1
|
Zhang M, Wang J, Li C, Wu S, Liu W, Zhou C, Ma L. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10250-2. [PMID: 38587584 DOI: 10.1007/s12602-024-10250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.
Collapse
Affiliation(s)
- Meina Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chao Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shaoju Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
2
|
Hamamoto A, Kita N, B. Gowda SG, Takatsu H, Nakayama K, Arita M, Hui SP, Shin HW. Lysosomal membrane integrity in fibroblasts derived from patients with Gaucher disease. Cell Struct Funct 2024; 49:1-10. [PMID: 38072450 PMCID: PMC11496783 DOI: 10.1247/csf.23066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.
Collapse
Affiliation(s)
- Asuka Hamamoto
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Natsuki Kita
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Hokkaido 060-0809, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center of Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Shishkova DK, Velikanova EA, Bogdanov LA, Sinitsky MY, Kostyunin AE, Tsepokina AV, Gruzdeva OV, Mironov AV, Mukhamadiyarov RA, Glushkova TV, Krivkina EO, Matveeva VG, Hryachkova ON, Markova VE, Dyleva YA, Belik EV, Frolov AV, Shabaev AR, Efimova OS, Popova AN, Malysheva VY, Kolmykov RP, Sevostyanov OG, Russakov DM, Dolganyuk VF, Gutakovsky AK, Zhivodkov YA, Kozhukhov AS, Brusina EB, Ismagilov ZR, Barbarash OL, Yuzhalin AE, Kutikhin AG. Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. Int J Mol Sci 2021; 22:ijms222212458. [PMID: 34830334 PMCID: PMC8626027 DOI: 10.3390/ijms222212458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daria K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Leo A. Bogdanov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Maxim Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Alexander E. Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Anna V. Tsepokina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Olga V. Gruzdeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Andrey V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Rinat A. Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Evgenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Oksana N. Hryachkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Victoria E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Yulia A. Dyleva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Ekaterina V. Belik
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Alexey V. Frolov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Amin R. Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Olga S. Efimova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Anna N. Popova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Valentina Yu. Malysheva
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Roman P. Kolmykov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Oleg G. Sevostyanov
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Dmitriy M. Russakov
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Viatcheslav F. Dolganyuk
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Anton K. Gutakovsky
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Yuriy A. Zhivodkov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Anton S. Kozhukhov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Elena B. Brusina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Zinfer R. Ismagilov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Olga L. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Arseniy E. Yuzhalin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
- Correspondence: ; Tel.: +7-960-907-7067
| |
Collapse
|
4
|
Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 2021; 69:2309-2331. [PMID: 33851745 PMCID: PMC8502241 DOI: 10.1002/glia.24008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.
Collapse
Affiliation(s)
- M. Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Nadav I. Weinstock
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jacob Favret
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Daesung Shin
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
Ren J, Wei W, Tan L, Yang Q, Lu Q, Ding H, Yue Y, Tian Y, Hao L, Wang M, Li J. Inhibition of regulator of G protein signaling 10, aggravates rheumatoid arthritis progression by promoting NF-κB signaling pathway. Mol Immunol 2021; 134:236-246. [PMID: 33836352 DOI: 10.1016/j.molimm.2021.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy, with evidence pointing to an immune-mediated etiology that propagates chronic inflammation. Although targeted immune therapeutics and aggressive treatment strategies have substantially improved, a complete understanding of the associated pathological mechanisms of the disease remains elusive. This study aimed at investigating whether regulator of G protein signaling 10 (RGS10) could affect rheumatoid arthritis (RA) pathology by regulating the immune response. A DBA/J1 mouse model of RA was established and evaluated for disease severity. RGS10 expression was inhibited by adeno-associated virus in vivo. Moreover, small interfering RNA was used to downregulate RGS10 expression in raw 264.7 cells in vitro. Results showed that RGS10 inhibition augmented RA severity, and attenuated the increase in expression of inflammatory factors. Furthermore, activated NF-κB signaling pathways were detected following RGS10 inhibition. These results revealed that RGS10 inhibition directly aggravated the RA pathological process by activating the NF-κB signaling pathway. Therefore, RGS10 is a promising novel therapeutic target for RA treatment with a potential clinical impact.
Collapse
Affiliation(s)
- Jie Ren
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Ye Tian
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Ziglari T, Wang Z, Holian A. Contribution of Particle-Induced Lysosomal Membrane Hyperpolarization to Lysosomal Membrane Permeabilization. Int J Mol Sci 2021; 22:2277. [PMID: 33668885 PMCID: PMC7956429 DOI: 10.3390/ijms22052277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Lysosomal membrane permeabilization (LMP) has been proposed to precede nanoparticle-induced macrophage injury and NLRP3 inflammasome activation; however, the underlying mechanism(s) of LMP is unknown. We propose that nanoparticle-induced lysosomal hyperpolarization triggers LMP. In this study, a rapid non-invasive method was used to measure changes in lysosomal membrane potential of murine alveolar macrophages (AM) in response to a series of nanoparticles (ZnO, TiO2, and CeO2). Crystalline SiO2 (micron-sized) was used as a positive control. Changes in cytosolic potassium were measured using Asante potassium green 2. The results demonstrated that ZnO or SiO2 hyperpolarized the lysosomal membrane and decreased cytosolic potassium, suggesting increased lysosome permeability to potassium. Time-course experiments revealed that lysosomal hyperpolarization was an early event leading to LMP, NLRP3 activation, and cell death. In contrast, TiO2- or valinomycin-treated AM did not cause LMP unless high doses led to lysosomal hyperpolarization. Neither lysosomal hyperpolarization nor LMP was observed in CeO2-treated AM. These results suggested that a threshold of lysosomal membrane potential must be exceeded to cause LMP. Furthermore, inhibition of lysosomal hyperpolarization with Bafilomycin A1 blocked LMP and NLRP3 activation, suggesting a causal relation between lysosomal hyperpolarization and LMP.
Collapse
Affiliation(s)
- Tahereh Ziglari
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Zifan Wang
- Division of Chemistry and Biochemistry, College of Humanities and Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
7
|
Qi HM, Cao Q, Liu Q. TLR4 regulates vascular smooth muscle cell proliferation in hypertension via modulation of the NLRP3 inflammasome. Am J Transl Res 2021; 13:314-325. [PMID: 33527026 PMCID: PMC7847527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Backgroud: Toll-like receptor 4 (TLR4), a key mediator of inflammatory responses, which is associated with vascular remodeling. The association between TLR4 and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the regulation of vascular smooth muscle cell (VSMC) proliferation remains unclear. This study was to explore the role and underlying mechanisms of TLR4 in the proliferation of VSMC in hypertension. METHODS VSMC proliferation after TLR4 overexpression or downregulation was determined by CCK-8, EdU Incorporation and colony formation assays. Western blots were carried out to investigate the expression of TLR4 and NLRP3 inflammasome components in VSMCs. Next, blood pressure measurements and Hematoxylin and Eosin (HE) staining assays were performed in spontaneously hypertensive rats (SHR). Media thickness (M) and diameter lumen (L) were measured as indicators of vascular remodeling. The expression of TLR4, PCNA and NLRP3 inflammasome complex was analyzed by Western blots in the aorta of SHR. RESULTS We showed that TLR4 overexpression with cDNA enhanced, while knockdown of TLR4 with shRNA inhibited Ang II-induced VSMC proliferation. Besides, TLR4 overexpression upregulated the proteion expression of the NLRP3 inflammasome components including NLRP3, ASC and caspase-1, whereas their corresponding levels of expression were observed to decrease in TLR4 shRNA-transfected VSMCs. Knockdown of TLR4 attenuated vascular remodeling, blood pressure (BP) and the levels of NLRP3, ASC, caspase-1, IL-1β and IL-18 in SHR aortas. CONCLUSION This study revealed that TLR4 regulated Ang II-induced VSMC proliferation through modulating the NLRP3 inflammasome. Knockdown of TLR4 attenuated the BP and vascular remodeling by inhibiting the expression of the NLRP3 inflammasome component in SHR. Our results support that TLR4 regulates VSMC proliferation in hypertension via triggering the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hui-Meng Qi
- Department of General Practice, The First Hospital of China Medical UniversityShenyang, China
| | - Qin Cao
- Department of Gastroenterolog, The First Hospital of China Medical UniversityShenyang, China
| | - Qiang Liu
- Department of Nephrology, The First Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
8
|
Gritsenko A, Yu S, Martin-Sanchez F, Diaz-del-Olmo I, Nichols EM, Davis DM, Brough D, Lopez-Castejon G. Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Front Immunol 2020; 11:565924. [PMID: 33101286 PMCID: PMC7555430 DOI: 10.3389/fimmu.2020.565924] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-18 and IL-1β are potent pro-inflammatory cytokines that contribute to inflammatory conditions such as rheumatoid arthritis and Alzheimer's disease. They are produced as inactive precursors that are activated by large macromolecular complexes called inflammasomes upon sensing damage or pathogenic signals. NLRP3 inflammasome activation is regarded to require a priming step that causes NLRP3 and IL-1β gene upregulation, and also NLRP3 post-translational licencing. A subsequent activation step leads to the assembly of the complex and the cleavage of pro-IL-18 and pro-IL-1β by caspase-1 into their mature forms, allowing their release. Here we show that human monocytes, but not monocyte derived macrophages, are able to form canonical NLRP3 inflammasomes in the absence of priming. NLRP3 activator nigericin caused the processing and release of constitutively expressed IL-18 in an unprimed setting. This was mediated by the canonical NLRP3 inflammasome that was dependent on K+ and Cl- efflux and led to ASC oligomerization, caspase-1 and Gasdermin-D (GSDMD) cleavage. IL-18 release was impaired by the NLRP3 inhibitor MCC950 and by the absence of NLRP3, but also by deficiency of GSDMD, suggesting that pyroptosis is the mechanism of release. This work highlights the readiness of the NLRP3 inflammasome to assemble in the absence of priming in human monocytes and hence contribute to the very early stages of the inflammatory response when IL-1β has not yet been produced. It is important to consider the unprimed setting when researching the mechanisms of NLRP3 activation, as to not overshadow the pathways that occur in the absence of priming stimuli, which might only enhance this response.
Collapse
Affiliation(s)
- Anna Gritsenko
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ines Diaz-del-Olmo
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Daniel M. Davis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
9
|
Weinstock NI, Shin D, Dhimal N, Hong X, Irons EE, Silvestri NJ, Reed CB, Nguyen D, Sampson O, Cheng YC, Lau JTY, Bongarzone ER, Kofler J, Escolar ML, Gelb MH, Wrabetz L, Feltri ML. Macrophages Expressing GALC Improve Peripheral Krabbe Disease by a Mechanism Independent of Cross-Correction. Neuron 2020; 107:65-81.e9. [PMID: 32375064 PMCID: PMC7924901 DOI: 10.1016/j.neuron.2020.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Many therapies for lysosomal storage disorders rely on cross-correction of lysosomal enzymes. In globoid cell leukodystrophy (GLD), mutations in GALC cause psychosine accumulation, inducing demyelination, a neuroinflammatory "globoid" reaction and neurodegeneration. The efficiency of GALC cross-correction in vivo, the role of the GALC substrate galactosylceramide, and the origin of psychosine are poorly understood. Using a novel GLD model, we show that cross-correction does not occur efficiently in vivo and that Galc-deficient Schwann cells autonomously produce psychosine. Furthermore, macrophages require GALC to degrade myelin, as Galc-deficient macrophages are transformed into globoid cells by exposure to galactosylceramide and produce a more severe GLD phenotype. Finally, hematopoietic stem cell transplantation in patients reduces globoid cells in nerves, suggesting that the phagocytic response of healthy macrophages, rather than cross-correction, contributes to the therapeutic effect. Thus, GLD may be caused by at least two mechanisms: psychosine-induced demyelination and secondary neuroinflammation from galactosylceramide storage in macrophages.
Collapse
Affiliation(s)
- Nadav I Weinstock
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Daesung Shin
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Xinying Hong
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Nicholas J Silvestri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Chelsey B Reed
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Oliver Sampson
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yung-Chih Cheng
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Julia Kofler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Maria L Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|