) is a widely accepted renal replacement therapy for patients with end-stage renal disease (ESRD). Morphological and functional changes occur in the peritoneal membranes (PMs) of patients undergoing long-term PD. Peritoneal fibrosis (PF) is a common PD-related complication that ultimately leads to PM injury and peritoneal ultrafiltration failure. Autophagy is a cellular process of "self-eating" wherein damaged organelles, protein aggregates, and pathogenic microbes are degraded to maintain intracellular environment homeostasis and cell survival. Growing evidence shows that autophagy is involved in fibrosis progression, including renal fibrosis and hepatic fibrosis, in various organs. Multiple risk factors, including high-glucose peritoneal dialysis solution (HGPDS), stimulate the activation of autophagy, which participates in PF progression, in human peritoneal mesothelial cells (HPMCs). Nevertheless, the underlying roles and mechanisms of autophagy in PF progression remain unclear. In this review, we discuss the key roles and potential mechanisms of autophagy in PF to offer novel perspectives on future therapy strategies for PF and their limitations.
Collapse
|
10
|
Hao J, Liu Y. Epigenetics of methylation modifications in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1119765. [PMID: 37008904 PMCID: PMC10050754 DOI: 10.3389/fendo.2023.1119765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Type 2 diabetes is one of the most common metabolic diseases with complications including diabetic cardiomyopathy and atherosclerotic cardiovascular disease. Recently, a growing body of research has revealed that the complex interplay between epigenetic changes and the environmental factors may significantly contribute to the pathogenesis of cardiovascular complications secondary to diabetes. Methylation modifications, including DNA methylation and histone methylation among others, are important in developing diabetic cardiomyopathy. Here we summarized the literatures of studies focusing on the role of DNA methylation, and histone modifications in microvascular complications of diabetes and discussed the mechanism underlying these disorders, to provide the guidance for future research toward an integrated pathophysiology and novel therapeutic strategies to treat or prevent this frequent pathological condition.
Collapse
Affiliation(s)
- Jing Hao
- Department of Emergency, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Liu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yao Liu,
| |
Collapse
|
11
|
Micera A, Di Zazzo A, De Piano M, Sharma S, Mori T, De Gregorio C, Coassin M, Fernandes M. Tissue remodeling in adult vernal keratoconjunctivitis. Exp Eye Res 2022; 225:109301. [PMID: 36336099 DOI: 10.1016/j.exer.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Our aim is to describe local tissue remodeling in a cohort of adult VKC patients. Male patients diagnosed with active VKC were enrolled in an open pilot study into two groups according disease onset: childhood classic VKC and adult VKC. Visual acuity and ocular surface clinical examination focusing on chronic inflammatory sequelae and impression cytology were performed in all enrolled subjects. Conjunctival imprints were processed for molecular, biochemical and immunofluorescent analysis for tissue remodeling (TGFβ1,2,3 and αSMA) and epigenetic (DNMT3a, Keap1; Nrf2) markers as well as androgen receptors were investigated and compared between groups. Clinical assessment showed increased conjunctival scarring in adult VKC compared to classic VKC. Immunoreactivity for αSMA and expression of TGFβ were higher in adult VKC group. Significantly higher levels of TGFβ3 (3.44 ± 1.66; p < 0.05) were detected in adult VKC compared to childhood VKC, associated with an increasing trend of TGFβ1 (1.58 ± 0.25) and TGFβ2 (1.65 ± 0.20) isoforms levels. Molecular analysis showed a relative increase in tissue remodeling/fibrogenic transcripts (TGFβ isoforms and αSMA) associated to a significant increase of selective epigenetic targets (DNMT3, Nrf2 and keap1) in adult VKC phenotype. Increased local conjunctival androgen receptors was detected in patients with adult variants compared to classic childhood VKC and healthy subjects. Finally, a direct correlation between TGFβ and androgen receptor expression was also detected. A pro-fibrotic clinical and biomolecular trait was unveiled in adult variant of VKC, which causes ocular surface disease and visual impairment.
Collapse
Affiliation(s)
- Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Savitri Sharma
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Tommaso Mori
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Chiara De Gregorio
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Merle Fernandes
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India.
| |
Collapse
|
12
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
13
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
14
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
15
|
Wan J, Lin S, Yu Z, Song Z, Lin X, Xu R, Du S. Protective Effects of MicroRNA-200b-3p Encapsulated by Mesenchymal Stem Cells-Secreted Extracellular Vesicles in Myocardial Infarction Via Regulating BCL2L11. J Am Heart Assoc 2022; 11:e024330. [PMID: 35699193 PMCID: PMC9238663 DOI: 10.1161/jaha.121.024330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Extracellular vesicles (EVs) are a popular treatment candidate for myocardial injury. This work investigated the effects of mesenchymal stem cells (MSCs)-secreted EVs-derived miR-200b-3p on cardiomyocyte apoptosis and inflammatory response after myocardial infarction (MI) through targeting BCL2L11 (Bcl-2-like protein 11) . Methods and Results EVs from MSCs were isolated and identified. EVs from MSCs with transfection of miR-200b-3p for overexpression were injected into MI mice. The effect of miR-200b-3p on cardiac function, infarction area, myocardial fibrosis, cardiomyocyte apoptosis, and inflammatory response was determined in MI mice. The targeting relationship between miR-200b-3p and BCL2L11 was verified, and the interaction between BCL2L11 and NLR family pyrin domain containing 1 (NLRP1) was also verified. MI mice were injected with an overexpressing BCL2L11 lentiviral vector to clarify whether BCL2L11 can regulate the effect of miR-200b-3p on MI mice. EVs from MSCs were successfully extracted. MSCs-EVs improved cardiac function and reduced infarction area, apoptosis of cardiomyocytes, myocardial fibrosis, and inflammation in MI mice. Upregulation of miR-200b-3p further enhanced the effects of MSCs-EVs on the myocardial injury of MI mice. BCL2L11 was targeted by miR-200b-3p and bound to NLRP1. Upregulation of BCL2L11 negated the role of miR-200b-3p-modified MSCs-EVs in MI mice. Conclusions A summary was obtained that miR-200b-3p-encapsulated MSCs-EVs protect against MI-induced apoptosis of cardiomyocytes and inflammation via suppressing BCL2L11.
Collapse
Affiliation(s)
- Jun Wan
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Shaoyan Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhuo Yu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhengkun Song
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Rongning Xu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Songlin Du
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
16
|
Zhang Y, Wang Z, Lan D, Zhao J, Wang L, Shao X, Wang D, Wu K, Sun M, Huang X, Yan M, Liang H, Rong X, Diao H, Guo J. MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2. Pharmacol Res 2022; 177:106124. [PMID: 35149188 DOI: 10.1016/j.phrs.2022.106124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis is a pathological process of multiple cardiovascular diseases, which may lead to heart failure. Studies have shown that microRNAs (miRNAs) play critical roles in regulating mitophagy and cardiac fibrosis. We found that miR-24-3p expression was significantly downregulated in transverse aortic constriction (TAC) mice and cardiac fibroblasts (CFs) treated with Ang Ⅱ. We also found that, apart from improving cardiac structure and function, forced expression of miR-24-3p not only reduced the levels of collagen and α-SMA but also inhibited proliferation and migration of CFs. Next, our research proved that miR-24-3p suppressed the progression of mitophagy, autophagic flux, and the levels of mitophagy-related proteins in cardiac fibrosis models. Further analysis showed that PHB2 was a direct target of miR-24-3p. Finally, experiments showed that the knockdown of PHB2 reversed Ang Ⅱ-induced fibrosis in CFs. The results of our study suggests that increased expression of miR-24-3p contributes to the reduction of cardiac fibrosis and that it might be targeted therapeutically to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiying Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dingming Lan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jingjing Zhao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lexun Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xiaoqi Shao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dongwei Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kaili Wu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengxian Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xueying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiling Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China
| | - Xianglu Rong
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Hongtao Diao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
17
|
MA X, CHENG M, JIN J, BAI Y, ZHANG H, HE L, ZHOU W, ZHANG D, ZHANG S, XU J. DNMT3A regulates differentiation of osteoblast and autophagy of vascular smooth muscle cells in vascular medial calcification induced by high phosphorus through ERK1/2 signaling. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.74021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoying MA
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Meijuan CHENG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Jingjing JIN
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Yaling BAI
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Huiran ZHANG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Lei HE
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Wei ZHOU
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Dongxue ZHANG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Shenglei ZHANG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Jinsheng XU
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| |
Collapse
|
18
|
Ding M, Zhang Y, Xu W, Fang C, Zhang K. MicroRNA-200b-3p as a biomarker for diagnosis and survival prognosis of multiple organ dysfunction syndrome caused by acute paraquat poisoning. Hum Exp Toxicol 2022; 41:9603271221094008. [PMID: 35442113 DOI: 10.1177/09603271221094008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute paraquat poisoning-induced multiple organ dysfunction syndrome (MODS) leads to the high mortality. This study aimed to investigate the clinical significance of microRNA-200b-3p (miR-200b-3p), an upstream inhibitor of high-mobility group box 1 (HMGB1), in acute paraquat poisoning patients for the prediction of MODS and survival. METHODS This study enrolled 80 patients with MODS induced by paraquat and 94 healthy volunteers. The interaction between miR-200b-3p and HMGB1 was identified by luciferase reporter assay. miR-200b-3p levels were measured by quantitative real-time (QRT) PCR. High-mobility group box 1 levels were measured by enzyme-linked immune sorbent assay (ELISA). Receiver operating characteristic analysis was used to evaluate the diagnostic value of miR-200b-3p in screening MODS patients. The relationship between miR-200b-3p and the 28-day survival of MODS patients was evaluated by Kaplan-Meier curves and log-rank test. Cox regression analysis was used to assess the prognostic value of miR-200b-3p. Correlation between miR-200b-3p and HMGB1 was confirmed by Pearson's correlation analysis. RESULTS miR-200b-3p directly target HMGB1. miR-200b-3p, decreased in MODS patients, had high diagnostic value to screen MODS patients from healthy controls. Additionally, serum miR-200b-3p was decreased in non-survivors, and patients with low miR-200b-3p level had poor 28-day survival. Serum miR-200b-3p could independently predict the survival prognosis. Moreover, serum HMGB1 level was increased in MODS patients, and was negatively correlated with miR-200b-3p level. CONCLUSION Decreased miR-200b-3p may function as a biomarker for the diagnosis and survival prognosis of MODS patients, and miR-200b-3p may be involved in the progression of acute paraquat-induced MODS via regulating inflammatory responses by targeting HMGB1.
Collapse
Affiliation(s)
- Minggang Ding
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Yi Zhang
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Weijun Xu
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Chongtao Fang
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Kaitai Zhang
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| |
Collapse
|
19
|
Miller M, Koch SE, Veteto A, Domeier T, Rubinstein J. Role of Known Transient Receptor Potential Vanilloid Channels in Modulating Cardiac Mechanobiology. Front Physiol 2021; 12:734113. [PMID: 34867442 PMCID: PMC8637880 DOI: 10.3389/fphys.2021.734113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential (TRP) channels have been described in almost every mammalian cell type. Several members of the Vanilloid (TRPV) subtype have been found to play important roles in modulating cardiac structure and function through Ca2+ handling in response to systemic and local mechanobiological cues. In this review, we will consider the most studied TRPV channels in the cardiovascular field; transient receptor potential vanilloid 1 as a modulator of cardiac hypertrophy; transient receptor potential vanilloid 2 as a structural and functional protein; transient receptor potential vanilloid 3 in the development of hypertrophy and myocardial fibrosis; and transient receptor potential vanilloid 4 in its roles modulating the fibrotic and functional responses of the heart to pressure overload. Lastly, we will also review the potential overlapping roles of these channels with other TRP proteins as well as the advances in translational and clinical arenas associated with TRPV channels.
Collapse
Affiliation(s)
- Michael Miller
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, KY, United States
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Adam Veteto
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, KY, United States.,IonOptix, LLC, Westwood, MA, United States
| | - Timothy Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, KY, United States
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH, United States.,Division of Cardiovascular Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
20
|
Zhao K, Weng L, Xu T, Yang C, Zhang J, Ni G, Guo X, Tu J, Zhang D, Sun W, Kong X. Low-intensity pulsed ultrasound prevents prolonged hypoxia-induced cardiac fibrosis through HIF-1α/DNMT3a pathway via a TRAAK-dependent manner. Clin Exp Pharmacol Physiol 2021; 48:1500-1514. [PMID: 34343366 DOI: 10.1111/1440-1681.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia-induced cardiac fibrosis is an important pathological process in cardiovascular disorders. This study aimed to determine whether low-intensity pulsed ultrasound (LIPUS), a novel and safe apparatus, could alleviate hypoxia-induced cardiac fibrosis, and to elucidate the underlying mechanisms. Hypoxia (1% O2 ) and transverse aortic constriction (TAC) were performed on neonatal rat cardiac fibroblasts and mice to induce cardiac fibrosis, respectively. LIPUS irradiation was applied for 20 minutes every 6 hours for a total of 2 times in vitro, and every 2 days from 1 week before surgery to 4 weeks after surgery in vivo. We found that LIPUS dose-dependently attenuated hypoxia-induced cardiac fibroblast phenotypic conversion in vitro, and ameliorated TAC-induced cardiac fibrosis in vivo. Hypoxia significantly upregulated the nuclear protein expression of hypoxia-inducible factor-1α (HIF-1α) and DNA methyltransferase 3a (DNMT3a). LIPUS pre-treatment reversed the elevated expression of HIF-1α, and DNMT3a. Further experiments revealed that HIF-1α stabilizer dimethyloxalylglycine (DMOG) hindered the anti-fibrotic effect of LIPUS, and hampered LIPUS-mediated downregulation of DNMT3a. DNMT3a small interfering RNA (siRNA) prevented hypoxia-induced cardiac fibrosis. Results also showed that the mechanosensitive protein-TWIK-related arachidonic acid-activated K+ channel (TRAAK) messenger RNA (mRNA) expression was downregulated in hypoxia-induced cardiac fibroblasts, and TAC-induced hearts. TRAAK siRNA impeded LIPUS-mediated anti-fibrotic effect and downregulation of HIF-1α and DNMT3a. Above results indicated that LIPUS could prevent prolonged hypoxia-induced cardiac fibrosis through TRAAK-mediated HIF-1α/DNMT3a signalling pathway.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liqing Weng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
22
|
Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, Qiu A, Zhuang S, Liu N. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol 2021; 12:724141. [PMID: 34497522 PMCID: PMC8419262 DOI: 10.3389/fphar.2021.724141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Peritoneal fibrosis (PF) is a major cause of ultrafiltration failure in long-term peritoneal dialysis (PD) patients. Nevertheless, limited measures have been shown to be effective for the prevention and treatment of PF. Some views reveal that activation of autophagy ameliorates PF but others demonstrate that autophagy promotes PF. It is obvious that the role of autophagy in PF is controversial and further studies are needed. Here, we investigated the role of autophagy in rat models of PF and damaged cultured human peritoneal mesothelial cells (HPMCs). Autophagy was highly activated in fibrotic peritoneum from two PF rat models induced by 4.25% peritoneal dialysate fluid (PDF) and 0.1% chlorhexidine gluconate (CG). Blockade of autophagy with 3-MA effectively prevented PF in both models and reversed epithelial to mesenchymal transition (EMT) by down-regulating TGF-β/Smad3 signaling pathway and downstream nuclear transcription factors Slug and Snail. Treatment with 3-MA also inhibited activation of EGFR/ERK1/2 signaling pathway during PF. Moreover, 3-MA prominently decreased STAT3/NF-κB-mediated inflammatory response and macrophage infiltration, and prevented peritoneal angiogenesis through downregulation of β-catenin signal. In addition, TGF-β1 stimulation up-regulated autophagic activity as evidenced by the increased autophagosome in vitro. Exposure of HPMCs to TGF-β1 resulted in the induction of EMT and activation of TGF-β/Smad3, EGFR/ERK1/2 signaling pathways. Treatment with 3-MA blocked all these responses. In addition, delayed administration of 3-MA was effective in reducing EMT induced by TGF-β1. Taken together, our study indicated that autophagy might promote PF and 3-MA had anti-fibrosis effect in vivo and in vitro. These results suggest that autophagy could be a potential target on PF therapy for clinical patients with long-term PD.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Zhang B, Yang S, Wang J. Circ_0084615 is an oncogenic circular RNA in colorectal cancer and promotes DNMT3A expression via repressing miR-599. Pathol Res Pract 2021; 224:153494. [PMID: 34091391 DOI: 10.1016/j.prp.2021.153494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in modulating cancer progression, exerting a pro- or anti-cancer effect. This work is aimed to probe the biological function of circ_0084615 in colorectal cancer (CRC) and its underlying mechanism. METHODS Circ_0084615 was selected from two circRNA microarray datasets (GSE138589 and GSE142837). Circ_0084615, microRNA (miR)-599 and DNA methyltransferases 3A (DNMT3A) mRNA expression in CRC tissues and cell lines were examined by qRT-PCR. The relationship between circ_0084615 expression level and clinical features were analyzed with chi-square test. Circ_0084615 knockdown model was constructed by siRNA in two CRC cell lines. The biological functions of circ_0084615 in CRC cells were evaluated by CCK-8 and Transwell experiments. The effect of circ_0084615 on CRC cell metastasis in vivo was examined with lung metastasis model of nude mice. Dual luciferase reporter gene assay was used to determine whether circ_0084615 and miR-599, and miR-599 and DNMT3A interacted with each other. Western blot was employed to examine the regulatory effects of circ_0084615 and miR-599 on DNMT3A protein expression in CRC cells. RESULTS Circ_0084615 was up-regulated in CRC and was correlated with poor overall survival rate and advanced clinical stage of CRC patients. Functional assays validated that depletion of circ_0084615 impeded CRC cell proliferation, migration and invasion. Circ_0084615 acted as a molecular sponge for miR-599 to repress its expression. DNMT3A was a downstream target of miR-599. Functional compensation experiments showed that miR-599 inhibitors partially counteracted the the biological effects of silencing circ_0084615 on CRC cells. CONCLUSIONS Circ_0084615 is a tumor-promoting circRNA in CRC that functions as a competing endogenous RNA to regulate DNMT3A expression via sponging miR-599. Our research provides a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Baogen Zhang
- Department of Chinese Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shu Yang
- Department of Chinese Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Junping Wang
- Department of Gastroenterology, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
25
|
Li C, Wang N, Rao P, Wang L, Lu D, Sun L. Role of the microRNA-29 family in myocardial fibrosis. J Physiol Biochem 2021; 77:365-376. [PMID: 34047925 DOI: 10.1007/s13105-021-00814-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial fibrosis (MF) is an inevitable pathological process in the terminal stage of many cardiovascular diseases, often leading to serious cardiac dysfunction and even death. Currently, microRNA-29 (miR-29) is thought to be a novel diagnostic and therapeutic target of MF. Understanding the underlying mechanisms of miR-29 that regulate MF will provide a new direction for MF therapy. In the present review, we concentrate on the underlying signaling pathway of miR-29 affecting MF and the crosstalk regulatory relationship among these pathways to illustrate the complex regulatory network of miR-29 in MF. Additionally, based on our mechanistic understanding, we summarize opportunities and challenges of miR-29-based MF diagnosis and therapy.
Collapse
Affiliation(s)
- Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Nan Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Peng Rao
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Limeiting Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
26
|
Wang J, Yang L, You J, Wen D, Yang B, Jiang C. Platelet-Derived Growth Factor Regulates the Biological Behavior of Oral Mucosal Fibroblasts by Inducing Cell Autophagy and Its Mechanism. J Inflamm Res 2021; 14:3405-3417. [PMID: 34305405 PMCID: PMC8297405 DOI: 10.2147/jir.s313910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Objective To explore the effect of platelet-derived growth factor (PDGF) on oral mucosal fibroblast autophagy and further elucidate the molecular mechanism by which PDGF-BB regulates the biological behavior of oral mucosal fibroblasts by inducing autophagy. Methods Primary oral mucosal fibroblasts were isolated and cultured by the tissue block and trypsin methods and identified by indirect immunofluorescence vimentin detection. We detected the autophagy marker Beclin-1 and fibrosis marker Col-I of the primary oral mucosal fibroblasts at different time points after stimulating the fibroblasts with different PDGF-BB concentrations by Western blotting and determined the best experimental concentration and stimulation time of PDGF-BB. Then, indirect immunofluorescence, Western blotting, and quantitative real-time polymerase chain reaction (PCR) were used to detect the effect of PDGF-BB on the expression of autophagy-related and fibrotic proteins before and after 3-methyladenine (3-MA) intervention. Additionally, the effect of 3-MA on the proliferation and migration of primary oral mucosal fibroblasts stimulated by PDGF-BB was detected by the MTT method and a scratch experiment. The effect of PDGF-BB on Beclin-1 and phosphatidylinositol-3 kinase class 3 (PI3KC3) interaction was detected by co-immunoprecipitation. Results The results demonstrated that PDGF-BB could induce autophagy of the oral mucosal fibroblasts, showing a certain time and dose correlation. It induced cell autophagy through Beclin-1 and PI3KC3 interaction to promote the proliferation, migration, conversion, and collagen synthesis of the fibroblasts. However, 3-MA inhibited the combination of Beclin-1 and PI3KC3 and weakened the fibroblasts' proliferation, migration, conversion, and collagen synthesis activities. Conclusion Overall, PDGF-BB induces autophagy through the Beclin-1 pathway to regulate the biological behavior of oral mucosal fibroblasts.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Lina Yang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Jialing You
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Dada Wen
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Bo Yang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China
| |
Collapse
|
27
|
Zhang Y, Wang Q, Xu Y, Sun J, Ding Y, Wang L, Chen B, Sun K, Chen J. Mitomycin C Inhibits Esophageal Fibrosis by Regulating Cell Apoptosis and Autophagy via lncRNA-ATB and miR-200b. Front Mol Biosci 2021; 8:675757. [PMID: 34079820 PMCID: PMC8165251 DOI: 10.3389/fmolb.2021.675757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 01/11/2023] Open
Abstract
Benign esophageal strictures (BESs) frequently results from esophageal fibrosis. The transformation of fibroblasts into fibrocyte is an important cause of fibrosis. The treatment of fibrosis is challenging. Some previous studies have indicated the antifibrotic effect of mitomycin C (MMC). However, the mechanism of action of MMC and its optimal dose for treatment remains unclear. In the present study, the role of MMC in fighting fibrosis and its mechanism was investigated. Human esophageal fibroblast cells (HEFs)were treated without or with MMC, at 2, 5, 10 μg/ml, combining with mimic lncRNA-ATB, miR-200b inhibitor, rapamycin (RAPA), and 3-Methyladenine (3-MA). The cell viability, and cell apoptosis were evaluated. In addition, expression of apoptosis related proteins (caspase8 and caspase3), autophagy related proteins (LC3II and ATG5) and fibrosis related proteins (α-SMA collagen-1 and TGF-β) were also evaluated. Furthermore, autophagosome was observed by transmission electron microscope. Results showed that the expression of lncRNA-ATB was down-regulated and miR-200b was up-regulated after treated with MMC. And MMC induced cell apoptosis and inhibited cell autophagy. On the other hand, RAPA, mimic lncRNA-ATB and miR-200b inhibitor reduced fibrogenic effect of MMC on HEFs. Collectively, this study suggests that MMC inhibited esophageal fibrosis by regulating cell apoptosis and autophagy via downregulating lncRNA-ATB and upregulating miR-200b.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Qinge Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Yuping Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Jing Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Yanbo Ding
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Li Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Bingfang Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Kewen Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| | - Jianping Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
28
|
Li X, Yang Y, Chen S, Zhou J, Li J, Cheng Y. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci 2021; 271:119186. [PMID: 33577852 DOI: 10.1016/j.lfs.2021.119186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is a reactive remodeling process in response to myocardial injury. It is mainly manifested by the proliferation of cardiac muscle fibroblasts and secreting extracellular matrix (ECM) proteins to replace damaged tissue. However, the excessive production and deposition of extracellular matrix, and the rising proportion of type I and type III collagen lead to pathological fibrotic remodeling, thereby facilitating the development of cardiac dysfunction and eventually causing heart failure with heightened mortality. Currently, the molecular mechanisms of MF are still not fully understood. With the development of epigenetics, it is found that epigenetics controls the transcription of pro-fibrotic genes in MF by DNA methylation, histone modification and noncoding RNAs. In this review, we summarize and discuss the research progress of the mechanisms underlying MF from the perspective of epigenetics, including the newest m6A modification and crosstalk between different epigenetics in MF. We also offer a succinct overview of promising molecules targeting epigenetic regulators, which may provide novel therapeutic strategies against MF.
Collapse
Affiliation(s)
- Xuping Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sixuan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jingyan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
29
|
Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:101-118. [PMID: 33335796 PMCID: PMC7732971 DOI: 10.1016/j.omtn.2020.10.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.
Collapse
Affiliation(s)
- Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
30
|
Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q, Ying M. The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy 2020; 17:2665-2679. [PMID: 32917124 DOI: 10.1080/15548627.2020.1822628] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although molecular targeted therapies have recently displayed therapeutic effects in acute myeloid leukemia (AML), limited response and acquired resistance remain common problems. Numerous studies have associated autophagy, an essential degradation process involved in the cellular response to stress, with the development and therapeutic response of cancers including AML. Thus, we review studies on the role of autophagy in AML development and summarize the linkage between autophagy and several recurrent genetic abnormalities in AML, highlighting the potential of capitalizing on autophagy modulation in targeted therapy for AML.Abbreviations: AML: acute myeloid leukemia; AMPK: AMP-activated protein kinase; APL: acute promyelocytic leukemia; ATG: autophagy related; ATM: ATM serine/threonine kinase; ATO: arsenic trioxide; ATRA: all trans retinoic acid; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BET proteins, bromodomain and extra-terminal domain family; CMA: chaperone-mediated autophagy; CQ: chloroquine; DNMT, DNA methyltransferase; DOT1L: DOT1 like histone lysine methyltransferase; FLT3: fms related receptor tyrosine kinase 3; FIS1: fission, mitochondrial 1; HCQ: hydroxychloroquine; HSC: hematopoietic stem cell; IDH: isocitrate dehydrogenase; ITD: internal tandem duplication; KMT2A/MLL: lysine methyltransferase 2A; LSC: leukemia stem cell; MDS: myelodysplastic syndromes; MTORC1: mechanistic target of rapamycin kinase complex 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPM1: nucleophosmin 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PML: PML nuclear body scaffold; ROS: reactive oxygen species; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAHA: vorinostat; SQSTM1: sequestosome 1; TET2: tet methylcytosine dioxygenase 2; TKD: tyrosine kinase domain; TKI: tyrosine kinase inhibitor; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VPA: valproic acid; WDFY3/ALFY: WD repeat and FYVE domain containing 3.
Collapse
Affiliation(s)
- Wenxin Du
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yunpeng Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Xin L, Li SH, Liu C, Zeng F, Cao JQ, Zhou LQ, Zhou Q, Yuan YW. Methionine represses the autophagy of gastric cancer stem cells via promoting the methylation and phosphorylation of RAB37. Cell Cycle 2020; 19:2644-2652. [PMID: 32926650 DOI: 10.1080/15384101.2020.1814044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study focused on the role of methionine (MET) in the autophagy of gastric cancer stem cells (GCSCs) and aims to elaborate its regulatory mechanism. In the present study, the GCSCs were isolated from human gastric cancer cell lines using an anti-CD44 antibody, and then cultured in MET+ homocysteine (HCY)- or MET-HCY+ medium. In MET+HCY-treated GCSCs, autophagy was suppressed, the methylation and phosphorylation of RAB37 were elevated, and miR-200b expression was down-regulated. Lentiviral vector (LV-) carrying methionine-γ lyase (an enzyme that could specifically lyse MET; Metase) promoted autophagy, reduced the methylation and phosphorylation of RAB37, and up-regulated miR-200b expression in MET+HCY--treated GCSCs. Then, we found that miR-200b suppressed the expression of protein kinase C α (PKCα), a protein that could inactivate RAB37 through promoting its phosphorylation. LV-Metase down-regulated RAB37 phosphorylation via miR-200b/PKCα, thus promoting the RAB37-mediated autophagy and suppressing cell viability in MET+HCY-treated GCSCs. Finally, the in vivo study proved that LV-Metase treatment inhibited tumor growth through up-regulating RAB37 expression. In conclusion, MET suppressed RAB37 expression via enhancing its methylation and suppressed RAB37 activity via miR-200b/PKCα axis, thus repressing RAB37-mediated autophagy in GCSCs. The supplementation of Metase lysed MET, thus inducing the autophagy of GCSCs and inhibiting tumor growth.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Jia-Qing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Am J Cancer Res 2020; 10:7993-8017. [PMID: 32724454 PMCID: PMC7381749 DOI: 10.7150/thno.47826] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs in most human organs including the liver, lung, heart and kidney, and is crucial for the progression of most chronic diseases. As an indispensable catabolic process for intracellular quality control and homeostasis, autophagy occurs in most mammalian cells and is implicated in many biological processes including fibrogenesis. Although advances have been made in understanding autophagy process, the potential role of autophagy in fibrotic diseases remains controversial and has recently attracted a great deal of attention. In the current review, we summarize the commonalities of autophagy affecting different types of fibrosis in different organs, including the liver, lung, heart, and kidney as well as in cystic fibrosis, systematically outline the contradictory results and highlight the distinct role of autophagy during the various stages of fibrosis. In summary, the exact role autophagy plays in fibrogenesis depends on specific cell types and different stimuli, and identifying and evaluating the pathogenic contribution of autophagy in fibrogenesis will promote the discovery of novel therapeutic strategies for the clinical management of these fibrotic diseases.
Collapse
|
33
|
Epigenetic Signaling and RNA Regulation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020509. [PMID: 31941147 PMCID: PMC7014325 DOI: 10.3390/ijms21020509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA epigenetics is perhaps the most recent field of interest for translational epigeneticists. RNA modifications create such an extensive network of epigenetically driven combinations whose role in physiology and pathophysiology is still far from being elucidated. Not surprisingly, some of the players determining changes in RNA structure are in common with those involved in DNA and chromatin structure regulation, while other molecules seem very specific to RNA. It is envisaged, then, that new small molecules, acting selectively on RNA epigenetic changes, will be reported soon, opening new therapeutic interventions based on the correction of the RNA epigenetic landscape. In this review, we shall summarize some aspects of RNA epigenetics limited to those in which the potential clinical translatability to cardiovascular disease is emerging.
Collapse
|
34
|
Zhou R, Wang C, Liang Y, Li X, Li Q. Anti-miR-200b promotes wound healing by regulating fibroblast functions in a novel mouse model. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1049-1055. [PMID: 31553422 DOI: 10.1093/abbs/gmz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-200b (miR-200b) down-regulation has been found in wound-healing tissues. Fibroblasts are the predominant cells that orchestrate the production of collagen in wound healing. However, it is still unclear whether miR-200b can affect the wound healing by regulating the fibroblasts' function. The current rodent wound-healing models are not ideal due to their marked difference in structure compared with the human skin. In this study, we demonstrated that the murine plantar skin had similar anatomical features to the human skin. Using this model, the gain/loss-of-function studies showed that miR-200b caused a significantly delayed wound healing in vivo. Furthermore, using cell proliferation, migration and collagen synthesis assays, we found that miR-200b attenuated cell proliferation, migration and collagen synthesis of fibroblasts, which are critical aspects of wound healing. miR-200b also decreased the expression of Zeb1. Collectively, we established a new murine plantar skin model for the investigation of wound healing, and based on it we found that miR-200b affected the wound healing by regulating the biological function of fibroblasts, which provided a new insight for wound healing.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, Song C, Shi P, Fu B, Sun H. MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. J Cell Mol Med 2019; 23:1926-1939. [PMID: 30604587 PMCID: PMC6378213 DOI: 10.1111/jcmm.14095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR-103 expression was significantly decreased in heart failure patients. However, less is known about the role of miR-103 in cardiac hypertrophy. The present study was designed to investigate the relationship between miR-103 and the mechanism of pressure overload-induced cardiac hypertrophy. TRPV3 protein, cardiac hypertrophy marker proteins (BNP and β-MHC) and autophagy associated proteins (Beclin-1 and LC3-II) were up-regulated, as well as, miR-103 expression and autophagy associated proteins (p62) were down-regulated in cardiac hypertrophy models in vivo and in vitro respectively. Further results indicated that silencing TRPV3 or forcing overexpression of miR-103 could dramatically inhibit cell surface area, relative fluorescence intensity of Ca2+ signal and the expressions of BNP, β-MHC, Beclin-1 and LC3-II, but promote p62 expression. Moreover, TRPV3 protein was decreased in neonatal rat ventricular myocyte transfected with miR-103, but increased by AMO-103. Co-transfection of the miR-103 with the luciferase reporter vector into HEK293 cells caused a sharp decrease in luciferase activity compared with transfection of the luciferase vector alone. The miR-103-induced depression of luciferase activity was rescued by an AMO-103. These findings suggested that TRPV3 was a direct target of miR-103. In conclusion, miR-103 could attenuate cardiomyocyte hypertrophy partly by reducing cardiac autophagy activity through the targeted inhibition of TRPV3 signalling in the pressure-overloaded rat hearts.
Collapse
Affiliation(s)
- Hanping Qi
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Jing Ren
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Mingyao E
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Qianhui Zhang
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Yonggang Cao
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Lina Ba
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Chao Song
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Pilong Shi
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Bowen Fu
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Hongli Sun
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| |
Collapse
|
36
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine 2018; 37:334-343. [PMID: 30482723 PMCID: PMC6286190 DOI: 10.1016/j.ebiom.2018.10.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Chronic infection with Schistosoma japonicum or S. mansoni results in hepatic fibrosis of the human host. Staging fibrosis is crucial for the prognosis and to determine the rapid need of treatment in patients with schistosomiasis. METHODS To establish whether there is a correlation between circulating microRNA (miRNA) level and fibrosis progression in schistosomiasis, ten miRNAs were selected to assess their potential in grading schistosomiasis liver fibrosis. This was done firstly in two mouse strains (C57BL/6 and BALB/c) to determine the temporal expression profiles in serum over the course of S. japonicum infection, and then within a cohort of 163 schistosomiasis japonica patients with different grades of liver fibrosis. FINDING Four miRNAs (miR-150-5p, let-7a-5p, let-7d-5p and miR-146a-5p) were able to distinguish patients with mild versus severe fibrosis. The level of serum miR-150-5p showed the most promising potential for grading hepatic fibrosis in schistosomiasis. The diagnostic performance of miR-150-5p in discriminating mild from severe fibrosis is comparable with that of the ELF test and serum HA level. In addition, the serum levels of the four miRNAs rebounded in infected C57BL/6 mice, after 6 months post treatment, following the regression of liver fibrosis, thereby providing further support for the utility of these miRNAs in grading schistosomal hepatic fibrosis. INTERPRETATION Circulating miRNAs can be a supplementary tool for assessing hepatic fibrosis in human schistosomiasis. FUND: National Health and Medical Research Council (NHMRC) of Australia (APP1102926, APP1037304 and APP1098244).
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Remigio M Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Allen G Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; icddr b, Dhaka, Bangladesh
| | - David U Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
37
|
Sun T, Li MY, Li PF, Cao JM. MicroRNAs in Cardiac Autophagy: Small Molecules and Big Role. Cells 2018; 7:cells7080104. [PMID: 30103495 PMCID: PMC6116024 DOI: 10.3390/cells7080104] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy, which is an evolutionarily conserved process according to the lysosomal degradation of cellular components, plays a critical role in maintaining cell homeostasis. Autophagy and mitochondria autophagy (mitophagy) contribute to the preservation of cardiac homeostasis in physiological settings. However, impaired or excessive autophagy is related to a variety of diseases. Recently, a close link between autophagy and cardiac disorders, including myocardial infarction, cardiac hypertrophy, cardiomyopathy, cardiac fibrosis, and heart failure, has been demonstrated. MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of approximately 21–22 nucleotides (nt), which are distributed widely in viruses, plants, protists, and animals. They function in mediating the post-transcriptional gene silencing. A growing number of studies have demonstrated that miRNAs regulate cardiac autophagy by suppressing the expression of autophagy-related genes in a targeted manner, which are involved in the pathogenesis of heart diseases. This review summarizes the role of microRNAs in cardiac autophagy and related cardiac disorders. Furthermore, we mainly focused on the autophagy regulation pathways, which consisted of miRNAs and their targeted genes.
Collapse
Affiliation(s)
- Teng Sun
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Meng-Yang Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|