1
|
Dang TT, Tran TTT, Pham SH, Quach TH, Ngo NTQ, Nguyen THN. Characterization of cyclotides Mra30 and cycloviolacin O17 derived from Viola dalatensis Gadnep. Arch Microbiol 2024; 206:396. [PMID: 39249533 DOI: 10.1007/s00203-024-04122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Bacteria threaten human and animal health, and standard antibiotics no longer effective. Antibiotic-resistant microorganisms can make infection treatment challenging and perhaps fail. Investigating the attributes of cyclotide, a peptide with promising antibacterial properties that holds great potential in the field of antibiotic research. The structure of these cyclic peptides involves six conserved cysteine residues that form three disulfide bonds, resulting in a cyclic cystine knot (CCK). This feature guarantees their durability when exposed to changes in temperature, chemicals, and enzymatic degradation. The two cyclotides, cycloviolacin O17 and mra30, were obtained from Viola dalatensis Gadnep through a series of techniques including the use of a 50% acetonitrile/49% miliQ water/1% formic acid solution for extraction, ammonium salt precipitation, RP-HPLC purification and sequence identification by LC-MS/MS. These cyclotides exhibit antibacterial effects on specific strains of bacteria like Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa at a concentration of 0.2 mg/mL, leading to inhibition zones ranging from 10 to 14 mm. In addition, the disulfide bonds play a crucial role in the antibacterial function of cyclotides. Disrupting the disulfide bonds through ankylation reaction results in the loss of antibacterial properties in the cyclotides (cyO17 and mra30). The minimum inhibitory concentration (MIC) values of mra30 and cyO17 are significantly low, ranging from 0.1 to 0.6 µM. These values are approximately three times lower than the MIC values observed in salt precipitation samples.
Collapse
Affiliation(s)
- Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam.
| | - Tam T T Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh, Viet Nam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh, Viet Nam
| | - Tong-Hung Quach
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh, Viet Nam
| | - Nhu T Q Ngo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, Thanh Loc Ward, District 12, Ho Chi Minh, 700000, Viet Nam
| | - Tuan H N Nguyen
- Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Viet Nam
- Department of Medical Biochemistry & Molecular Biology, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Viet Nam
| |
Collapse
|
2
|
Batiha GES, Lukman HY, Shaheen HM, Wasef L, Hafiz AA, Conte-Junior CA, Al-Farga A, Chamba MVM, Lawal B. A Systematic Review of Phytochemistry, Nutritional Composition, and Pharmacologic Application of Species of the Genus Viola in Noncommunicable Diseases (NCDs). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5406039. [PMID: 37941895 PMCID: PMC10630019 DOI: 10.1155/2023/5406039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/03/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Viola L. is the largest genus of the Violaceae family with more than 500 species across the globe. The present extensive literature survey revealed Viola species to be a group of important nutritional and medicinal plants used for the ethnomedicinal treatment of noncommunicable diseases (NCDs) such as diabetes, asthma, lung diseases, and fatigue. Many plant species of this genus have also received scientific validation of their pharmacological activities including neuroprotective, immunomodulatory, anticancer, antihypertensive, antidyslipidemic, analgesic, antipyretic, diuretic, anti-inflammatory, anthelmintic, and antioxidant. Viola is highly rich in different natural products some of which have been isolated and identified in the past few decades; these include flavonoids terpenoids and phenylpropanoids of different pharmacological activities. The pharmacokinetics and clinical studies on this genus are lacking, and the present review is aimed at summarizing the current understanding of the ethnopharmacology, phytochemistry, nutritional composition, and pharmacological profile of medicinal plants from the Viola genus to reveal its therapeutic potentials, gaps, and subsequently open a new window for future pharmacological research.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Halimat Yusuf Lukman
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Lamiaa Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amin A. Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro RJ 21941-909, Brazil
| | - Ammar Al-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Moses V. M. Chamba
- Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri, Blantyre 3, Malawi
| | - Bashir Lawal
- Faculty of Medical Science, New Gate University, Minna, Nigeria
| |
Collapse
|
3
|
Du Q, Huang YH, Wang CK, Kaas Q, Craik DJ. Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity. J Biol Chem 2022; 298:101822. [PMID: 35283188 PMCID: PMC9006653 DOI: 10.1016/j.jbc.2022.101822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Gerlach SL, Dunlop RA, Metcalf JS, Banack SA, Cox PA. Cyclotides Chemosensitize Glioblastoma Cells to Temozolomide. JOURNAL OF NATURAL PRODUCTS 2022; 85:34-46. [PMID: 35044783 DOI: 10.1021/acs.jnatprod.1c00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive cancer originating in the brain, with a median survival of 12 months. Most patients do not respond to or develop resistance to the only effective chemotherapeutic drug, temozolomide (TMZ), used to treat gliomas. Novel treatment methods are critically needed. Cyclotides are plant peptides that may be promising adjuvants to TMZ chemotherapy. They exhibit antitumor activity and chemosensitize cells to doxorubicin in breast cancer studies. During this research, we optimized cyclotide isolation techniques, and several cyclotides (CyO2, CyO13, kalata B1, and varv peptide A) exhibited dose-dependent cytotoxicity in MTT assays with IC50 values of 2.15-7.92 μM against human brain astrocytoma cells (U-87 MG) and human bone marrow derived neuroblastoma cells (SH-SY5Y). CyO2 and varv peptide A increased TMZ-induced cell death in U-87 MG cultures alone and when coexposed with CyO2 or varv peptide A plus TMZ. Phase contrast microscopy of glioblastoma cells exposed to cyclotides alone and coexposed to TMZ indicated shrunken, granular cells with blebbing, and the most pronounced effects were observed with coexposure treatments of cyclotides and TMZ. Cumulative results provide the proof-of-concept that cyclotides may enhance TMZ chemotherapy, and in vivo pharmacokinetic investigations of cyclotides are warranted with respect to GBM.
Collapse
Affiliation(s)
- Samantha L Gerlach
- Department of Biology, Dillard University, New Orleans, Louisiana 70122, United States
| | - Rachael A Dunlop
- Institute for Ethnomedicine, Brain Chemistry Laboratories, Box 3464, Jackson, Wyoming 83001, United States
| | - James S Metcalf
- Institute for Ethnomedicine, Brain Chemistry Laboratories, Box 3464, Jackson, Wyoming 83001, United States
| | - Sandra A Banack
- Institute for Ethnomedicine, Brain Chemistry Laboratories, Box 3464, Jackson, Wyoming 83001, United States
| | - Paul Alan Cox
- Institute for Ethnomedicine, Brain Chemistry Laboratories, Box 3464, Jackson, Wyoming 83001, United States
| |
Collapse
|
5
|
Gupta R, Kumari J, Pati S, Singh S, Mishra M, Ghosh SK. Interaction of cyclotide Kalata B1 protein with model cellular membranes of varied electrostatics. Int J Biol Macromol 2021; 191:852-860. [PMID: 34592223 DOI: 10.1016/j.ijbiomac.2021.09.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
A uni-molecular layer of lipids at air-water interface mimicking one of the leaflets of the cellular membrane provides a simple model to understand the interaction of any foreign molecules with the membrane. Here, the interactions of protein Kalata B1 (KB1) of cyclotide family with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG), and 1,2-distearoyl-sn-glycero-3-ethylphosphocholine chloride salt (DSEPC) have been investigated. The addition of KB1 induces a change in pressure of the lipid monolayers. The characteristic time of the change in pressure is found to be dependent on the electrostatic nature of the lipid. Even though the protein is weakly surface active, it is capable of modifying the phase behavior and elastic properties of lipid monolayers with differences in their strength and nature making the layers more floppy. The KB1-lipid interaction has been quantified by calculating the excess Gibb's free energy of interaction and the 1-anilino-8-naphthalenesulfonate (ANS) binding studies. The interaction with zwitterionic DPPC and negatively charged DPPG lipids are found to be thermodynamically favorable whereas the protein shows a weaker response to positively charged DSEPC lipid. Therefore, the long ranged electrostatic is the initial driving force for the KB1 to recognize and subsequently attach to a cellular membrane. Thereafter, the hydrophobic region of the protein may penetrate into the hydrophobic core of the membrane via specific amino acid residues.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru university, New Delhi 110067, India
| | - Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
6
|
Huang YH, Du Q, Jiang Z, King GJ, Collins BM, Wang CK, Craik DJ. Enabling Efficient Folding and High-Resolution Crystallographic Analysis of Bracelet Cyclotides. Molecules 2021; 26:5554. [PMID: 34577034 PMCID: PMC8467136 DOI: 10.3390/molecules26185554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Cyclotides have attracted great interest as drug design scaffolds because of their unique cyclic cystine knotted topology. They are classified into three subfamilies, among which the bracelet subfamily represents the majority and comprises the most bioactive cyclotides, but are the most poorly utilized in drug design applications. A long-standing challenge has been the very low in vitro folding yields of bracelets, hampering efforts to characterize their structures and activities. Herein, we report substantial increases in bracelet folding yields enabled by a single point mutation of residue Ile-11 to Leu or Gly. We applied this discovery to synthesize mirror image enantiomers and used quasi-racemic crystallography to elucidate the first crystal structures of bracelet cyclotides. This study provides a facile strategy to produce bracelet cyclotides, leading to a general method to easily access their atomic resolution structures and providing a basis for development of biotechnological applications.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qingdan Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhihao Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gordon J. King
- The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
| | - Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Kalmankar NV, Balaram P, Venkatesan R. Mass Spectrometric Analysis of Cyclotides from Clitoria ternatea: Xxx-Pro Bond Fragmentation as Convenient Diagnostic of Pro Residue Positioning. Chem Asian J 2021; 16:2920-2931. [PMID: 34288513 DOI: 10.1002/asia.202100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Indexed: 11/06/2022]
Abstract
Cyclotides, a class of macrocyclic plant peptides, characterized by a cyclic backbone and three inter-locking disulfide bonds, may be divided into two major structural subfamilies, Möbius and Bracelet, based on the presence or absence of a specific proline residue. The present study describes the suite of cyclotides obtained from Clitoria ternatea, characterized by LC-MS and MS/MS techniques. Notable variations in product ion distributions were observed in cyclotides belonging to different structural subfamilies based on the number and positions of proline residues. For instance, Cter M which is an abundant Möbius cyclotide in this plant containing three proline residues, displayed distinct b- and y- ion characteristics in the MS/MS spectra compared to Cliotide T1, another commonly identified cyclotide but belonging to the Bracelet subfamily having two proline residues. The distinct fragmentation pattern of prototypical cyclotides of each structural subfamily, determined by Xxx-Pro bond fragmentation, was used to rapidly identify and sequence a novel cyclotide ctr pep 30 from this plant.
Collapse
Affiliation(s)
- Neha V Kalmankar
- National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Jarakabande Kaval, Post Attur, Via Yelahanka, Bangalore, Karnataka, 560064, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Department of Biological Sciences, Indian Institute of Science, Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
8
|
van den Broek K, Epple M, Kersten LS, Kuhn H, Zielesny A. Quantitative Estimation of Cyclotide-Induced Bilayer Membrane Disruption by Lipid Extraction with Mesoscopic Simulation. J Chem Inf Model 2021; 61:3027-3040. [PMID: 34008405 DOI: 10.1021/acs.jcim.1c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclotide-induced membrane disruption is studied at the microsecond timescale by dissipative particle dynamics to quantitatively estimate a kinetic rate constant for membrane lipid extraction with a ″sandwich″ interaction model where two bilayer membranes enclose a cyclotide/water compartment. The obtained bioactivity trends for cyclotides Kalata B1, Cycloviolacin O2, and selected mutants with different membrane types are in agreement with experimental findings: For all membranes investigated, Cycloviolacin O2 shows a higher lipid extraction activity than Kalata B1. The presence of cholesterol leads to a decreased cyclotide activity compared to cholesterol-free membranes. Phosphoethanolamine-rich membranes exhibit an increased membrane disruption. A cyclotide's ″hydrophobic patch″ surface area is important for its bioactivity. A replacement of or with charged amino acid residues may lead to super-mutants with above-native activity but without simple charge-activity patterns. Cyclotide mixtures show linearly additive bioactivities without significant sub- or over-additive effects. The proposed method can be applied as a fast and easy-to-use tool for exploring structure-activity relationships of cyclotide/membrane systems: With the open software provided, the rate constant of a single cyclotide/membrane system can be determined in about 1 day by a scientific end-user without programming skills.
Collapse
Affiliation(s)
- Karina van den Broek
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Sophie Kersten
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Hubert Kuhn
- CAM-D Technologies GmbH, 42697 Solingen, Germany
| | - Achim Zielesny
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| |
Collapse
|
9
|
Lei X, Liu S, Zhou R, Meng XY. Molecular Dynamics Simulation Study on Interactions of Cycloviolacin with Different Phospholipids. J Phys Chem B 2021; 125:3476-3485. [PMID: 33787269 DOI: 10.1021/acs.jpcb.0c10513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclotides are disulfide-rich cyclic peptides isolated from plants, which are extremely stable against thermal and proteolytic degradation, with a variety of biological activities including antibacterial, hemolytic, anti-HIV, and anti-tumor. Most of these bioactivities are related to their preference for binding to certain types of phospholipids and subsequently disrupt lipid membranes. In the present study, we use a cyclotide, cycloviolacin O2 (cyO2), as a model system to investigate its interactions with three lipid bilayers 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)-doped POPE, and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), to help understand its potential mechanism of action toward the membranes at the molecular level using molecular dynamics simulations. In our simulations, cyO2 repeatedly forms stable binding complexes with the POPE-containing bilayers, while within the same simulation time scale, it "jumps" back and forth on the surface of the POPC bilayer without a strong binding. Detailed analyses reveal that the electrostatic attraction is the main driving force for the initial bindings between cyO2 and the lipids, but with strikingly different strengths in different bilayers. For the POPE-containing bilayers, the charged residues of cyO2 attract both POPE amino and phosphate head groups favorably; meanwhile, its hydrophobic residues are deeply inserted into the lipid hydrophobic tails (core) of the membrane, thus forming stable binding complexes. In contrast, POPC lipids with three methyl groups on the amino head group create a steric hindrance when interacting with cyO2, thus resulting in a relatively difficult binding of cyO2 on POPC compared to POPE. Our current findings provide additional insights for a better understanding of how cyO2 binds to the POPE-containing membrane, which should shed light on the future cyclotide-based antibacterial agent design.
Collapse
Affiliation(s)
- Xiaotong Lei
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xuan-Yu Meng
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
11
|
Grover T, Mishra R, Gulati P, Mohanty A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021; 135:170430. [PMID: 33096195 DOI: 10.1016/j.peptides.2020.170430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Cyclotides are plant-derived mini-proteins of 28 - 37 amino acids. They have a characteristic head-to-tail cyclic backbone and three disulfide cross-linkages formed by six highly conserved cysteine residues, creating a unique knotted ring structure, known as a cyclic cystine knot (CCK) motif. The CCK topology confers immense stability to cyclotides with resistance to thermal and enzymatic degradation. Native cyclotides are of interest due to their multiple biological activities with several potential applications in agricultural (e.g. biopesticides, antifungal) and pharmaceutical (e.g. anti-HIV, cytotoxic to tumor cells) sectors. The most recent application of insecticidal activity of cyclotides is the commercially available biopesticidal spray known as 'Sero X' for cotton crops. Cyclotides have a general mode of action and their potency of bioactivity is determined through their binding ability, pore formation and disruption of the target biological membranes. Keeping in view the important potential applications of biological activities of cyclotides and the lack of an extensive and analytical compilation of bioactive cyclotides, the present review systematically describes eight major biological activities of the native cyclotides from four angiosperm families viz. Fabaceae, Poaceae, Rubiaceae, Violaceae. The bioactivities of 94 cytotoxic, 57 antibacterial, 44 hemolytic, 25 antifungal, 21 anti-HIV, 20 nematocidal, 10 insecticidal and 5 molluscicidal cyclotides have been comprehensively elaborated. Further, their distribution in angiosperm families, mode of action and future prospects have also been discussed.
Collapse
Affiliation(s)
- Tripti Grover
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India.
| |
Collapse
|
12
|
Handley TNG, Wang CK, Harvey PJ, Lawrence N, Craik DJ. Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography. Chembiochem 2020; 21:3463-3475. [DOI: 10.1002/cbic.202000315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas N. G. Handley
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
13
|
Romero N, Areche C, Cubides-Cárdenas J, Escobar N, García-Beltrán O, Simirgiotis MJ, Céspedes Á. In Vitro Anthelmintic Evaluation of Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce: Fingerprint Analysis of Extracts by UHPLC-Orbitrap Mass Spectrometry. Molecules 2020; 25:molecules25133002. [PMID: 32630065 PMCID: PMC7412154 DOI: 10.3390/molecules25133002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/03/2023] Open
Abstract
In the present work, the anthelmintic activity (AA) of ethanolic extracts obtained from Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce was evaluated using the third-stage-larval (L3) exsheathment inhibition test (LEIT) and egg hatch test (EHT) on Haemonchus contortus. Extracts were tested at concentrations of 0.3, 0.6, 1.2, 2.5, 5.0, 10, 20, and 40 mg/mL. The larval exsheathment inhibition (LEI) results showed that G. sepium achieved the highest average inhibition of 91.2%, compared with 44.6% for P. dulce and 41.0% for L. leucocephala at a concentration of 40 mg/mL; the corresponding IC50 values were 22.4, 41.7, and 43.3 mg/mL, respectively. The rates of egg hatching inhibition (EHI) at a concentration of 5 mg/mL were 99.5% for G. sepium, 64.2% for P. dulce, and 54% for L. leucocephala; the corresponding IC50 values were 1.9 mg/mL for G. sepium, 3.9 mg/mL for P. dulce, and 4.3 mg/mL for L. leucocephala. The species extracts studied here were also analyzed by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q/Orbitrap/MS/MS), resulting in the compounds' identification associated with AA. Glycosylated flavonoids and methoxyphenols were observed in all three species: fatty acids in G. sepium and P. dulce; phenylpropanoids, anthraquinone glycosides, amino acids and glycosylated phenolic acids in G. sepium; and flavonoids in L. leucocephala. Comparatively, G. sepium presented a greater diversity of compounds potentially active against the control of gastrointestinal nematodes, which was associated with the results obtained in the applied tests.
Collapse
Affiliation(s)
- Néstor Romero
- Departamento de Sanidad Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad del Tolima, Ibagué 730001, Colombia;
- Correspondence:
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 7800024, Chile;
| | - Jaime Cubides-Cárdenas
- Grupo de Investigación e Innovación en Salud y Bienestar Animal, Laboratorio de Salud Animal, Centro de Investigación Tibaitatá, Agrosavia, Mosquera 250047, Colombia;
| | - Natalia Escobar
- Facultad de Ciencias Agropecuarias, Universidad de Cundinamarca, Fusagasugá 252212, Colombia;
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia;
| | | | - Ángel Céspedes
- Departamento de Sanidad Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad del Tolima, Ibagué 730001, Colombia;
| |
Collapse
|
14
|
Du Q, Chan LY, Gilding EK, Henriques ST, Condon ND, Ravipati AS, Kaas Q, Huang YH, Craik DJ. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J Biol Chem 2020; 295:10911-10925. [PMID: 32414842 DOI: 10.1074/jbc.ra120.012627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Institute of Health & Biomedical Innovation and Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Anjaneya S Ravipati
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Tammineni R, Gulati P, Kumar S, Mohanty A. An overview of acyclotides: Past, present and future. PHYTOCHEMISTRY 2020; 170:112215. [PMID: 31812106 DOI: 10.1016/j.phytochem.2019.112215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Acyclotides are plant-based, acyclic miniproteins with cystine knot motif formed by three conserved disulfide linkages and lack head to tail ligation. Acyclotides may not necessarily be less stable, even though they lack cyclic backbone, as the conserved cystine knot feature provides the required stability. Violacin A was the first acyclotide, isolated from Viola odorata in 2006. Until now, acyclotides have been reported from five dicot families (Violaceae, Rubiaceae, Cucurbitaceae, Solanaceae, Fabaceae) and one monocot family (Poaceae). In Poaceae, only acyclotides have been found whereas in dicot families both cyclotides and acyclotides have been isolated. In last 15 years, several acyclotides with antimicrobial, cytotoxic and hemolytic bioactivities have been discovered. Thus, although many naturally expressed acyclotides do exhibit bioactivities, the linearization of the cyclic peptides may result in loss of bioactivities. Although, bioactivities of acyclotides are comparable to their cyclic counterparts, the numbers of isolated acyclotides are still few. Further, those discovered, have the scope to be screened for agriculturally important activities (insecticidal, anti-helminthic, molluscicidal) and pharmaceutical properties (anticancer, anti-HIV, immuno-stimulant). The feasibility of application of acyclotides is because of their relatively less complex biological synthesis compared to cyclotides, as the cyclization step is not needed. This attribute facilitates the production of transgenic crops and/or its expression in heterologous organisms, lacking cyclization machinery. Keeping in view the bioactivities and the wide array of emerging potential applications of acyclotides, the present review discusses their distribution in plants, gene and protein structure, biosynthesis, bioactivities and mechanism of action. Further, their potential applications and future perspectives to exploit them in agriculture and pharmaceutical industries have been highlighted.
Collapse
Affiliation(s)
- Ramya Tammineni
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | |
Collapse
|
16
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
17
|
Reporting a Transcript from Iranian Viola Tricolor, Which May Encode a Novel Cyclotide-Like Precursor: Molecular and in silico Studies. Comput Biol Chem 2019; 84:107168. [PMID: 31791808 DOI: 10.1016/j.compbiolchem.2019.107168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022]
Abstract
The cyclotides are the largest known family of cyclic proteins, which are found in several plant families including Violaceae. They are circular bioactive peptides consisting of 28-37 amino acids, which possess a cyclic cystine knot (CCK) motif and could be useful in biotechnology and drug design as scaffolds for peptide-based drugs. This study describes our finding of a potentially novel gene transcript from the petals of the Iranian Viola tricolor (V. tricolor) flowers. This study is based on the cDNA screening method employed for isolation of cyclotide precursor genes and in silico analysis. Our study resulted in the finding of a novel cyclotide-like precursor from V. tricolor, which is documented in the NCBI by GenBank accession number: KP065812. The in silico analysis revealed that there are lots of similar sequences in many other plant families and they all exhibit some different features from previously discovered cyclotide precursors. The differences occur particularly in the main cyclotide domain that exists without the usual CCK structure. All of these hypothetical precursors have a conserved ER-signal sequence, a Cysteine (C)-rich sequence forming two zinc finger motifs and a cyclotide-like region containing several conserved elements including two highly conserved C residues. In conclusion, using the cDNA screening method we found a potentially new cyclotide-like precursor gene and in silico studies revealed its significant characteristics that may open up a new research line on the distribution and evolution of cyclotides.
Collapse
|
18
|
Gerlach SL, Chandra PK, Roy U, Gunasekera S, Göransson U, Wimley WC, Braun SE, Mondal D. The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. MEDICINES 2019; 6:medicines6010033. [PMID: 30823453 PMCID: PMC6473583 DOI: 10.3390/medicines6010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022]
Abstract
Background: Novel strategies to increase the efficacy of antiretroviral (ARV) drugs will be of crucial importance. We hypothesize that membranes of HIV-1-infected cells and enveloped HIV-1 particles may be preferentially targeted by the phytopeptide, cycloviolacin O2 (CyO2) to significantly enhance ARV efficacy. Methods: Physiologically safe concentrations of CyO2 were determined via red blood cell (RBC) hemolysis. SYTOX-green dye-uptake and radiolabeled saquinavir (³H-SQV) uptake assays were used to measure pore-formation and drug uptake, respectively. ELISA, reporter assays and ultracentrifugation were conducted to analyze the antiviral efficacy of HIV-1 protease and fusion inhibitors alone and co-exposed to CyO2. Results: CyO2 concentrations below 0.5 μM did not show substantial hemolytic activity, yet these concentrations enabled rapid pore-formation in HIV-infected T-cells and monocytes and increased drug uptake. ELISA for HIV-1 p24 indicated that CyO2 enhances the antiviral efficacy of both SQV and nelfinavir. CyO2 (< 0.5 μM) alone decreases HIV-1 p24 production, but it did not affect the transcription regulatory function of the HIV-1 long terminal repeat (LTR). Ultracentrifugation studies clearly showed that CyO2 exposure disrupted viral integrity and decreased the p24 content of viral particles. Furthermore, direct HIV-1 inactivation by CyO2 enhanced the efficacy of enfuvirtide. Conclusions: The membrane-active properties of CyO2 may help suppress viral load and augment antiretroviral drug efficacy.
Collapse
Affiliation(s)
- Samantha L Gerlach
- Department of Biology, Division of Science, Technology, Engineering and Mathematics, Dillard University, New Orleans, LA 70122, USA.
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Partha K Chandra
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Sunithi Gunasekera
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| | - Ulf Göransson
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Stephen E Braun
- Tulane National Primate Research Center, Covington, LA 70112, USA.
| | - Debasis Mondal
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| |
Collapse
|
19
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
20
|
Uddin SJ, Muhammad T, Shafiullah M, Slazak B, Rouf R, Göransson U. Single-step purification of cyclotides using affinity chromatography. Biopolymers 2018; 108. [PMID: 28009046 DOI: 10.1002/bip.23010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 11/08/2022]
Abstract
Cyclotides are considered promising scaffolds for drug development owing to their inherent host defence activities and highly stable structure, defined by the cyclic cystine knot. These proteins are expressed as complex mixtures in plants. Although several methods have been developed for their isolation and analysis, purification of cyclotides is still a lengthy process. Here, we describe the use of affinity chromatography for the purification of cyclotides using polyclonal IgG antibodies raised in rabbits against cycloviolacin O2 and immobilized on NHS-activated Sepharose columns. Cycloviolacin O2 was used as a model substance to evaluate the chromatographic principle, first as a pure compound and then in combination with other cyclotides, that is, bracelet cyclotide cycloviolacin O19 and Möbius cyclotide kalata B1, and in a plant extract. We demonstrate that single-step purification of cyclotides by affinity chromatography is possible but cross reactivity may occur between homologue cyclotides of the bracelet subfamily.
Collapse
Affiliation(s)
- Shaikh Jamal Uddin
- Division of Pharmacognosy, Uppsala University, Biomedical Center, Uppsala, SE, 75123, Sweden.,Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, Uppsala, SE, 75123, Sweden.,Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Taj Muhammad
- Division of Pharmacognosy, Uppsala University, Biomedical Center, Uppsala, SE, 75123, Sweden.,Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, Uppsala, SE, 75123, Sweden
| | - Md Shafiullah
- Division of Pharmacognosy, Uppsala University, Biomedical Center, Uppsala, SE, 75123, Sweden.,Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, Uppsala, SE, 75123, Sweden
| | - Blazej Slazak
- W. Szafer Institute of Botany, Polish Academy of Science, Cracow, 31-512, Poland
| | - Razina Rouf
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Ulf Göransson
- Division of Pharmacognosy, Uppsala University, Biomedical Center, Uppsala, SE, 75123, Sweden.,Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, Uppsala, SE, 75123, Sweden
| |
Collapse
|
21
|
Resistance to the Cyclotide Cycloviolacin O2 in Salmonella enterica Caused by Different Mutations That Often Confer Cross-Resistance or Collateral Sensitivity to Other Antimicrobial Peptides. Antimicrob Agents Chemother 2017; 61:AAC.00684-17. [PMID: 28607015 PMCID: PMC5527591 DOI: 10.1128/aac.00684-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of innate immunity in all living organisms, and these potent broad-spectrum antimicrobials have inspired several antibacterial development programs in the past 2 decades. In this study, the development of resistance to the Gram-negative bacterium-specific peptide cycloviolacin O2 (cyO2), a member of the cyclotide family of plant miniproteins, was characterized in Salmonella enterica serovar Typhimurium LT2. Mutants isolated from serial passaging experiments in increasing concentrations of cyO2 were characterized by whole-genome sequencing. The identified mutations were genetically reconstituted in a wild-type background. The additive effect of mutations was studied in double mutants. Fitness costs, levels of resistance, and cross-resistance to another cyclotide, other peptide and nonpeptide antibiotics, and AMPs were determined. A variety of resistance mutations were identified. Some of these reduced fitness and others had no effect on fitness in vitro, in the absence of cyO2. In mouse competition experiments, four of the cyO2-resistant mutants showed a significant fitness advantage, whereas the effects of the mutations in the others appeared to be neutral. The level of resistance was increased by combining several individual resistance mutations. Several cases of cross-resistance and collateral sensitivity between cyclotides, other AMPs, and antibiotics were identified. These results show that resistance to cyclotides can evolve via several different types of mutations with only minor fitness costs and that these mutations often affect resistance to other AMPs.
Collapse
|
22
|
Abstract
Among the various molecules that plants produce for defense against pests and pathogens, cyclotides stand out as exceptionally stable and structurally unique. These ribosomally synthesized peptides are around 30 amino acids in size, and are stabilized by a head-to-tail cyclic peptide backbone and three disulfide bonds that form a cystine knot. They occur in certain plants of the Rubiaceae, Violaceae, Cucurbitaceae, Fabaceae, and Solanaceae families, with an individual plant producing up to hundreds of different cyclotides. Aside from being exploitable as crop protection agents based on their natural pesticidal activities, cyclotides are amenable to repurposing by chemists for use as drug leads or as tools in chemical biology. Their macrocyclic peptide backbone and knotted arrangement of three disulfide bonds engenders cyclotides with resistance to proteolytic degradation, high temperatures, and chemical chaotropes. Furthermore, their small size makes them accessible to synthesis using solid-phase peptide chemistry and so non-natural cyclotides can be designed and synthesized for a variety of applications. Our focus here is on cyclotides as tools in chemical biology, and there are four main areas of application that have appeared in the literature so far: (i) cyclotides as probes of membrane binding; (ii) cyclotides as probes of biosynthetic pathways for peptide cyclization; (iii) cyclotides as probes of protease specificity and function; and (iv) cyclotides as probes of receptor binding and specificity, with the potential for them to be developed as drug leads. The main methods used in these studies include solid-phase peptide chemistry for synthesis and NMR spectroscopy for structural characterization, as well as a wide range of biochemical and biophysical techniques for probing intermolecular interactions. In addition, cyclotides have been examined in diverse biological assays, ranging from enzyme inhibition to cell penetration, intracellular targeting and cytotoxicity. The main finding to have emerged from studies over the past decade is that cyclotides are exceptionally stable under a variety of conditions (in assay buffers, biological fluids, membranes, and recombinant expression systems). Furthermore, they are structurally very well-defined and amenable to sequence substitutions that can introduce new desired biological activities, generally without compromising their exceptional stability. Both features contribute to their use as peptide-based frameworks in drug design. Finally, they occupy a size niche between traditional small-molecule drugs (<500 Da in molecular weight) and protein-based biologics (>5000 Da) and thus can probe receptors, membranes, and protein-protein interactions in different ways to what is possible with either small molecules or biologics. Overall, cyclotides are an exciting class of peptides that have great potential as ultrastable chemical biology probes in a variety of applications. They have the advantage of specificity (typical of proteins) combined with the synthetic accessibility of small molecules.
Collapse
Affiliation(s)
- Simon J. de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
23
|
Troeira Henriques S, Craik DJ. Cyclotide Structure and Function: The Role of Membrane Binding and Permeation. Biochemistry 2017; 56:669-682. [DOI: 10.1021/acs.biochem.6b01212] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| |
Collapse
|
24
|
Hellinger R, Koehbach J, Soltis DE, Carpenter EJ, Wong GKS, Gruber CW. Peptidomics of Circular Cysteine-Rich Plant Peptides: Analysis of the Diversity of Cyclotides from Viola tricolor by Transcriptome and Proteome Mining. J Proteome Res 2015; 14:4851-62. [PMID: 26399495 PMCID: PMC4642221 DOI: 10.1021/acs.jproteome.5b00681] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Cyclotides are plant-derived mini proteins. They are genetically
encoded as precursor proteins that become post-translationally modified
to yield circular cystine-knotted molecules. Because of this structural
topology cyclotides resist enzymatic degradation in biological fluids,
and hence they are considered as promising lead molecules for pharmaceutical
applications. Despite ongoing efforts to discover novel cyclotides
and analyze their biodiversity, it is not clear how many individual
peptides a single plant specimen can express. Therefore, we investigated
the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide
precursor architecture and processing sites important for biosynthesis
of mature peptides. The cyclotide peptidome was explored by mass spectrometry
and bottom-up proteomics using the extracted peptide sequences as
queries for database searching. In total 164 cyclotides were discovered
by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source
to as many as 150 000 individual cyclotides. Encompassing the
diversity of V. tricolor as a combinatorial library
of bioactive peptides, this commercially available medicinal herb
may be a suitable starting point for future bioactivity-guided screening
studies.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna , Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Johannes Koehbach
- Center for Physiology and Pharmacology, Medical University of Vienna , Schwarzspanierstrasse 17, 1090 Vienna, Austria.,School of Biomedical Sciences, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida , Gainesville, Florida 32611, United States
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada.,Department of Medicine, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna , Schwarzspanierstrasse 17, 1090 Vienna, Austria.,School of Biomedical Sciences, The University of Queensland , St. Lucia, Queensland 4072, Australia
| |
Collapse
|
25
|
Truszkowski A, van den Broek K, Kuhn H, Zielesny A, Epple M. Mesoscopic Simulation of Phospholipid Membranes, Peptides, and Proteins with Molecular Fragment Dynamics. J Chem Inf Model 2015; 55:983-97. [DOI: 10.1021/ci5006096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andreas Truszkowski
- Inorganic
Chemistry and Center for Nanointegration Duisburg−Essen (CENIDE), University of Duisburg−Essen, 45141 Essen, Germany
- Institute
for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Karina van den Broek
- Department
of Pharmacy−Center for Drug Research, Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Hubert Kuhn
- Inorganic
Chemistry and Center for Nanointegration Duisburg−Essen (CENIDE), University of Duisburg−Essen, 45141 Essen, Germany
- CAM-D Technologies, 45127 Essen, Germany
| | - Achim Zielesny
- Institute
for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg−Essen (CENIDE), University of Duisburg−Essen, 45141 Essen, Germany
| |
Collapse
|
26
|
Zhang J, Li J, Huang Z, Yang B, Zhang X, Li D, Craik DJ, Baker AJM, Shu W, Liao B. Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis. JOURNAL OF PLANT PHYSIOLOGY 2015; 178:17-26. [PMID: 25756919 DOI: 10.1016/j.jplph.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/01/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Cysteine (Cys)-rich proteins (CRPs) are frequently associated with plant defense and stress resistance. Viola baoshanensis is a cadmium (Cd) hyper-accumulating plant whose CRPs-based defense systems are so far poorly understood. Next generation sequencing (NGS) techniques and a specialist searching tool, CrpExcel, were employed for identifying CRPs in V. baoshanensis. The transcriptome sequences of V. baoshanensis were assembled primarily from 454FLX/Hiseq2000 reads of plant cDNA sequencing libraries. CrpExcel was then used to search the ORFs and 9687 CRPs were identified, and included zinc finger (ZF) proteins, lipid transfer proteins, thaumatins and cyclotide precursors. Real-time PCR results showed that all CRP genes tested are constitutively expressed, but the genes of defensive peptides showed greater up-regulated expression than those of ZF-proteins in Cd- and/or wounding (Wd) treatments of V. baoshanensis seedlings. The NGS-derived sequences of cyclotide precursor genes were verified by RT-PCR and ABI3730 sequencing studies, and 32 novel cyclotides were identified in V. baoshanensis. In general, the metal-binding sites of ZF-containing CRPs also represented the potential vulnerable targets of toxic metals. This study provides broad insights into CRPs-based defense systems and stress-vulnerable targets in V. baoshanensis. It now brings the number of cyclotide sequences in V. baoshanensis to 53 and based on projections from this work, the number of cyclotides in the Violaceae is now conservatively estimated to be >30000.
Collapse
Affiliation(s)
- Jun Zhang
- Guangdong Pharmaceutical University, School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou 510006, China; Sun Yat-sen University, School of Life Sciences, State Key Laboratory of Biocontrol, Guangzhou 510006, China.
| | - Jintian Li
- Sun Yat-sen University, School of Life Sciences, State Key Laboratory of Biocontrol, Guangzhou 510006, China.
| | - Zebo Huang
- Guangdong Pharmaceutical University, School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou 510006, China.
| | - Bing Yang
- Sun Yat-sen University, School of Life Sciences, State Key Laboratory of Biocontrol, Guangzhou 510006, China.
| | - Xiaojie Zhang
- Guangdong Pharmaceutical University, School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou 510006, China.
| | - Dehua Li
- Guangdong Pharmaceutical University, School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou 510006, China.
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, QLD, Australia.
| | - Alan J M Baker
- The University of Melbourne, School of Botany, Parkville 3010, VIC, Australia.
| | - Wensheng Shu
- Sun Yat-sen University, School of Life Sciences, State Key Laboratory of Biocontrol, Guangzhou 510006, China.
| | - Bin Liao
- Sun Yat-sen University, School of Life Sciences, State Key Laboratory of Biocontrol, Guangzhou 510006, China.
| |
Collapse
|
27
|
Plant antimicrobial peptides as potential anticancer agents. BIOMED RESEARCH INTERNATIONAL 2015; 2015:735087. [PMID: 25815333 PMCID: PMC4359852 DOI: 10.1155/2015/735087] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.
Collapse
|
28
|
Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Göransson U. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:855. [PMID: 26579135 PMCID: PMC4621522 DOI: 10.3389/fpls.2015.00855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/28/2015] [Indexed: 05/02/2023]
Abstract
During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23-31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000-25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family.
Collapse
Affiliation(s)
- Robert Burman
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
| | - Mariamawit Y. Yeshak
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
- Department of Pharmacognosy, School of Pharmacy, Addis Ababa UniversityAddis Ababa, Ethiopia
| | - Sonny Larsson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
| | - David J. Craik
- Craik Lab, Chemistry and Structural Biology Division, Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| | - K. Johan Rosengren
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
- Laboratory for Peptide Structural Biology, School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
- *Correspondence: Ulf Göransson
| |
Collapse
|
29
|
Abstract
Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family. Contact:vladimir.bajic@kaust.edu.sa Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
30
|
Mollica A, Costante R, Stefanucci A, Novellino E. Cyclotides: a natural combinatorial peptide library or a bioactive sequence player? J Enzyme Inhib Med Chem 2014; 30:575-80. [PMID: 25244541 DOI: 10.3109/14756366.2014.954108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this perspective review, we focalized our attention on the application of cyclotides in drug discovery. To date, two principal approaches have been explored since now: (i) the use of cyclotides as scaffold in which bioactive peptides can be grafted to improve stability, oral bioactivity and binding to GPCRs; (ii) their application as natural peptides library. For these reasons, cyclotides probably represent today a step further in the development of new tools in drug design.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | | | | | | |
Collapse
|
31
|
Cyclotide structure-activity relationships: qualitative and quantitative approaches linking cytotoxic and anthelmintic activity to the clustering of physicochemical forces. PLoS One 2014; 9:e91430. [PMID: 24682019 PMCID: PMC3969350 DOI: 10.1371/journal.pone.0091430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclotides are a family of plant-derived proteins that are characterized by a cyclic backbone and a knotted disulfide topology. Their cyclic cystine knot (CCK) motif makes them exceptionally resistant to thermal, chemical, and enzymatic degradation. Cyclotides exert much of their biological activity via interactions with cell membranes. In this work, we qualitatively and quantitatively analyze the cytotoxic and anthelmintic membrane activities of cyclotides. The qualitative and quantitative models describe the potency of cyclotides using four simple physicochemical terms relevant to membrane contact. Specifically, surface areas of the cyclotides representing lipophilic and hydrogen bond donating properties were quantified and their distribution across the molecular surface was determined. The resulting quantitative structure-activity relation (QSAR) models suggest that the activity of the cyclotides is proportional to their lipophilic and positively charged surface areas, provided that the distribution of these surfaces is asymmetric. In addition, we qualitatively analyzed the physicochemical differences between the various cyclotide subfamilies and their effects on the cyclotides' orientation on the membrane and membrane activity.
Collapse
|
32
|
Burman R, Gunasekera S, Strömstedt AA, Göransson U. Chemistry and biology of cyclotides: circular plant peptides outside the box. JOURNAL OF NATURAL PRODUCTS 2014; 77:724-36. [PMID: 24527877 DOI: 10.1021/np401055j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyclotides stand out as the largest family of circular proteins of plant origin hitherto known, with more than 280 sequences isolated at peptide level and many more predicted from gene sequences. Their unusual stability resulting from the signature cyclic cystine knot (CCK) motif has triggered a broad interest in these molecules for potential therapeutic and agricultural applications. Since the time of the first cyclotide discovery, our laboratory in Uppsala has been engaged in cyclotide discovery as well as the development of protocols to isolate and characterize these seamless peptides. We have also developed methods to chemically synthesize cyclotides by Fmoc-SPPS, which are useful in protein grafting applications. In this review, experience in cyclotide research over two decades and the recent literature related to their structures, synthesis, and folding as well the recent proof-of-concept findings on their use as "epitope" stabilizing scaffolds are summarized.
Collapse
Affiliation(s)
- Robert Burman
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
33
|
Leite NB, Dos Santos Alvares D, de Souza BM, Palma MS, Ruggiero Neto J. Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:121-30. [PMID: 24595375 DOI: 10.1007/s00249-014-0945-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/05/2014] [Accepted: 02/05/2014] [Indexed: 11/28/2022]
Abstract
Polybia-MP1 (IDWKKLLDAAKQIL-NH2), a helical peptide extracted from the venom of a Brazilian wasp, has broad-spectrum antimicrobial activities without being hemolytic or cytotoxic. This peptide has also displayed anticancer activity against cancer cell cultures. Despite its high selectivity, MP1 has an unusual low net charge (Q = +2). The aspartic residue (D2) in the N-terminal region plays an important role in its affinity and selectivity; its substitution by asparagine (D2N mutant) led to a less selective peptide. Aiming to explore the importance of this residue for the peptides' affinity, we compared the zwitterionic and anionic vesicle adsorption activity of Polybia-MP1 versus its D2N mutant and also mastoparan X (MPX). The adsorption, electrostatic, and conformational free energies were assessed by circular dichroism (CD) and fluorescence titrations using large unilamellar vesicles (LUVs) at the same conditions in association with measurement of the zeta potential of LUVs in the presence of the peptides. The adsorption free energies of the peptides, determined from the partition coefficients, indicated higher affinity of MP1 to anionic vesicles compared with the D2N mutant and MPX. The electrostatic and conformational free energies of MP1 in anionic vesicles are less favorable than those found for the D2N mutant and MPX. Therefore, the highest affinity of MP1 to anionic vesicles is likely due to other energetic contributions. The presence of D2 in MP1 makes these energetic components 1.2 and 1.5 kcal/mol more favorable compared with the D2N mutant and MPX, respectively.
Collapse
Affiliation(s)
- Natália Bueno Leite
- Department of Physics, IBILCE, São Paulo State University, UNESP, São José do Rio Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
34
|
Gerlach SL, Yeshak M, Göransson U, Roy U, Izadpanah R, Mondal D. Cycloviolacin O2 (CyO2) suppresses productive infection and augments the antiviral efficacy of nelfinavir in HIV-1 infected monocytic cells. Biopolymers 2013; 100:471-9. [DOI: 10.1002/bip.22325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/02/2013] [Accepted: 05/28/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Samantha L. Gerlach
- Department of Pharmacology; Tulane University Health Sciences Center; 1430 Tulane Avenue New Orleans LA 70112
| | - Mariamawit Yeshak
- Division of Pharmacognosy; Department of Medicinal Chemistry, Uppsala University, Biomedical Centre; 574 S-751 23 Uppsala Sweden
| | - Ulf Göransson
- Division of Pharmacognosy; Department of Medicinal Chemistry, Uppsala University, Biomedical Centre; 574 S-751 23 Uppsala Sweden
| | - Upal Roy
- Department of Immunology; Florida International University; 11200 SW 8 Street AHC2 Miami FL 33199
| | - Reza Izadpanah
- Heart and Vascular Institute; Tulane University Health Sciences Center; 1430 Tulane Avenue New Orleans LA 70112
| | - Debasis Mondal
- Department of Pharmacology; Tulane University Health Sciences Center; 1430 Tulane Avenue New Orleans LA 70112
| |
Collapse
|
35
|
Sen Z, Zhan XK, Jing J, Yi Z, Wanqi Z. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. Oncol Lett 2012; 5:641-644. [PMID: 23419988 PMCID: PMC3573133 DOI: 10.3892/ol.2012.1042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 11/13/2012] [Indexed: 12/03/2022] Open
Abstract
Cyclotides comprise a family of circular mini-peptides that have been isolated from various plants and have a wide range of bioactivities. Previous studies have demonstrated that cyclotides have antitumor effects and cause cell death by membrane permeabilization. The present study aimed to evaluate the cytotoxicity and chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. In this study, a total of seven cyclotides were selected for colorimetric cell viability assay (MTT assay) to evaluate their anticancer and chemosensitizing activities in the lung cancer cell line A549 and its sub-line A549/paclitaxel. Results suggested that certain cyclotides had significant anticancer and chemosensitizing abilities; such cyclotides were capable of causing multi-fold decreases in the half maximal inhibitory concentration (IC50) value of cliotides in the presence of paclitaxel. More importantly, their bioactivities were found to be correlated with their net charge status. In conclusion, cyclotides from C. ternatea have potential in chemosensitization application.
Collapse
Affiliation(s)
- Zhang Sen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050
| | | | | | | | | |
Collapse
|
36
|
Yeshak MY, Göransson U, Burman R, Hellman B. Genotoxicity and cellular uptake of cyclotides: Evidence for multiple modes of action. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:176-81. [DOI: 10.1016/j.mrgentox.2012.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/20/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
|
37
|
Henriques ST, Huang YH, Castanho MARB, Bagatolli LA, Sonza S, Tachedjian G, Daly NL, Craik DJ. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J Biol Chem 2012; 287:33629-43. [PMID: 22854971 DOI: 10.1074/jbc.m112.372011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Göransson U, Burman R, Gunasekera S, Strömstedt AA, Rosengren KJ. Circular proteins from plants and fungi. J Biol Chem 2012; 287:27001-6. [PMID: 22700984 DOI: 10.1074/jbc.r111.300129] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circular proteins, defined as head-to-tail cyclized polypeptides originating from ribosomal synthesis, represent a novel class of natural products attracting increasing interest. From a scientific point of view, these compounds raise questions of where and why they occur in nature and how they are formed. From a rational point of view, these proteins and their structural concept may be exploited for crop protection and novel pharmaceuticals. Here, we review the current knowledge of three protein families: cyclotides and circular sunflower trypsin inhibitors from the kingdom of plants and the Amanita toxins from fungi. A particular emphasis is placed on their biological origin, structure, and activity. In addition, the opportunity for discovery of novel circular proteins and recent insights into their mechanism of action are discussed.
Collapse
Affiliation(s)
- Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Gould A, Ji Y, Aboye TL, Camarero JA. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des 2012; 17:4294-307. [PMID: 22204428 DOI: 10.2174/138161211798999438] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/15/2011] [Indexed: 11/22/2022]
Abstract
Cyclotides are a unique and growing family of backbone cyclized peptides that also contain a cystine knot motif built from six conserved cysteine residues. This unique circular backbone topology and knotted arrangement of three disulfide bonds makes them exceptionally stable to thermal, chemical, and enzymatic degradation compared to other peptides of similar size. Aside from the conserved residues forming the cystine knot, cyclotides have been shown to have high variability in their sequences. Consisting of over 160 known members, cyclotides have many biological activities, ranging from anti-HIV, antimicrobial, hemolytic, and uterotonic capabilities; additionally, some cyclotides have been shown to have cell penetrating properties. Originally discovered and isolated from plants, cyclotides can also be produced synthetically and recombinantly. The high sequence variability, stability, and cell penetrating properties of cyclotides make them potential scaffolds to be used to graft known active peptides or engineer peptide-based drug design. The present review reports recent findings in the biological diversity and therapeutic potential of natural and engineered cyclotides.
Collapse
Affiliation(s)
- Andrew Gould
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
40
|
Craik DJ. Host-defense activities of cyclotides. Toxins (Basel) 2012; 4:139-56. [PMID: 22474571 PMCID: PMC3317112 DOI: 10.3390/toxins4020139] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022] Open
Abstract
Cyclotides are plant mini-proteins whose natural function is thought to be to protect plants from pest or pathogens, particularly insect pests. They are approximately 30 amino acids in size and are characterized by a cyclic peptide backbone and a cystine knot arrangement of three conserved disulfide bonds. This article provides an overview of the reported pesticidal or toxic activities of cyclotides, discusses a possible common mechanism of action involving disruption of biological membranes in pest species, and describes methods that can be used to produce cyclotides for potential applications as novel pesticidal agents.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Pinto MFS, Almeida RG, Porto WF, Fensterseifer ICM, Lima LA, Dias SC, Franco OL. Cyclotides. J Evid Based Complementary Altern Med 2011. [DOI: 10.1177/2156587211428077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, a number of peptides containing a cyclic structural fold have been described. Among them, the cyclotides family was widely reported in different plant tissues, being composed of small cyclic peptides containing 6 conserved cysteine residues connected by disulfide bonds and forming a cysteine-binding cyclic structure known as a cyclic cysteine knot. This structural scaffold is responsible for an enhanced structural stability against chemical, thermal, and proteolytic degradation. Because of the observed stability and multifunctionality, including insecticidal, antimicrobial, and anti-HIV (human immunodeficiency virus) action, much effort has gone into trying to elucidate the structural-function relations of cyclotide compounds. This review focuses on the novelties involving gene structure, precursor formation and processing, and protein folding of the cyclotide family, shedding some light on molecular mechanisms of cyclotide production. Because cyclotides are clear targets for drug development and also biotechnology applications, their chemical synthesis, heterologous systems production, and protein grafting are also addressed.
Collapse
|
42
|
A liquid chromatography–electrospray ionization-mass spectrometry method for quantification of cyclotides in plants avoiding sorption during sample preparation. J Chromatogr A 2011; 1218:7964-70. [DOI: 10.1016/j.chroma.2011.08.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 11/20/2022]
|
43
|
Burman R, Strömstedt AA, Malmsten M, Göransson U. Cyclotide–membrane interactions: Defining factors of membrane binding, depletion and disruption. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2665-73. [DOI: 10.1016/j.bbamem.2011.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
|
44
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|
45
|
Conibear AC, Craik DJ. Chemical Synthesis of Naturally-Occurring Cyclic Mini-Proteins from Plants and Animals. Isr J Chem 2011. [DOI: 10.1002/ijch.201100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
He W, Chan LY, Zeng G, Daly NL, Craik DJ, Tan N. Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides 2011; 32:1719-23. [PMID: 21723349 DOI: 10.1016/j.peptides.2011.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
Abstract
Cyclotides are a large family of plant peptides characterized by a macrocyclic backbone and knotted arrangement of three disulfide bonds. This unique structure renders cyclotides exceptionally stable to thermal, chemical and enzymatic treatments. They exhibit a variety of bioactivities, including uterotonic, anti-HIV, cytotoxic and hemolytic activity and it is these properties that make cyclotides an interesting peptide scaffold for drug design. In this study, eight new cyclotides (Viphi A-H), along with eight known cyclotides, were isolated from Viola philippica, a plant from the Violaceae family. In addition, Viba 17 and Mram 8 were isolated for the first time as peptides. The sequences of these cyclotides were elucidated primarily by using a strategy involving reduction, enzymatic digestion and tandem mass spectroscopy sequencing. Several of the cyclotides showed cytotoxic activities against the cancer cell lines MM96L, HeLa and BGC-823. The novel cyclotides reported here: (1) enhance the known sequence variation observed for cyclotides; (2) extend the number of species known to contain cyclotides; (3) provide interesting structure-activity relationships that delineate residues important for cytotoxic activity. In addition, this study provides insights into the potential active ingredients of traditional Chinese medicines.
Collapse
Affiliation(s)
- Wenjun He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Heilongtan, Kunming 650204, Yunnan, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Ovesen RG, Nielsen J, Hansen HCB. Biomedicine in the environment: sorption of the cyclotide kalata B2 to montmorillonite, goethite, and humic acid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1785-1792. [PMID: 21590795 DOI: 10.1002/etc.579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/22/2011] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
Cyclotides are bioactive, stable mini-proteins produced in high amounts in Violaceae and Rubiaceae with promising pharmaceutical and agrochemical applications. Environmental issues must be addressed before large-scale plant cultivation of cyclotides for pharmaceutical or pesticidal purposes can commence. The objective of the present study was to investigate sorption of the cyclotide kalata B2 (kB2), because knowledge of cyclotide biogeochemistry will aid our understanding of environmental fate. The octanol-water partitioning coefficient was determined to be 2.8 ± 0.6 (log K(OW) = 0.4 ± 0.1). Sorption of kB2 by montmorillonite, goethite, and humic acid was investigated at different concentrations and under varying acidity and reached equilibrium within minutes. The kB2 sorption at a solution concentration of 0.2 mg/L to montmorillonite was high (120 mg/g) compared to humic acid (0.60 mg/g) and goethite (0.03 mg/g). Kalata B2 intercalated the interlayer space of montmorillonite. The sorption isotherm for humic acid was linear up to a solution concentration of 0.8 mg/L and concave for montmorillonite and goethite up to an equilibrium solution concentration of 1.5 mg/L. Sorption to goethite was unaffected by pH, but sorption to montmorillonite and humic acid at pH near the isoelectric point (pI) was threefold the sorption when pH > the isoelectric point, suggesting that electrostatic interaction/repulsion between kB2 and sorbents play an important role. The strong sorption to montmorillonite reduces exposure to below toxic threshold values. In addition, the transport risk of soluble cyclotides is reduced, but particle-bound cyclotides may be transported to recipient aquatic sediments with the associated risk of adversely affecting sediment-dwelling organisms.
Collapse
Affiliation(s)
- Rikke Gleerup Ovesen
- University of Copenhagen, Department of Basic Sciences and Environment, Frederiksberg C, Denmark.
| | | | | |
Collapse
|
48
|
Abstract
Cyclotides are head-to-tail cyclic peptides that contain a cystine knot motif built from six conserved cysteine residues. They occur in plants of the Rubiaceae, Violaceae, Cucurbitaceae, and Fabaceae families and, aside from their natural role in host defense, have a range of interesting pharmaceutical activities, including anti-HIV activity. The variation seen in sequences of their six backbone loops has resulted in cyclotides being described as a natural combinatorial template. Their exceptional stability and resistance to enzymatic degradation has led to their use as scaffolds for peptide-based drug design. To underpin such applications, methods for the chemical synthesis of cyclotides have been developed and are described here. Cyclization using thioester chemistry has been instrumental in the synthesis of cyclotides for structure-activity studies. This approach involves a native chemical ligation reaction between an N-terminal Cys and a C-terminal thioester in the linear cyclotide precursor. Since cyclotides contain six Cys residues their syntheses can be designed around any of six linear precursors, thus providing flexibility in synthesis. The ease with which cyclotides fold, despite their topologically complex knot motif, as well as the ability to introduce combinatorial variation in the loops, makes cyclotides a promising drug-design scaffold.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia.
| | | |
Collapse
|
49
|
Ovesen RG, Brandt KK, Göransson U, Nielsen J, Hansen HCB, Cedergreen N. Biomedicine in the environment: cyclotides constitute potent natural toxins in plants and soil bacteria. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1190-6. [PMID: 21337607 DOI: 10.1002/etc.496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/23/2010] [Accepted: 12/10/2010] [Indexed: 05/07/2023]
Abstract
Bioactive compounds produced by plants are easily transferred to soil and water and may cause adverse ecosystem effects. Cyclotides are gene-encoded, circular, cystine-rich mini-proteins produced in Violaceae and Rubiaceae in high amounts. Based on their biological activity and stability, cyclotides have promising pharmaceutical and agricultural applications. We report the toxicity of the cyclotides: kalata B1, kalata B2, and cycloviolacin O2 extracted from plants to green algae (Pseudokirchneriella subcapitata), duckweed (Lemna minor L.), lettuce (Lactuca sativa L.), and bacteria extracted from soil measured as [³H]leucine incorporation. Quantification by liquid chromatography-mass spectrometry demonstrated up to 98% loss of cyclotides from aqueous solutions because of sorption to test vials. Sorption was prevented by adding bovine serum albumin (BSA) to the aqueous media. Cyclotides were toxic to all test organisms with EC50 values of 12 through 140 µM (algae), 9 through 40 µM (duckweed), 4 through 54 µM (lettuce), and 7 through 26 µM (bacteria). Cycloviolacin O2 was the most potent cyclotide in all assays examined. This report is the first to document toxic effects of cyclotides in plants and soil bacteria and to demonstrate that cyclotides are as toxic as commonly used herbicides and biocides. Hence, cyclotides may adversely affect soil and aquatic environments, which needs to be taken into account in future risk assessment of cropping systems for production of these highly bioactive compounds.
Collapse
Affiliation(s)
- Rikke Gleerup Ovesen
- Department of Basic Sciences and Environment, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Burman R, Svedlund E, Felth J, Hassan S, Herrmann A, Clark RJ, Craik DJ, Bohlin L, Claeson P, Göransson U, Gullbo J. Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice. Biopolymers 2011; 94:626-34. [PMID: 20564012 DOI: 10.1002/bip.21408] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cycloviolacin O2 is a small cyclic cysteine-rich protein belonging to the group of plant proteins called cyclotides. This cyclotide has been previously shown to exert cytotoxic activity against a variety of human tumor cell lines as well as primary cultures of human tumor cells in vitro. This study is the first evaluation of its tolerability and antitumor activity in vivo. Maximal-tolerated doses were estimated to 1.5 mg/kg for single intravenous (i.v.) dosing and 0.5 mg/kg for daily repeated dosing, respectively. Two different in vivo methods were used: the hollow fiber method with single dosing (i.v., 1.0 mg/kg) and traditional xenografts with repeated dosing over 2 weeks (i.v., 0.5 mg/kg daily, 5 days a week). The human tumor cell lines used displayed dose-dependent in vitro sensitivity (including growth in hollow fibers to confirm passage of cycloviolacin O2 through the polyvinylidene fluoride fibers), with IC5o values in the micromolar range. Despite this sensitivity in vitro, no significant antitumor effects were detected in vivo, neither with single dosing in the hollow fiber method nor with repeated dosing in xenografts. In summary, the results indicate that antitumor effects are minor or absent at tolerable (sublethal) doses, and cycloviolacin O2 has a very abrupt in vivo toxicity profile, with lethality after single injection at 2 mg/kg, but no signs of discomfort to the animals at 1.5 mg/kg. Repeated dosing of 1 mg/kg gave a local-inflammatory reaction at the site of injection after 2-3 days; lower doses were without complications.
Collapse
Affiliation(s)
- Robert Burman
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|