1
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
2
|
Betensky DJ, Chen MD, Trivedi J, Desai S, Twomey-Kozak J, Wen S, Jayasuriya CT. Extracellular vesicles from cartilage progenitors stimulate type II collagen expression and wound healing in meniscal cells. J Orthop Res 2025; 43:682-691. [PMID: 39511943 PMCID: PMC11806987 DOI: 10.1002/jor.26013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Knee meniscus tearing is a common orthopaedic injury that can heal poorly if left untreated, increasing the risk of post-traumatic Osteoarthritis. Intraarticular injection of human cartilage-derived progenitor cells (CPCs) has been shown to promote meniscus healing after injury. However, the mechanism by which CPCs stimulated this effect was unclear. The purpose of this study was to determine the paracrine effects that CPC-derived extracellular vesicles (EVs) have on native meniscal cells during healing. EVs from human CPCs and marrow-derived stromal cells were isolated via ultracentrifugation. EVs produced by each cell type were quantified, and their sizes were determined via NanoSight. EV protein expression was characterized via western blot. Meniscal fibrochondrocyte cellular metabolic activity (as an indicator of cell viability and proliferation) following treatment with EVs, was quantified using MTT and ATP assays. A 2D wound healing assay was used to determine the effects of treating inner meniscal fibrochondrocytes with EVs in a dose-dependent manner. Gene expression analysis for chondrogenesis genes was performed via RT-qPCR on inner meniscal fibrochondrocytes following treatment with EVs. Our results showed that CPCs produced a wide size range of EVs expressing CD9, CD81, and HSP70. Treatment of inner meniscal fibrochondrocytes with CPC-EVs improved 2D wound healing, in comparison to EVs isolated from marrow-derived stromal cell controls. CPC-EV treatment increased Type II Collagen mRNA expression in inner meniscal fibrochondrocytes. These findings demonstrate that CPC-EVs stimulate chondrogenic matrix production and wound healing in meniscal cells at the optimal dose of 1.0 × 107 particles/mL, significantly outperforming the effects of marrow stromal cell-derived EVs.
Collapse
Affiliation(s)
- Daniel J. Betensky
- Department of Orthopaedics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Maxwell D. Chen
- Department of Orthopaedics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Jay Trivedi
- Department of Orthopaedics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Salomi Desai
- Department of Orthopaedics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - John Twomey-Kozak
- Department of Orthopaedics, Brown University and Rhode Island Hospital, Providence, RI, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sicheng Wen
- Division of Hematology/Oncology, Brown University and Rhode Island Hospital, Providence, RI, USA
| | | |
Collapse
|
3
|
Diaz Arenas C, Alvarez M, Wilson RH, Shakhnovich EI, Ogbunugafor CB. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria. Genome Biol Evol 2025; 17:evaf010. [PMID: 39837347 PMCID: PMC11789785 DOI: 10.1093/gbe/evaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Maristella Alvarez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
4
|
Bertini F, Catania V, Scirè Calabrisotto L, Dara M, Bisanti L, La Corte C, Staropoli M, Piazzese D, Parisi MG, Parrinello D, Cammarata M. A multi-comprehensive approach to assess the responses of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1919) to a simulation of a diesel-oil mixture spill. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107188. [PMID: 39642431 DOI: 10.1016/j.aquatox.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Oil spills are a major cause of pollution impacting marine ecosystems. In this work, the effects of short-term exposure to three different concentrations of a hydrocarbon mixture (HC), that simulated the action of such an event, were investigated on Mytilus galloprovincialis specimens. Physiological effects were measured using a battery of biomarkers consisting of cellular activity (phagocytosis), immune-related enzymes, chaperonins (HSP70 and HSC70), and histomorphological alterations. Different concentrations of HC led to a significant decrease in phagocytosis, especially following high concentrations. Immune-related enzymes evaluated in hemolymph and digestive gland extract showed up-regulation, suggesting the activation of antioxidant, detoxicant, and inflammatory responses. Morphological alterations of digestive gland tubules were observed after exposure to the HC. HSP70 and HSC70 activity was up regulated following the treatments, indicating their involvement in maintaining organism homeostasis. In addition, the diversity and composition of hemolymph and digestive gland microbiota exposed to HC were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and a Next Generation Sequencing (NGS) approach to evaluate the connection with hydrocarbon contamination. Metagenomic analysis revealed significant differences in the hemolymph and digestive gland microbiota composition between mussels exposed and unexposed to HC. Exposure to increasing HC concentrations had a positive effect on microbial diversity with clear adaptative responses, and an increase in the relative abundance of several known degrading bacterial genera, including Alcanivorax, Roseovarius, Pseudomonas, Vibrio, Oleibacter. These results show the utility of a multi-comprehensive approach to evaluating functional adaptation in terms of immunological dysfunctions and microbiota alteration in the sentinel organism M. galloprovincialis.
Collapse
Affiliation(s)
- F Bertini
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - V Catania
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - L Scirè Calabrisotto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy
| | - M Dara
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - L Bisanti
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy
| | - M Staropoli
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - D Piazzese
- NBFC, National Biodiversity Future Center, Palermo, 90133 Italy; Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 26, Palermo, 90123 Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy.
| |
Collapse
|
5
|
Tilikj N, de la Fuente M, Muñiz-González AB, Martínez-Guitarte JL, Caballero-Carretero P, Novo M. Small heat shock proteins as relevant biomarkers for anthropogenic stressors in earthworms. Comp Biochem Physiol A Mol Integr Physiol 2025; 300:111785. [PMID: 39581225 DOI: 10.1016/j.cbpa.2024.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Anthropogenic stressors in terrestrial ecosystems require focused research on adaptive responses in soil organisms such as Eisenia fetida, a model earthworm species. We analyzed the gene expression of five small heat shock proteins (sHSPs) in response to various stressors: heat stress (31 and 35 °C), desiccation (10 % and 20 % humidity), and chemical exposure (bisphenol A and endosulfan) under standard and elevated temperatures. Under moderate heat (31 °C), early upregulation of sHSP transcripts suggests their involvement in initial stress responses, possibly mitigating protein aggregation. At the higher temperature (35 °C), three sHSPs served as a defense against severe protein aggregation, a significant finding as previous studies identified only one activated heat shock protein (HSP70) in E. fetida under similar conditions. Desiccation stress at 10 % humidity activated more sHSPs than at 20 % humidity, and the expression profile at 10 % humidity closely resembled that observed under heat stress, suggesting overlapping adaptation pathways. Heat combined with chemical stress, particularly endosulfan, elevated sHSP transcription and underscored the potential of these proteins as biomarkers in multi-stressor environments. Monomeric sHSPs from E. fetida, which share homology with human sHSPs, showed the highest activity across all stressors, suggesting their key role in earthworm adaptation.
Collapse
Affiliation(s)
- Natasha Tilikj
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - Ana Belén Muñiz-González
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), Avda. Puerta de Hierro 2, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Patricia Caballero-Carretero
- Environmental Toxicology and Biology Group, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Marta Novo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain. https://twitter.com/martanovo
| |
Collapse
|
6
|
Lv K, Xie Y, Yu Q, Zhang N, Zheng Q, Wu J, Zhang J, Li J, Zhao H, Xu W. Amur Grape VaMYB4a-VaERF054-Like Module Regulates Cold Tolerance Through a Regulatory Feedback Loop. PLANT, CELL & ENVIRONMENT 2025; 48:1130-1148. [PMID: 39412230 DOI: 10.1111/pce.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Cold stress can limit the growth and development of grapevines, which can ultimately reduce productivity. However, the mechanisms by which grapevines respond to cold stress are not yet fully understood. Here, we characterized an APETALA2/ethylene response factor (AP2/ERF) which was shown to be a target gene of our previously identified VaMYB4a from Amur grape. We further investigated the molecular interactions between VaMYB4a and VaERF054-like transcription factors in grapes and their role in cold stress tolerance. Our results demonstrated that VaMYB4a directly binds to and activates the VaERF054-like gene promoter, leading to its enhanced expression. Moreover, we also explored the influence of ethylene precursors and inhibitors on VaERF054-like expression and grape cold tolerance. Our findings indicate that VaERF054-like contribute to cold tolerance in grapes through modulation of the ethylene pathway and the CBF signal pathway. Overexpression of VaERF054-like in Vitis vinifera 'Chardonnay' calli and transgenic grape lines resulted in increased freezing stress tolerance, confirming its role in the cold stress response. We further confirmed the interaction between VaMYB4a and VaERF054-like in vivo and in vitro. The co-transformation of VaMYB4a and VaERF054-like in grape calli demonstrates a synergistic interaction, enhancing the cold tolerance through a regulatory feedback mechanism. Our finding provides new insights into grape cold tolerance mechanisms, potentially contributing to the development of cold-resistant grape varieties.
Collapse
Affiliation(s)
- Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| | - Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Huixian Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| |
Collapse
|
7
|
Mahto FK, Bhattacharya A, Bhattacharya S. Molecular dynamics simulations suggest novel allosteric modes in the Hsp70 chaperone protein. J Biomol Struct Dyn 2025; 43:966-984. [PMID: 38063068 DOI: 10.1080/07391102.2023.2290618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/25/2023] [Indexed: 01/01/2025]
Abstract
The Hsp70 chaperone protein system is an essential component of the protein folding and homeostasis machinery in E.Coli. Hsp70 is a three domain, 70 kDa protein which functions as an allosteric system cycling between an ADP-bound state where the three domains are loosely coupled via a flexible interdomain linker and an ATP-bound state where they are tightly coupled into a single entity. The structure-function model of this protein proposes an allosteric connection between the 45 kDa Nucleotide Binding Domain (NBD) and the 25 kDa Substrate Binding Domain (SBD) and Lid Domain which operates through the inter NBD-SBD linker. X-Ray crystallography and NMR spectroscopy have provided structures of the end states of the functional cycle of this protein, bound to ADP and ATP. We have used MD simulations to study the transitions between these end states and allosteric communication in this system. Our results largely validate the experimentally derived allosteric model of function, but shed additional light on the flow of allosteric information in the SBD + Lid. Specifically, we find that the Lid domain has a double-hinged structure with the potential for greater conformational flexibility than was hitherto expected.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Farindra Kumar Mahto
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
8
|
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025; 14:204. [PMID: 39936995 DOI: 10.3390/cells14030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The epichaperome, a dynamic and integrated network of chaperone proteins, extends its roles beyond basic protein folding to protein stabilization and intracellular signal transduction to orchestrating a multitude of cellular processes critical for tumor survival. In this review, we explore the multifaceted roles of the epichaperome, delving into its diverse cellular locations, factors that modulate its formation and function, its liquid-liquid phase separation, and the key signaling and crosstalk pathways it regulates, including cellular metabolism and intracellular signal transduction. We further highlight techniques for isolating and identifying epichaperome networks, pitfalls, and opportunities. Further, we review the profound implications of the epichaperome for cancer treatment and therapy design, underscoring the need for strategic engineering that hinges on a comprehensive insight into the comprehensive structure and workings of the epichaperome across the heterogeneous cell subpopulations in the tumor milieu. By presenting a holistic view of the epichaperome's functions and mechanisms, we aim to underscore its potential as a key target for novel anti-cancer strategies, revealing that the epichaperome is not merely a piece of protein folding machinery but a mastermind that facilitates the malignant phenotype.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, Winneba CE-122-2486, Central Region, Ghana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana
| | - Tawfeek Ahmed Amissah
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Saint Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
9
|
Verhagen KJA, Pardijs IH, van Klaveren HM, Wahl SA. A Dive Into Yeast's Sugar Diet-Comparing the Metabolic Response of Glucose, Fructose, Sucrose, and Maltose Under Dynamic Feast/Famine Conditions. Biotechnol Bioeng 2025. [PMID: 39865609 DOI: 10.1002/bit.28935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Microbes experience dynamic conditions in natural habitats as well as in engineered environments, such as large-scale bioreactors, which exhibit increased mixing times and inhomogeneities. While single perturbations have been studied for several organisms and substrates, the impact of recurring short-term perturbations remains largely unknown. In this study, we investigated the response of Saccharomyces cerevisiae to repetitive gradients of four different sugars: glucose, fructose, sucrose, and maltose. Due to different transport mechanisms and metabolic routes, nonglucose sugars lead to varied intracellular responses. To characterize the impact of the carbon sources and the dynamic substrate gradients, we applied both steady-state and dynamic cultivation conditions, comparing the physiology, intracellular metabolome, and proteome. For maltose, the repeated concentration gradients led to a significant decrease in biomass yield. Under glucose, fructose, and sucrose conditions, S. cerevisiae maintained the biomass yield observed under steady-state conditions. Although the physiology was very similar across the different sugars, the intracellular metabolome and proteome were clearly differentiated. Notably, the concentration of upper glycolytic enzymes decreased for glucose and maltose (up to -60% and -40%, respectively), while an increase was observed for sucrose and fructose when exposed to gradients. Nevertheless, for all sugar gradient conditions, a stable energy charge was maintained, ranging between 0.78 and 0.89. This response to maltose is particularly distinct compared to previous single-substrate pulse experiments or limitation to excess shifts, which led to maltose-accelerated death in earlier studies. At the same time, enzymes of lower glycolysis were elevated. Interestingly, common stress-related proteins (GO term: cellular response to oxidative stress) decreased during dynamic conditions.
Collapse
Affiliation(s)
| | - Ilse Henrike Pardijs
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | | | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander-Universität, Erlangen, Germany
| |
Collapse
|
10
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
11
|
McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. Neurotherapeutics 2025:e00525. [PMID: 39827052 DOI: 10.1016/j.neurot.2025.e00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles. In AD, disruptions in these processes lead to bioenergetic failure, gene dysregulation, the accumulation of damaged mitochondria, neuroinflammation, and lipid homeostasis impairment, further exacerbating neurodegeneration. This review elucidates the molecular pathways involved in MQC and their pathological relevance in AD, highlighting recent discoveries related to mitochondrial mechanisms underlying neurodegeneration. Furthermore, we explore potential therapeutic strategies targeting mitochondrial dysfunction, including gene therapy and pharmacological interventions, offering new avenues for slowing AD progression. The complex interplay between mitochondrial health and neurodegeneration underscores the need for innovative approaches to restore mitochondrial function and mitigate the onset and progression of AD.
Collapse
Affiliation(s)
- Kyle C McGill Percy
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhunren Liu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Pushchina EV, Pimenova EA, Kapustyanov IA, Bykova ME. Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon ( Oncorhynchus keta) Brain After Acute Traumatic Injury. Int J Mol Sci 2025; 26:644. [PMID: 39859360 PMCID: PMC11765592 DOI: 10.3390/ijms26020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the "astrocyte-like" response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.P.); (I.A.K.); (M.E.B.)
| | | | | | | |
Collapse
|
13
|
Lin H, Ramanan S, Kaplan S, King DH, Bunn D, Johnson GV. One BAG doesn't fit all: the differences and similarities of BAG family members in mediating CNS homeostasis. Biol Psychiatry 2025:S0006-3223(25)00020-4. [PMID: 39793689 DOI: 10.1016/j.biopsych.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis, and that their dysregulation contributes to neurological disorders. This protein family of nine members is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Heat Shock Protein (Hsp) 70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS). Although there are numerous studies that focus on a specific BAG protein, an understanding of how BAG family members may act cooperatively to maintain cellular homeostasis is needed. In this review, we give an overview of the BAG domain interactors, Hsp72, Hsp70.2, CHIP and METTL3 which are common to all BAG family members. This is followed by a concise description of each BAG family member, with a focus on its function in the CNS and dysfunction in neurological conditions. Finally, we discuss the intersection of the molecular functions of the different BAG family proteins by delineating differences and similarities, and describing how their functions can be either complementary or competing. The information in this review provides a basic conceptual framework for analyzing the roles of a particular BAG family member in the CNS and neurological conditions. This review also provides a basis for examining how BAG family members can play either redundant or antagonistic roles that may modulate experimental outcomes.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sudarshan Ramanan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sofia Kaplan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Dominic Bunn
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Gail Vw Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA.
| |
Collapse
|
14
|
Gala M, Paul ED, Čekan P, Žoldák G. Prediction of the Stability of Protein Substructures Using AI/ML Techniques. Methods Mol Biol 2025; 2870:153-182. [PMID: 39543035 DOI: 10.1007/978-1-0716-4213-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This chapter explores the innovative application of machine learning techniques to understand and predict the stability of protein substructures. Accurately identifying stable substructures within proteins necessitates incorporating the local context, crucial for elucidating the roles of supersecondary structures. This approach emphasizes the importance of contextual information in understanding the stability and functionality of protein regions, thereby providing a more comprehensive view of protein mechanics and interactions. The chapter focuses on our findings regarding the DnaK Hsp70 chaperone protein, utilizing it as a case study. This research highlights how context-dependent physico-chemical features derived from protein sequences can accurately classify residues into stable and unstable substructures by leveraging logistic regression, random forest, and support vector machine methods. The findings represent a pivotal step towards the rational design of proteins with tailored properties, offering new insights into protein engineering and the fundamental principles underpinning protein supersecondary structures.
Collapse
Affiliation(s)
- Michal Gala
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Evan David Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Gabriel Žoldák
- Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.
| |
Collapse
|
15
|
Rivi V, Batabyal A, Benatti C, Tascedda F, Blom JMC, Lukowiak K. Quercetin, the new stress buster: Investigating the transcriptional and behavioral effects of this flavonoid on multiple stressors using Lymnaea stagnalis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110053. [PMID: 39442780 DOI: 10.1016/j.cbpc.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Growing evidence suggests that a flavonoid-rich diet can prevent or reverse the effects of stressors, although the underlying mechanisms remain poorly understood. One common and abundant flavonoid found in numerous foods is quercetin. This study utilizes the pond snail Lymnaea stagnalis, a valid model organism for learning and memory, and a simple but robust learning paradigm-operant conditioning of aerial respiration-to explore the behavioral and transcriptional effects of different stressors on snails' cognitive functions and to investigate whether quercetin exposure can prevent stress effects on learning and memory formation. Our findings demonstrate that three different stressors-severe food deprivation, lipopolysaccharide injection (an inflammatory challenge), and fluoride exposure (a neurotoxic agent)-block memory formation for operant conditioning and affect the expression levels of key targets related to stress response, energy balance, and immune response in the snails' central ring ganglia. Remarkably, exposing snails to quercetin for 1 h before stress presentation prevents these effects at both the behavioral and transcriptional levels, demonstrating the potent stress-preventive properties of quercetin. Despite the evolutionary distance from humans, L. stagnalis has proven to be a valuable model for studying conserved mechanisms by which bioactive compounds like quercetin mitigate the adverse effects of various stressors on cognitive functions across species. Moreover, these findings offer insights into quercetin's potential for mitigating stress-induced physiological and cognitive impairments.
Collapse
Affiliation(s)
- Veronica Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Cristina Benatti
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy; Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Maria Catharina Blom
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
16
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
17
|
Morizono MA, McGuire KL, Birouty NI, Herzik MA. Structural insights into GrpEL1-mediated nucleotide and substrate release of human mitochondrial Hsp70. Nat Commun 2024; 15:10815. [PMID: 39737924 DOI: 10.1038/s41467-024-54499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information. To elucidate these mechanistic details, we used cryoEM to determine structures of full-length human mortalin-GrpEL1 complexes in previously unobserved states. Our structures and molecular dynamics simulations allow us to delineate specific roles for mortalin-GrpEL1 interfaces and to identify steps in GrpEL1-mediated nucleotide and substrate release by mortalin. Subsequent analyses reveal conserved mechanisms across bacteria and mammals and facilitate a complete understanding of sequential nucleotide and substrate release for the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Marc A Morizono
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Kelly L McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Natalie I Birouty
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Shriya S, Paul R, Singh N, Afza F, Jain BP. Bioinformatics analysis and alternative polyadenylation in Heat Shock Proteins 70 (HSP70) family members. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:138-151. [PMID: 39850245 PMCID: PMC11751548 DOI: 10.62347/cwpe7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/21/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVE The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections. Their primary role is preventing protein aggregation, refolding misfolded proteins, and targeted degradation of irreparably damaged proteins. Given their involvement in fundamental cellular processes and stress responses, HSP70 proteins are critical for cell survival and modulating disease outcomes in cancer, neurodegeneration, and other pathologies. The present study aims to understand domain architecture, physicochemical properties, phosphorylation, ubiquitination, and alternative polyadenylation site prediction in various HSP70 members. METHOD SMART and InterProScan software were used for domain analysis. EXPASY Protparam, NetPhos 3.1 server DTU, and MUbisiDa were used for physicochemical analysis, phosphorylation, and ubiquitination site analysis, respectively. Alternative polyadenylation was studied using the EST database. RESULT Domain analysis shows that coiled-coil and nucleotide-binding domains are present in some of the HSP70 members. Five HSP70 family members have alternate polyadenylation sites in their 3'UTR. CONCLUSION The present work has provided valuable insights into their structure, functions, interactome, and polyadenylation patterns. Studying their therapeutic potential in diseases like cancer can be helpful.
Collapse
Affiliation(s)
- Srishti Shriya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Ramakrushna Paul
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Neha Singh
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Farhat Afza
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| |
Collapse
|
19
|
Chauhan R, Sharma AK. Speed-Energy-Efficiency Trade-off in Hsp70 Chaperone System. J Phys Chem B 2024; 128:12101-12113. [PMID: 39622490 DOI: 10.1021/acs.jpcb.4c06594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Proteins must fold into their native structure to carry out cellular functions. However, they can sometimes misfold into non-native structures, leading to reduced efficiency or malfunction. Chaperones help prevent misfolding by guiding proteins to their active state using energy from ATP hydrolysis. Experiments have revealed numerous kinetic and structural aspects of how various chaperones facilitate the folding of proteins into their native structure. However, what remains missing is a fundamental theoretical understanding of their operational mechanisms, especially the limits and constraints imposed on their efficiency by energy flow and dissipation. To address this, we built a kinetic model of the Hsp70 chaperone system by incorporating all key structural and kinetic details. Then, using the chemical kinetic equations, we investigate how energy expenditure shapes the efficiency of Hsp70 chaperones in the proper folding of misfolded proteins. We show that ATP consumption by chaperones significantly enhances the folding of proteins into their native states. Our investigations reveal that a chaperone achieves optimal efficiency when its binding to misfolded proteins is much faster than the misfolding kinetics of that protein. We also demonstrate the presence of an upper bound on a chaperone's efficiency of protein folding and its overall rescue rate. This upper bound increases with energy dissipation until it reaches a saturation point. Furthermore, we show a speed-energy-efficiency trade-off in chaperone action, demonstrating that it is impossible to simultaneously optimize the efficiency of chaperone-assisted protein folding and the energy efficiency of the process.
Collapse
Affiliation(s)
- Rupal Chauhan
- Department of Physics, Indian Institute of Technology, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Jammu 181221, India
| |
Collapse
|
20
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
21
|
Yu HX, Cao YJ, Yang YB, Shan JX, Ye WW, Dong NQ, Kan Y, Zhao HY, Lu ZQ, Guo SQ, Lei JJ, Liao B, Lin HX. A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. MOLECULAR PLANT 2024; 17:1899-1918. [PMID: 39552084 DOI: 10.1016/j.molp.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Heat stress poses a significant threat to grain yield. As an α2 subunit of the 26S proteasome, TT1 has been shown to act as a critical regulator of rice heat tolerance. However, the heat tolerance mechanisms mediated by TT1 remain elusive. In this study, we unveiled that small ubiquitin-like modifier (SUMO)-conjugating enzyme 1 (SCE1), which interacts with TT1 and acts as a downstream component of TT1, is engaged in TT1-mediated 26S proteasome degradation. We showed that SCE1 functions as a negative regulator of heat tolerance in rice, which is associated with its ubiquitination modification. Furthermore, we observed that small heat-shock proteins (sHSPs) such as Hsp24.1 and Hsp40 can undergo SUMOylation mediated by SCE1, leading to increased accumulation of sHSPs in the absence of SCE1. Reducing protein levels of SCE1 significantly enhanced grain yield under high-temperature stress by improving seed-setting rate and rice grain filling capacity. Taken together, these results uncover the critical role of SCE1 in the TT1-mediated heat tolerance pathway by regulating the abundance of sHSPs and SUMOylation, and ultimately modulating rice heat tolerance. These findings underscore the great potential of the TT1-SCE1 module in improving the heat tolerance of crops.
Collapse
Affiliation(s)
- Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
22
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
23
|
Rakib MRH, Messina V, Gargiulo JI, Lyons NA, Garcia SC. Graduate Student Literature Review: Potential use of HSP70 as an indicator of heat stress in dairy cows-A review. J Dairy Sci 2024; 107:11597-11610. [PMID: 39218068 DOI: 10.3168/jds.2024-24947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Heat stress (HS) poses significant challenges to the dairy industry, resulting in reduced milk production, impaired reproductive performance, and compromised animal welfare. Therefore, understanding the molecular mechanisms underlying cellular responses to HS is crucial for developing effective strategies to mitigate its adverse effects. Heat shock protein 70 (HSP70) has emerged as a potential player involved in cellular thermotolerance in dairy cows. This review provides a comprehensive overview of the role of HSP70 as a molecular chaperone in cellular thermotolerance in dairy cows under HS. HSP70 facilitates proper protein folding and prevents the aggregation of denatured proteins. By binding to misfolded proteins, it helps maintain protein homeostasis and prevents the accumulation of damaged proteins during HS. Additionally, HSP70 interacts with various regulatory proteins and signaling pathways, contributing to the cellular adaptive response to HS. The upregulation of HSP70 expression in response to HS is regulated by a complex network involving heat shock factors (HSF), heat shock element-binding proteins, and HSF co-chaperones. Therefore, HSP70 holds the potential to be a useful indicator of tissue stress due to its role in maintaining cellular balance and because it is released both inside and outside cells in response to stress. Traditional methods of measuring HSP70 in blood samples are labor intensive, and because the process is potentially stressful for the animals, this may subsequently affect the results. Therefore, measuring HSP expression in cow milk has shown promise as an easy, noninvasive, and accurate way to detect HS in dairy cows. Monitoring HSP70 levels in milk can be applied as a supplementary approach to identify HS or HS resistance of individual cows, select suitable animals, and guide targeted management strategies. However, despite the potential advantages of using HSP70 as a biomarker for monitoring HS on dairy cows, challenges remain in standardizing measurement protocols, establishing species-specific reference ranges, addressing interindividual variations, and determining the specificity of changes in HSP70 due to HS. Future research should focus on developing noninvasive techniques for HSP70 detection, with consideration of climatic conditions and unraveling the molecular interactions and regulatory networks involving HSP70.
Collapse
Affiliation(s)
- M R H Rakib
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh.
| | - V Messina
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - J I Gargiulo
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia
| | | | - S C Garcia
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
24
|
Koner D, Snaitang R, Das KC, Saha N. Molecular characterization of heat shock protein 70 and 90 genes and their expression analysis in air-breathing magur catfish (Clarias magur) while exposed to zinc oxide nanoparticles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2389-2406. [PMID: 39180596 DOI: 10.1007/s10695-024-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The air-breathing magur catfish (Clarias magur) are frequently challenged with high environmental pollutants, including that of various metal nanoparticles (NPs) in their natural habitats. Heat shock proteins (HSPs) are essential molecular chaperones for preserving intracellular protein homeostasis in eukaryotic cells. In aquatic animals, HSPs are known to play important defensive roles associated with various environmental stress-related cellular damages. In the present investigation, we characterized the molecular and structural organization of distinct HSPs and their potential induction of HSP genes in multiple magur catfish tissues while exposed to ZnO NPs for 14 days. The sequence alignment of four HSP genes (hsp70, hsc70, hsp90a, and hsp90b) of magur catfish demonstrated evolutionary parallels with bony fishes and total conservation of active sites across the amphibia, fish, and mammals. From the architectural analysis of HSP70, HSC70, HSP90a, and HSP90b proteins, a structural similarity with mammals was observed, suggesting the functional resemblances of the studied HSPs in chaperone mechanisms. In the examined tissues, the mRNAs of HSP genes expressed constitutively. Exposure of C. magur to ZnO NPs (10 mg/L) in situ led to a considerable increase in the levels of mRNAs for several HSP genes and translated proteins, with HSP70 exhibiting the highest level of expression. Thus, it can be contemplated that HSPs may be involved in defending the magur catfish against the ZnO NP- and other metal NP-mediated cellular damages. The results provide new insights into the involvement of HSP machinery during adaptation to the ZnO NP-induced stress in magur catfish.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Kanhu Charan Das
- Bioinformatics Centre, North-Eastern Hill University, Shillong, 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
25
|
Zhang J, Hu Y, Wang J, Hou X, Xiao Y, Wang X, Hu J, Bao Z, Xing Q, Huang X. Tissue-specific, temporal, and core gene-dependent expression patterns of Hsp70s reveal functional allocation in Chlamys farreri under heat stress. Int J Biol Macromol 2024; 283:137537. [PMID: 39537055 DOI: 10.1016/j.ijbiomac.2024.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Heat shock proteins 70 KDa (Hsp70s) engage in a broad spectrum of cellular functions in response to various stressors. Marine bivalves face substantial threats from the rising seawater temperature attributed to global warming. In the present study, expression patterns of Hsp70s in Zhikong scallop Chlamys farreri (CfHsp70s) were determined in embryos and larvae at all developmental stages, in healthy adult tissues, and across four various tissues exposed to high temperature for acute and chronic periods through in silico analysis. Spatiotemporal expressions suggested CfHsp70s performed specific functional differentiations in scallop's development and growth. Regulatory expression patterns of CfHsp70s, characterized by predominant down-regulation in the mantle, gill and hemocytes, as well as contrasting up-regulation in the heart, suggest differential functional allocation of CfHsp70s among tissues in response to heat stress. Particularly, a core set of 14 CfHsp70s, especially the nine members of the Hsp70B2s, characterized by gene expansion, intron-less structure, shorter gene length, preference for hydrophilic amino acids, and coordinated expression profiles, was predominantly responsible for the inducible up-regulations observed across all four tissue types. Collectively, the tissue-specific, temporal and core gene-dependent expression patterns of CfHsp70s illustrate the functional allocation and molecular evolution of Hsp70 family members in Zhikong scallops.
Collapse
Affiliation(s)
- Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yang Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
26
|
Wang Y, Fernandez A, Pei X, Liu B, Shen L, Yan Y, Solanki H, Yang L, Zhou M, Guo Y, Wu J, Reckamp K, Zheng L, Shen B. EGFR-mediated HSP70 phosphorylation facilitates PCNA association with chromatin and DNA replication. Nucleic Acids Res 2024; 52:13057-13072. [PMID: 39470734 PMCID: PMC11602123 DOI: 10.1093/nar/gkae938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024] Open
Abstract
Efficient DNA replication requires highly coordinated programs for the timely recruitment of protein complexes to DNA replication forks. Defects in this process result in replication stress, which in turn activates cell cycle checkpoints, suppresses cell proliferation and induces apoptosis. In response to persistent cell growth signals that speed up DNA replication processes, cells accelerate the recruitment of DNA replication proteins to avoid DNA replication stress. The mechanisms by which cell growth signals induce processes to facilitate the recruitment of DNA replication proteins onto the replication sites remain unclear. Here, we report that the epidermal growth factor receptor (EGFR) phosphorylates heat shock protein 70 (HSP70) for DNA replication. Such a modification promotes nuclear localization and chromatin association of HSP70, which interacts with the DNA replication coordinator, proliferating cell nuclear antigen (PCNA). HSP70 subsequently facilitates the loading of PCNA onto chromatin. Knockdown or chemical inhibition of HSP70 suppresses PCNA association with chromatin and impairs DNA synthesis and Okazaki fragment maturation, leading to replicative DNA double-strand breaks and apoptosis. Furthermore, chemical inhibition of HSP70 potentiates EGFR-tyrosine kinase inhibitor-induced tumor reduction in vivo. This work expands our understanding of oncogenesis-induced DNA replication processes and provides a foundation for improved treatments for EGFR-mutated lung cancer by simultaneously targeting HSP70.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Anthony Fernandez
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xinyu Pei
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Bing Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- CSL Sequirus, 225 Wyman St., Waltham, MA 02451, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yao Yan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Hitendra S Solanki
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Lin Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Ln, Gulou, Nanjing, Jiangsu, China, 210009, China
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuming Guo
- Animal Resource Center, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jun Wu
- Animal Resource Center, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Karen L Reckamp
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
27
|
Qian X, Yao M, Xu J, Dong N, Chen S. From cancer therapy to cardiac safety: the role of proteostasis in drug-induced cardiotoxicity. Front Pharmacol 2024; 15:1472387. [PMID: 39611175 PMCID: PMC11602306 DOI: 10.3389/fphar.2024.1472387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Drug-induced cardiotoxicity (DICT) poses a significant challenge in the prognosis of cancer patients, particularly with the use of antineoplastic agents like anthracyclines and targeted therapies such as trastuzumab. This review delves into the intricate interplay between drugs and proteins within cardiac cells, focusing on the role of proteostasis as a therapeutic target for mitigating cardiotoxicity. We explore the in vivo modeling of proteostasis, highlighting the complex intracellular environment and the emerging techniques for monitoring proteostasis. Additionally, we discuss how cardiotoxic drugs disrupt protein homeostasis through direct chemical denaturation, endoplasmic reticulum stress, unfolded protein response, chaperone dysfunction, impairment of the proteasome system, and dysregulation of autophagy. Finally, we provide insights into the applications of cardioprotective drugs targeting proteostasis to prevent cardiotoxicity and the adoption of structural proteomics to evaluate potential cardiotoxicity. By gaining a deeper understanding of the role of proteostasis underlying DICT, we can pave the way for the development of targeted therapeutic strategies to safeguard cardiac function while maximizing the therapeutic potential of antineoplastic drugs.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdong Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
English J, Dhanikonda S, Tanaka KE, Koba W, Eichenbaum G, Yang WL, Guha C. Thrombopoietin mimetic reduces mouse lung inflammation and fibrosis after radiation by attenuating activated endothelial phenotypes. JCI Insight 2024; 9:e181330. [PMID: 39513364 PMCID: PMC11601560 DOI: 10.1172/jci.insight.181330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 11/15/2024] Open
Abstract
Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect experienced by patients with lung cancer treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of proinflammatory cytokines, and neutrophil infiltration in the lungs of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing that TPOm reduced endothelial cell-neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition and expression of MMP-9, TIMP-1, IL-6, TGF-β, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells toward a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.
Collapse
Affiliation(s)
- Jeb English
- Department of Radiation Oncology
- Department of Pathology, and
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gary Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, New Brunswick, New Jersey, USA
| | | | - Chandan Guha
- Department of Radiation Oncology
- Department of Pathology, and
| |
Collapse
|
29
|
Wu X, Zhang Y, Song S, Liu S, Ma F, Ma R, Shi L. Functional nanochaperones for PEGylated insulin delivery in long-term glycemic control. Biomater Sci 2024; 12:5742-5752. [PMID: 39382287 DOI: 10.1039/d4bm01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (t1/2 = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Shuoshuo Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Sainan Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Feihe Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| |
Collapse
|
30
|
Joshi P, Garg S, Mani S, Shoaib R, Jakhar K, Almuqdadi HTA, Sonar S, Marothia M, Behl A, Biswas S, Singhal J, Kahlon AK, Shevtsov M, Abid M, Garg P, Ranganathan A, Singh S. Targeting host inducible-heat shock protein 70 with PES-Cl is a promising antiviral strategy against SARS-CoV-2 infection and pathogenesis. Int J Biol Macromol 2024; 279:135069. [PMID: 39187102 DOI: 10.1016/j.ijbiomac.2024.135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
One of the fundamental mechanisms developed by the host to contain the highly infectious and rapidly proliferating SARS-coronavirus is elevation of body temperature, a natural fallout of which is heat shock proteins over-expression. Here, for the first time, we demonstrate that the SARS-CoV-2 exploits the host Heat shock protein 70 (Hsp70) chaperone for its entry and propagation, and blocking it can combat the infection. SARS-CoV-2 infection as well as febrile temperature enhanced Hsp70 expression in host Vero E6 cells. Furthermore, heat shock or viral infection elevated the host cell autophagic response which is a prerequisite for viral propagation. In addition, Hsp70 protein demonstrated strong interaction with host Angiotensin-converting enzyme 2 (ACE2) as well as the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein, indicating that interaction of Hsp70 with ACE2 and Spike protein may serve to protect them during febrile conditions. Suppressive and prophylactic treatment of Vero E6 cells with Hsp70 inhibitor PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), abrogated viral infection more potently than the currently used drug Remdesivir. In conclusion, our study not only provides a fundamental insight into the role of host Hsp70 in SARS-CoV-2 pathogenesis, it paves the way for development of potent and irresistible anti-viral therapeutics.
Collapse
Affiliation(s)
- Prerna Joshi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India; Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of LifeSciences, Jamia Millia Islamia, New Delhi, India
| | - Kamini Jakhar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of LifeSciences, Jamia Millia Islamia, New Delhi, India; Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Sudipta Sonar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Maxim Shevtsov
- Klinikum rechts der Isar, Technische Universität München, Department of Radiation Oncology, Ismaninger Str. 22, Munich 81675, Germany; Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg 194064, Russia; Personalized Medicine Centre, Almazov National Medical Research Centre, str. 2, St. Petersburg 19, Russia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of LifeSciences, Jamia Millia Islamia, New Delhi, India
| | - Pramod Garg
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
31
|
Hesapçıoğlu M, Avcı H. Investigation of the heat shock protein 70 activity in intestine cells of goats with coccidiosis. Biotech Histochem 2024; 99:426-431. [PMID: 39629694 DOI: 10.1080/10520295.2024.2427790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Coccidiosis is one of the most common infectious diseases in goat farming. The disease causes major economic loss in the world. In this study, we aimed to investigate the activity of heat shock protein 70 in intestine cells of goats with coccidiosis. We used total of twenty-seven goats for this purpose. Gross findings were diarrhoea, cachexia, and dehydration. In the microscopical examination, we observed proliferative enteritis with Eimeria. parasites. Immunohistochemical examinations revealed moderate to severe Hsp70 immunoreactivity in intestines. Considering Hsp70 is a stress protein with anti-apoptotic and immune regulatory features, Hsp70 immunoreactivity attributed to the stress caused by infection and anti-apoptotic activity of the protein along with immune regulatory effects of Hsp70.
Collapse
Affiliation(s)
- Mehmet Hesapçıoğlu
- Republic of Turkey Ministry of Agriculture and Forestry Kütahya Directorate of Provincial Agriculture and Forestry, Kütahya-TURKEY
| | - Hamdi Avcı
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pathology, Aydın-TURKEY
| |
Collapse
|
32
|
Santhosh A, Neuhauser S. Host-Parasite interaction between brown algae and eukaryote biotrophic pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100306. [PMID: 39558936 PMCID: PMC11570863 DOI: 10.1016/j.crmicr.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Brown algae belong to the class Phaeophyceae which are mainly multicellular, photosynthetic organisms, however they evolved independently from terrestrial plants, green and red algae. In the past years marine aquaculture involving brown algae has gained enormous momentum. In both natural environments and aquaculture, brown algae are susceptible to infection by various prokaryotic and eukaryotic parasites. While our understanding of host-parasite interactions in brown algae is gaining recognition, our understanding of how brown algae react to biotic stress remains incomplete. The objective of this review is to address research gaps in the field by providing a summary of what is already known about the response of brown algae to abiotic and biotic stress. The biology of eukaryotic zoosporic pathogens Maullinia ectocarpii, Eurychasma dicksonii, Anisolpidium ectocarpii is also discussed, as those parasites have been used in laboratory experiments to study diseases of brown algae. These studies often relied on parasites-infecting Ectocarpus siliculosus which has become a brown algal model organism to study host-pathogen interactions. Stress response in brown algae involves processes similar to hypersensitivity response, oxidative stress response, and activation of peroxidases, but also the production of blue fluorescent metabolites and deposition of β-1,3-glucan in the cell wall. Cell wall modification, expression of several defence related proteins, and secondary metabolite production also hold a crucial role in brown algal defence mechanism. Understanding host-pathogen interactions and the associated mechanisms is vital to discover strategies to control pathogens in the growing aquaculture sector.
Collapse
Affiliation(s)
- Anagha Santhosh
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Nag S, Bisker G. Dissipative Self-Assembly of Patchy Particles under Nonequilibrium Drive: A Computational Study. J Chem Theory Comput 2024; 20:8844-8861. [PMID: 39365844 PMCID: PMC11500309 DOI: 10.1021/acs.jctc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Inspired by biology and implemented using nanotechnology, the self-assembly of patchy particles has emerged as a pivotal mechanism for constructing complex structures that mimic natural systems with diverse functionalities. Here, we explore the dissipative self-assembly of patchy particles under nonequilibrium conditions, with the aim of overcoming the constraints imposed by equilibrium assembly. Utilizing extensive Monte Carlo (MC) and Molecular Dynamics (MD) simulations, we provide insight into the effects of external forces that mirror natural and chemical processes on the assembly rates and the stability of the resulting assemblies comprising 8, 10, and 13 patchy particles. Implemented by a favorable bond-promoting drive in MC or a pulsed square wave potential in MD, our simulations reveal the role these external drives play in accelerating assembly kinetics and enhancing structural stability, evidenced by a decrease in the time to first assembly and an increase in the duration the system remains in an assembled state. Through the analysis of an order parameter, entropy production, bond dynamics, and interparticle forces, we unravel the underlying mechanisms driving these advancements. We also validated our key findings by simulating a larger system of 100 patchy particles. Our comprehensive results not only shed light on the impact of external stimuli on self-assembly processes but also open a promising pathway for expanding the application by leveraging patchy particles for novel nanostructures.
Collapse
Affiliation(s)
- Shubhadeep Nag
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
34
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 PMCID: PMC11605229 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| |
Collapse
|
35
|
Sztangierska W, Wyszkowski H, Pokornowska M, Kochanowicz K, Rychłowski M, Liberek K, Kłosowska A. Early steps of protein disaggregation by Hsp70 chaperone and class B J-domain proteins are shaped by Hsp110. eLife 2024; 13:RP94795. [PMID: 39404743 PMCID: PMC11479587 DOI: 10.7554/elife.94795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Hsp70 is a key cellular system counteracting protein misfolding and aggregation, associated with stress, ageing, and disease. Hsp70 solubilises aggregates and aids protein refolding through substrate binding and release cycles regulated by co-chaperones: J-domain proteins (JDPs) and nucleotide exchange factors (NEFs). Here, we elucidate the collaborative impact of Hsp110 NEFs and different JDP classes throughout Hsp70-dependent aggregate processing. We show that Hsp110 plays a major role at initial stages of disaggregation, determining its final efficacy. The NEF catalyses the recruitment of thick Hsp70 assemblies onto aggregate surface, which modifies aggregates into smaller species more readily processed by chaperones. Hsp70 stimulation by Hsp110 is much stronger with class B than class A JDPs and requires the auxiliary interaction between class B JDP and the Hsp70 EEVD motif. Furthermore, we demonstrate for the first time that Hsp110 disrupts the JDP-Hsp70 interaction. Such destabilisation of chaperone complexes at the aggregate surface might improve disaggregation, but also lead to the inhibition above the sub-stoichiometric Hsp110 optimum. Thus, balanced interplay between the co-chaperones and Hsp70 is critical to unlock its disaggregating potential.
Collapse
Affiliation(s)
- Wiktoria Sztangierska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Hubert Wyszkowski
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Maria Pokornowska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Klaudia Kochanowicz
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Michal Rychłowski
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Agnieszka Kłosowska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| |
Collapse
|
36
|
Liu M, Bian Z, Shao M, Feng Y, Ma W, Liang G, Mao J. Expression analysis of the apple HSP70 gene family in abiotic stress and phytohormones and expression validation of candidate MdHSP70 genes. Sci Rep 2024; 14:23975. [PMID: 39402100 PMCID: PMC11473515 DOI: 10.1038/s41598-024-73368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/17/2024] [Indexed: 10/17/2024] Open
Abstract
Heat shock protein 70 (HSP70) is one kind of molecular chaperones which are widely found in organisms, and its members are highly conserved among each other, with important roles in plant growth and development. In this study, 56 HSP70 genes were identified from the apple genome database. Analysis of gene duplication events showed that tandem and segmental duplication events play an important role in promoting the amplification of the MdHSP70 gene family. Collinearity analysis showed that HSP70 family members of apple were more closely related to HSP70 family members of Arabidopsis, tomato and soybean. The promoter region of the apple HSP70 genes contains a large number of cis-acting elements in response to hormones and stress. Tissue-specific expression analysis showed that some of the genes were associated with various stages of the apple growth process. Codon preference analysis showed small differences between codon bases 1 and 3 in the apple HSP70 genome, and the codon base composition had a small effect on codon usage preference. The multiple expression patterns of the MdHSP70 gene suggested that MdHSP70 gene members play important roles in growth and development and in response to hormonal and abiotic stresses. The yeast two-hybrid (Y2H) demonstrated that MdHSP70-53 interacts with MdDVH24_032563. The qRT-PCR analysis showed that most MdHSP70 members' hormonal and abiotic stresses (MdHSP70-6, MdHSP70-26 and MdHSP70-45) appeared to be highly expressed. To further elucidate the function of MdHSP70 (6, 26, 45), we introduced them into tobacco to confirm subcellular locations and noted that these genes are located in the cytoplasm and cell membrane. This study serves as a theoretical basis for further studies of the MdHSP70 gene and helps to further investigate the functional characterization of MdHSP70 gene.
Collapse
Affiliation(s)
- Ming Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyuan Bian
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
37
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
38
|
Rukes V, Rebeaud ME, Perrin LW, De Los Rios P, Cao C. Single-molecule evidence of Entropic Pulling by Hsp70 chaperones. Nat Commun 2024; 15:8604. [PMID: 39379347 PMCID: PMC11461734 DOI: 10.1038/s41467-024-52674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Hsp70 chaperones are central components of the cellular network that ensures the structural quality of proteins. Despite crucial roles in processes such as protein disaggregation and protein translocation into organelles, their physical mechanism of action has remained hotly debated. To the best of our knowledge, no experimental data has directly proven any of the models proposed to date (Power Stroke, Brownian Ratchet, or Entropic Pulling) due to a lack of suitable methods. Here, we use nanopores, a powerful single-molecule tool, to investigate the mechanism of Hsp70s. We demonstrate that Hsp70s extract trapped polypeptide substrates from the nanopore by generating strong forces (equivalent to 46 pN over distances of 1 nm), that rely on the size of Hsp70. The findings provide unambiguous evidence of the Entropic Pulling mechanism, thus solving a long-standing debate, and proposing a potentially universal principle governing diverse cellular processes. Additionally, these results highlight the utility of biological nanopores for protein studies.
Collapse
Affiliation(s)
- Verena Rukes
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland
| | - Mathieu E Rebeaud
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland
| | - Louis W Perrin
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland.
| | - Chan Cao
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland.
| |
Collapse
|
39
|
Ndlovu N, Gowda M, Beyene Y, Das B, Mahabaleswara SL, Makumbi D, Ogugo V, Burgueno J, Crossa J, Spillane C, McKeown PC, Brychkova G, Prasanna BM. A combination of joint linkage and genome-wide association study reveals putative candidate genes associated with resistance to northern corn leaf blight in tropical maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1448961. [PMID: 39421144 PMCID: PMC11484028 DOI: 10.3389/fpls.2024.1448961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Northern corn leaf blight (NCLB), caused by Setosphaeria turcica, is a major fungal disease affecting maize production in sub-Saharan Africa. Utilizing host plant resistance to mitigate yield losses associated with NCLB can serve as a cost-effective strategy. In this study, we conducted a high-resolution genome-wide association study (GWAS) in an association mapping panel and linkage mapping with three doubled haploid (DH) and three F3 populations of tropical maize. These populations were phenotyped for NCLB resistance across six hotspot environments in Kenya. Across environments and genotypes, NCLB scores ranged from 2.12 to 5.17 (on a scale of 1-9). NCLB disease severity scores exhibited significant genotypic variance and moderate-to-high heritability. From the six biparental populations, 23 quantitative trait loci (QTLs) were identified, each explaining between 2.7% and 15.8% of the observed phenotypic variance. Collectively, the detected QTLs explained 34.28%, 51.37%, 41.12%, 12.46%, 12.11%, and 14.66% of the total phenotypic variance in DH populations 1, 2, and 3 and F3 populations 4, 5, and 6, respectively. GWAS, using 337,110 high-quality single nucleotide polymorphisms (SNPs), identified 15 marker-trait associations and several putative candidate genes linked to NCLB resistance in maize. Joint linkage association mapping (JLAM) identified 37 QTLs for NCLB resistance. Using linkage mapping, JLAM, and GWAS, several QTLs were identified within the genomic region spanning 4 to 15 Mbp on chromosome 2. This genomic region represents a promising target for enhancing NCLB resistance via marker-assisted breeding. Genome-wide predictions revealed moderate correlations with mean values of 0.45, 0.44, 0.55, and 0.42 for within GWAS panel, DH pop1, DH pop2, and DH pop3, respectively. Prediction by incorporating marker-by-environment interactions did not show much improvement. Overall, our findings indicate that NCLB resistance is quantitative in nature and is controlled by few major-effect and many minor-effect QTLs. We conclude that genomic regions consistently detected across mapping approaches and populations should be prioritized for improving NCLB resistance, while genome-wide prediction results can help incorporate both major- and minor-effect genes. This study contributes to a deeper understanding of the genetic and molecular mechanisms driving maize resistance to NCLB.
Collapse
Affiliation(s)
- Noel Ndlovu
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Manje Gowda
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Yoseph Beyene
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Biswanath Das
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Suresh L. Mahabaleswara
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Dan Makumbi
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Veronica Ogugo
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Juan Burgueno
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico
| | - Jose Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico
| | - Charles Spillane
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Peter C. McKeown
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Galina Brychkova
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Boddupalli M. Prasanna
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
40
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
41
|
Liu Z, Kong N, Zhang Y, Zheng Y, Yang C, Fu Q, Zhang Z, Li F, Liu R, Wang L, Song L. The phytoplankton community affects the energy metabolism and immunomodulation strategy of oyster during breeding seasons. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109819. [PMID: 39122097 DOI: 10.1016/j.fsi.2024.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The mass mortality of Pacific oyster Crassostrea gigas has become a severe ecological and economic concern to Chinese aquaculture, which is proposed to be linked to the phytoplankton community in the farming waters. In the present study, both field and laboratory experiments were conducted to identify the phytoplankton taxa associated with oyster mortality and explore the molecular mechanism by which they affect the physiological health of oysters. The field experiment showed that more serious mortality of oysters was observed in the North Yellow Sea from July to September in 2018 (average survival rate of 75.11 %) than in 2019 (average survival rate of 85.78 %), with the proportion of Bacillariophyta (diatoms) in the phytoplankton community in 2018 lower than that in 2019. In comparison to 2019, reduced dry weight, lower glycogen and triglyceride contents in hepatopancreas, lower 17β-estradiol and testosterone concentrations in gonad, as well as a generally weaker immune response against Vibrio splendidus stimulation were detected in the oysters sampled in 2018. The treatment of oysters with either starvation (starvation group) or Nitzschia closterium f. minutissima feeding (N. closterium group) was conducted to verify the field findings, with individuals reared in natural seawater as control. After 40 days of N. closterium feeding, dry weight, glycogen and triglyceride contents in hepatopancreas significantly increased, as well as the biosynthesis of sex hormones and gonadal maturation were promoted compared to the control and starvation groups. Moreover, a much stronger immune response against V. splendidus stimulation was observed in the oysters of N. closterium group, with the fold-changes of norepinephrine content in serum, SOD activity in hepatopancreas, and the mRNA expression level of IL17-5 and HSP70 in haemocytes higher than those in the control and starvation groups. Collectively, these results suggested that lack of diatoms in the farming waters suppressed the energy storage and gonadal maturation of adult oysters, and also resulted in a compromised immune response against bacterial infection, which may be a leading cause of the mass mortality of oysters living in diatom-deficient waters during breeding seasons.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ziyang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Fuzhe Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ranyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
42
|
Matera AG, Steiner RE, Mills CA, McMichael BD, Herring LE, Garcia EL. Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. FRONTIERS IN RNA RESEARCH 2024; 2:1448194. [PMID: 39492846 PMCID: PMC11529804 DOI: 10.3389/frnar.2024.1448194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Introduction Molecular chaperones and co-chaperones are highly conserved cellular components that perform a variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an assembly chaperone and serves as a paradigm for studying how specific RNAs are identified and paired with their client substrate proteins to form RNPs. SMN is the eponymous component of a large complex, required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs), that localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN protein forms the oligomeric core of this complex, and missense mutations in the human SMN1 gene are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known. However, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Methods Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. We carried out affinity purification mass spectrometry (AP-MS) of Drosophila SMN complexes using fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Results Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially associated with SMA-causing alleles of SMN. Discussion Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - C. Allie Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
43
|
Kumar S, Mohan V, Kant Singh R, Kumar Gautam P, Kumar S, Shukla A, Kumar Patel A, Yadav L, Acharya A. Tumor-derived Hsp70-CD14 interaction enhances the antitumor potential of cytotoxic T cells by activating tumor-associated macrophages to express CC chemokines and CD40 costimulatory molecules. Int Immunopharmacol 2024; 138:112584. [PMID: 38944948 DOI: 10.1016/j.intimp.2024.112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Heat shock proteins are a widely distributed group of proteins. It is constitutively expressed in almost all organisms and shows little variation throughout evolution. Previously, HSPs, particularly Hsp70, were recognized as molecular chaperones that aid in the proper three-dimensional folding of newly synthesized polypeptides in cells. Recently, researchers have focused on the potential induction of immune cells, including macrophages, antigen-specific CD8+ cytotoxic T cells, and PBMCs. It induces the expression of CC chemokines such as MIP-1α and RANTES, which are responsible for the chemotactic movement and migration of immune cells at the site of infection to neutralize foreign particles in vivo and in vitro in several cell lines but their effect on tumor-associated macrophages is still not known. These cytokines are also known to influence the movement of several immune cells, including CD8+ cytotoxic T cells, toward inflammatory sites. Therefore, the effect of tumor-derived autologous Hsp70 on the expression of MIP-lα and RANTES in tumor-associated macrophages (TAMs) was investigated. Our results indicated that Hsp70 treatment-induced MIP-lα and RANTES expression was significantly greater in TAMs than in NMOs. According to the literature, the CC chemokine shares the same receptor, CCR5, as HIV does for their action, and therefore could provide better completion to the virus for ligand binding. Furthermore, Hsp70-preactivated TAMs induced increased IL-2 and IFN-γ expression in T cells during coculture for 48 h and upregulated the antitumor immune response of the host. Therefore, the outcome of our study could be useful for developing a better approach to restricting the growth and progression of tumors.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Mohan
- School of Biological and Life Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishi Kant Singh
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Pramod Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sandeep Kumar
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Alok Shukla
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Patel
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Lokesh Yadav
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Arbind Acharya
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
44
|
Shirley AK, Thomson PC, Chlingaryan A, Clark CEF. Review: Ruminant heat-stress terminology. Animal 2024; 18:101267. [PMID: 39116468 DOI: 10.1016/j.animal.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
With increasing climate variability, there is a rise in the exposure to, and incidence of, ruminant heat stress (HS), increasing the requirement for focused research. As such, precise terminology is crucial to maintain effective communication and knowledge advancement. Despite this, several key terms are currently defined inconsistently, leading to confusion and misinterpretation. This paper examines the historical and contemporary use of the terms 'resistance', 'tolerance', 'resilience', and 'susceptibility' across various disciplines, revealing significant ambiguities that hinder both research and practice. Through this comprehensive review, we propose new definitions for each term as they are used relating to HS, with a focus on ruminant production. Proposed definitions align with current scientific understanding, providing a robust framework for future research and application. As further research is conducted, we hope these definitions can be improved through the inclusion of quantitative measures which align with these classifications. This present review provides definition clarity for common heat abatement terminology, enabling consistency and from this, progress in the field to ameliorate HS for ruminants.
Collapse
Affiliation(s)
- A K Shirley
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia.
| | - P C Thomson
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia
| | - A Chlingaryan
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| | - C E F Clark
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
45
|
Kizilboga T, Özden C, Can ND, Onay Ucar E, Dinler Doganay G. Bag-1-mediated HSF1 phosphorylation regulates expression of heat shock proteins in breast cancer cells. FEBS Open Bio 2024; 14:1559-1569. [PMID: 39049197 PMCID: PMC11492399 DOI: 10.1002/2211-5463.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1-HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.
Collapse
Affiliation(s)
- Tugba Kizilboga
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in SciencesIstanbul UniversityTurkey
| | - Can Özden
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| | - Nisan Denizce Can
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| | - Evren Onay Ucar
- Department of Molecular Biology and Genetics, Faculty of SciencesIstanbul UniversityTurkey
| | | |
Collapse
|
46
|
Faccioli LAP, Sun Y, Animasahun O, Motomura T, Liu Z, Kurihara T, Hu Z, Yang B, Cetin Z, Baratta AM, Shankaran A, Nenwani M, Altay LN, Huang L, Meurs N, Franks J, Stolz D, Gavlock DC, Miedel MT, Ostrowska A, Florentino RM, Fox IJ, Nagrath D, Soto-Gutierrez A. Human-induced pluripotent stem cell-based hepatic modeling of lipid metabolism-associated TM6SF2-E167K variant. Hepatology 2024:01515467-990000000-01008. [PMID: 39190693 DOI: 10.1097/hep.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND AND AIMS TM6SF2 rs58542926 (E167K) is related to an increased prevalence of metabolic dysfunction-associated steatotic liver disease. Conflicting mouse study results highlight the need for a human model to understand this mutation's impact. This study aims to create and characterize a reliable human in vitro model to mimic the effects of the TM6SF2-E167K mutation for future studies. APPROACH AND RESULTS We used gene editing on human-induced pluripotent stem cells from a healthy individual to create cells with the TM6SF2-E167K mutation. After hepatocyte-directed differentiation, we observed decreased TM6SF2 protein expression, increased intracellular lipid droplets, and total cholesterol, in addition to reduced VLDL secretion. Transcriptomics revealed the upregulation of genes involved in lipid, fatty acid, and cholesterol transport, flux, and oxidation. Global lipidomics showed increased lipid classes associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, apoptosis, and lipid metabolism. In addition, the TM6SF2-E167K mutation conferred a proinflammatory phenotype with signs of mitochondria and ER stress. Importantly, by facilitating protein folding within the ER of hepatocytes carrying TM6SF2-E167K mutation, VLDL secretion and ER stress markers improved. CONCLUSIONS Our findings indicate that induced hepatocytes generated from human-induced pluripotent stem cells carrying the TM6SF2-E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to identify potential clinical targets and highlights the therapeutic potential of targeting protein misfolding to alleviate ER stress and mitigate the detrimental effects of the TM6SF2-E167K mutation on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lanuza A P Faccioli
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, PRC
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhenghao Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bo Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annalisa M Baratta
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ajay Shankaran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Minal Nenwani
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Leyla Nurcihan Altay
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Linqi Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Meurs
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Franks
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna Stolz
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dillon C Gavlock
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark T Miedel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Rinaldi S, Colombo G, Morra G. Exploring Mutation-Driven Changes in the ATP-ADP Conformational Cycle of Human Hsp70 by All-Atom MD Adaptive Sampling. J Phys Chem B 2024; 128:7770-7780. [PMID: 39091167 DOI: 10.1021/acs.jpcb.4c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hsp70 belongs to a family of molecular chaperones ubiquitous through organisms that assist client protein folding and prevent aggregation. It works through a tightly ATP-regulated allosteric cycle mechanism, which organizes its two NBD and SBD into alternate open and closed arrangements that facilitate loading and unloading of client proteins. The two cytosolic human isoforms Hsc70 and HspA1 are relevant targets for neurodegenerative diseases and cancer. Illuminating the molecular details of Hsp70 functional dynamics is essential to rationalize differences among the well-characterized bacterial homologue DnaK and the less explored human forms and develop subtype- or species-selective allosteric drugs. We present here a molecular dynamics-based analysis of the conformational dynamics of HspA1. By using an "allosterically impaired" mutant for comparison, we can reconstruct the impact of the ADP-ATP swap on interdomain contacts and dynamic coordination in full-length HspA1, supporting previous predictions that were, however, limited to the NBD. We model the initial onset of the conformational cycle by proposing a sequence of structural steps, which reveal the role of a specific human sequence insertion at the linker, and a modulation of the angle formed by the two NBD lobes during the progression of docking. Our findings pinpoint functionally relevant conformations and set the basis for a selective structure-based drug discovery approach targeting allosteric sites in human Hsp70.
Collapse
Affiliation(s)
- Silvia Rinaldi
- Institute for the Chemistry of Organometallic Compounds (ICCOM)─National Research Council (CNR), Via Madonna del Piano, 10, Sesto Fiorentino, Firenze 50019, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia Via Taramelli 12, Pavia 27100, Italy
| | - Giulia Morra
- Institute of Chemical Sciences and Technologies (SCITEC)─National Research Council (CNR), Via Mario Bianco 9, Milano 20131, Italy
| |
Collapse
|
48
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
49
|
Xia S, Liu D, Jiang K, Cao M, Lou Z, Cheng R, Yi J, Yin A, Jiang Y, Cheng K, Weng W, Shi B, Tang B. Photothermal driven BMSCs osteogenesis and M2 macrophage polarization on polydopamine-coated Ti 3C 2 nanosheets/poly(vinylidene fluoride trifluoroethylene) nanocomposite coatings. Mater Today Bio 2024; 27:101156. [PMID: 39081463 PMCID: PMC11287002 DOI: 10.1016/j.mtbio.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Mild thermal stimulation plays an active role in bone tissue repair and regeneration. In this work, a bioactive polydopamine/Ti3C2/poly(vinylidene fluoride trifluoroethylene) (PDA/Ti3C2/P(VDF-TrFE)) nanocomposite coating with excellent near-infrared light (NIR)-triggered photothermal effect was designed to improve the osteogenic ability of implants. By incorporating dopamine (DA)-modified Ti3C2 nanosheets into the P(VDF-TrFE) matrix and combining them with alkali initiated in situ polymerization, the resulting PDA/Ti3C2/P(VDF-TrFE) nanocomposite coating gained high adhesion strength on Ti substrate, excellent tribological and corrosion resistance properties, which was quite important for clinical application of implant coatings. Cell biology experiments showed that NIR-triggered mild thermal stimulation on the coating surface promoted cell spreading and growth of BMSCs, and also greatly upregulated the osteogenic markers, including Runt-Related Transcription Factor 2 (RUNX2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN). Simultaneously, the synthesis of heat shock protein 47 (HSP47) was significantly promoted by the mild thermal stimulation, which strengthened the specific interaction between HSP47 and collagen Ⅰ (COL-Ⅰ), thereby activating the integrin-mediated MEK/ERK osteogenic differentiation signaling pathway. In addition, the results also showed that the mild thermal stimulation induced the polarization of macrophages towards M2 phenotype, which can attenuate the inflammatory response of injured bone tissue. Antibacterial results indicated that the coating exhibited an outstanding antibacterial ability against S. aureus and E. coli. Conceivably, the versatile implant bioactive coatings developed in this work will show great application potential for implant osseointegration.
Collapse
Affiliation(s)
- Sanqiang Xia
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Kanling Jiang
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhenqi Lou
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Ruobing Cheng
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jie Yi
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Anlin Yin
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yi Jiang
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Bolin Tang
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
- Nanotechnology Research Institute, G60 STI Valley Industry & Innovation Institute, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
50
|
Smyth SP, Nixon B, Skerrett-Byrne DA, Burke ND, Bromfield EG. Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate. Antioxid Redox Signal 2024; 41:296-321. [PMID: 38115641 DOI: 10.1089/ars.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Significance: Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. Recent Advances: Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects via the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. Critical Issues: Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. Future Directions: An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.
Collapse
Affiliation(s)
- Shannon P Smyth
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Brett Nixon
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Skerrett-Byrne
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Nathan D Burke
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth G Bromfield
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|