1
|
Shang Y, Zhao K, Xue W, An J, Zhong Y, Chen Y, Zeng Q, Tang Q, Qiu X. Comparative assessment of acute neurotoxicity of real-world ultra-fine black carbon emitted from residential solid fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176597. [PMID: 39349200 DOI: 10.1016/j.scitotenv.2024.176597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Incomplete combustion of residential solid fuel is one of the main anthropogenic sources for black carbon (BC). Fresh BC, mainly enriched in ultra-fine fraction of particles, can directly cross blood-brain barrier and are reported to be associated with neurodegenerative diseases. Because of the difficulties in collection and purification of BC from ambient particles, there are still significant knowledge gaps in understanding neurotoxicity caused by real-world BC. The purpose of this study is to compare the neurotoxic effects caused by BCs emitted from combustion of six residential solid fuels, and try to reveal associated biological mechanisms in SH-SY5Y cells. Two straw BC (Wheat-BC and Corn-BC) showed highest neurotoxic effects followed by wood BC (Pine-BC and Aspen-BC) and coal BC (Xvzhou and Longkou Coal), as indicated by viability, lactic dehydrogenase, malondialdehyde, adenosine triphosphate and acetylcholine levels. Coal BC caused nearly no toxicity in human neuroblastoma (SH-SY5Y) cells within highest dose of 200 μg/mL. RNA sequence and bioinformatics analysis were applied to effectively identify differential genes and signaling pathways. Based on Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein Protein Interaction network (PPI network) construction, we found biomass BC affected mitochondrial function, interfered with cellular metabolic processes, disturbed redox homeostasis, and finally resulted in cellular damages. Coal-BC mainly caused cytokine/chemokine related inflammatory responses. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting methods were further applied to find out related signaling pathways. Biomass BC activated IL6R/JAK3/STAT3 and JAK3/STAT6 pathways leading to oxidative stress and inflammatory responses. Coal BC activated JAK3/STAT3 pathway leading to chemokine related responses. This study revealed the heterogeneity in neurotoxicity of BCs from different combustion sources and provided important data for health risk assessment. BC-related neurotoxicity should be considered when making air pollution emission control strategies, with residential biomass receiving more policy attention.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kunming Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qingming Zeng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qisheng Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai 200040, China.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Zheng Q, Liu Z, Sun C, Dong J, Zhang H, Ke X, Gao F, Lu M. Molecular characterization, expression and functional analysis of TAK1, TAB1 and TAB2 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109359. [PMID: 38184182 DOI: 10.1016/j.fsi.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
The MAPK pathway is the common intersection of signal transduction pathways such as inflammation, differentiation and proliferation and plays an important role in the process of antiviral immunity. Streptococcus agalactiae will have a great impact on tilapia aquaculture, so it is necessary to study the immune response mechanism of tilapia to S. agalactiae. In this study, we isolated the cDNA sequences of TAK1, TAB1 and TAB2 from Nile tilapia (Oreochromis niloticus). The TAK1 gene was 3492 bp in length, contained an open reading frame (ORF) of 1809 bp and encoded a polypeptide of 602 amino acids. The cDNA sequence of the TAB1 gene was 4001 bp, and its ORF was 1491 bp, which encoded 497 amino acids. The cDNA sequence of the TAB2 gene was 4792 bp, and its ORF was 2217 bp, encoding 738 amino acids. TAK1 has an S_TKc domain and a coiled coil structure; the TAB1 protein structure contains a PP2C_SIG domain and a conserved PYVDXA/TXF sequence model; and TAB2 contains a CUE domain, a coiled coil domain and a Znf_RBZ domain. Homology analysis showed that TAK1 and TAB1 had the highest homology with Neolamprologus brichardi, and TAB2 had the highest homology with Simochromis diagramma (98.28 %). In the phylogenetic tree, TAK1, TAB1 and TAB2 formed a large branch with other scleractinian fishes. The tissue expression analysis showed that the expression of TAK1, TAB1 and TAB2 was highest in the muscle. The expression of TAK1, TAB1 and TAB2 was significantly induced in most of the tested tissues after stimulation with LPS, Poly I:C and S. agalactiae. The subcellular localization results showed that TAK1 was located in the cytoplasm, and TAB1 and TAB2 had certain distributions in the cytoplasm and nucleus. Coimmunoprecipitation (Co-IP) results showed that TRAF6 did not interact with the TAK1 protein but interacted with TAB2, while TAB1 did not interact with P38γ but interacted with TAK1. There was also an interaction between TAK1 and TAB2.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Chengfei Sun
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Hetong Zhang
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
3
|
Park J, Lee SY. A review of osteoarthritis signaling intervention using small-molecule inhibitors. Medicine (Baltimore) 2022; 101:e29501. [PMID: 35960127 PMCID: PMC9371536 DOI: 10.1097/md.0000000000029501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Numerous small-molecule inhibitors (SMIs) have been approved as adjuvant or first-line therapies for malignancies. Based on cancer treatment using SMIs, next-generation SMIs that can be used to optimize the therapeutic index, overcome drug resistance, and establish combination therapies are in development. Osteoarthritis (OA) is the most common chronic joint disease with senescence, and there are various approaches to OA treatment; however, the gold standard treatment is controversial. Therefore, in this manuscript, we demonstrated the potential of using SMIs in OA treatment and described the general strategies for using SMIs in OA treatment.
Collapse
Affiliation(s)
- Junyong Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Sang Yeob Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
- * Correspondence: Sang Yeob Lee, MD, PhD, Division of Rheumatology, Department of Internal Medicine, College of Medicine, Dong-A University, 26 Daeshingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea (e-mail: )
| |
Collapse
|
4
|
Asselstine V, Medrano JF, Cánovas A. Identification of novel alternative splicing associated with mastitis disease in Holstein dairy cows using large gap read mapping. BMC Genomics 2022; 23:222. [PMID: 35305573 PMCID: PMC8934477 DOI: 10.1186/s12864-022-08430-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Background Mastitis is a very common disease in the dairy industry that producers encounter daily. Transcriptomics, using RNA-Sequencing (RNA - Seq) technology, can be used to study the functional aspect of mastitis resistance to identify animals that have a better immune response to mastitis. When the cow has mastitis, not only genes but also specific mRNA isoforms generated via alternative splicing (AS) could be differentially expressed (DE), leading to the phenotypic variation observed. Therefore, the objective of this study was to use large gap read mapping to identify mRNA isoforms DE between healthy and mastitic milk somatic cell samples (N = 12). These mRNA isoforms were then categorized based on being 1) annotated mRNA isoforms for gene name and length, 2) annotated mRNA isoforms with different transcript length and 3) novel mRNA isoforms of non - annotated genes. Results Analysis identified 333 DE transcripts (with at least 2 mRNA isoforms annotated, with at least one being DE) between healthy and mastitic samples corresponding to 303 unique genes. Of these 333 DE transcripts between healthy and mastitic samples, 68 mRNA isoforms are annotated in the bovine genome reference (ARS.UCD.1.2), 249 mRNA isoforms had novel transcript lengths of known genes and 16 were novel transcript lengths of non - annotated genes in the bovine genome reference (ARS.UCD.1.2). Functional analysis including gene ontology, gene network and metabolic pathway analysis was performed on the list of 288 annotated and unique DE mRNA isoforms. In total, 67 significant metabolic pathways were identified including positive regulation of cytokine secretion and immune response. Additionally, numerous DE novel mRNA isoforms showed potential involvement with the immune system or mastitis. Lastly, QTL annotation analysis was performed on coding regions of the DE mRNA isoforms, identifying overlapping QTLs associated with clinical mastitis and somatic cell score. Conclusion This study identified novel mRNA isoforms generated via AS that could lead to differences in the immune response of Holstein dairy cows and be potentially implemented in future breeding programs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08430-x.
Collapse
|
5
|
Hao L, Ma C, Li Z, Wang Y, Zhao X, Yu M, Hou H. Effects of type II collagen hydrolysates on osteoarthritis through the NF-κB, Wnt/β-catenin and MAPK pathways. Food Funct 2022; 13:1192-1205. [PMID: 35018959 DOI: 10.1039/d1fo03414f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoarthritis (OA), a degenerative disease, has attracted extensive attention all over the world. In this study, a rat model involving medial meniscus resection (MMx) and anterior to medial collateral ligament (ACL) operation was successfully established to study the effects of bovine cartilage hydrolysates rich in type II collagen peptides (BIIP) on cartilage protection. The results of histological analysis indicated that oral administration of BIIP at doses of 200 and 500 mg kg-1 d-1 ameliorated cartilage degeneration. Moreover, the potential targets of BIIP affecting OA in vivo were studied by proteomics, and the effects of BIIP on OA through signaling pathways, such as NF-κB, Wnt/β-catenin and MAPK, were further explored at mRNA and protein levels. BIIP downregulated the expression of IL-6, RUNX2, NF-κB p65, HIF-2α, β-catenin and p-JNK, which may be the main factor leading to the prevention of OA. These results suggest that BIIP can be used as a novel potential substance of functional foods to exert chondroprotective action.
Collapse
Affiliation(s)
- Li Hao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| | - Chengcheng Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Zhaoxia Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Mingxiao Yu
- Meitek Technology Co., Ltd, No. 1888 Dazhushan South Road, Qingdao, Shandong Province 266400, PR China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| |
Collapse
|
6
|
Zuo J, Liu C, Ni H, Yu Z. WDR34 affects PI3K/Akt and Wnt/β-catenin pathways to regulates malignant biological behaviors of glioma cells. J Neurooncol 2022; 156:281-293. [PMID: 34981299 DOI: 10.1007/s11060-021-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Glioma is the most prevalent primary intracranial tumor globally. WDR34, a member of the WDR superfamily with five WD40 repeats, is involved in the pathogenesis of several tumors. However, the role of WDR34 in glioma progression is unknown. METHODS The expression and prognostic significance of WDR34 in glioma patients were analyzed using GEPIA. WDR34 expression was detected by qRT-PCR. Western blot was employed to determine the expression of Ki67, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase (MMP)2, MMP9, phosphatase and tensin homolog, protein kinase B (Akt), phosphorylated Akt, β-catenin, and c-Myc. CCK-8, BrdU incorporation assay, Transwell invasion assay, flow cytometry analysis, and measurement of caspase-3 and caspase-9 activities were conducted to examine the effects of WDR34 knockdown on glioma cells. RESULTS WDR34 was upregulated in glioma, which predicted a poor prognosis in glioma patients. WDR34 knockdown inhibited cell proliferation and reduced the expression of Ki67 and PCNA in glioma cells. WDR34 knockdown repressed the invasive ability of glioma cells by decreasing MMP-2 and MMP-9 expression. WDR34 knockdown increased the apoptotic rate and caspase-3 and caspase-9 activities in glioma cells. The PI3K/Akt and Wnt/β-catenin pathways were inhibited after WDR34 knockdown in glioma cells. Moreover, overexpression of Akt or β-catenin reversed the function of WDR34 knockdown on proliferation, invasion, and apoptosis. WDR34 knockdown reduced tumor growth in vivo. CONCLUSIONS WDR34 knockdown inhibited malignant biological behaviors of glioma cells by inactivating the PI3K/Akt and Wnt/β-catenin signaling cascades.
Collapse
Affiliation(s)
- Jiandong Zuo
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Chun Liu
- Department of Neurosurgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 210009, People's Republic of China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, People's Republic of China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
7
|
Talker SC, Barut GT, Lischer HE, Rufener R, von Münchow L, Bruggmann R, Summerfield A. Monocyte biology conserved across species: Functional insights from cattle. Front Immunol 2022; 13:889175. [PMID: 35967310 PMCID: PMC9373011 DOI: 10.3389/fimmu.2022.889175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.
Collapse
Affiliation(s)
- Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Stephanie C. Talker,
| | - G. Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heidi E.L. Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Primary cilia in hard tissue development and diseases. Front Med 2021; 15:657-678. [PMID: 34515939 DOI: 10.1007/s11684-021-0829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/13/2020] [Indexed: 10/20/2022]
Abstract
Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.
Collapse
|
9
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
10
|
Yao W, Xu L, Jia X, Li S, Wei L. MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway. Int J Mol Med 2021; 48:139. [PMID: 34080641 PMCID: PMC8175065 DOI: 10.3892/ijmm.2021.4972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Excessive inflammatory response and apoptosis play key roles in the pathogenic mechanisms of sepsis-induced acute lung injury (ALI); however, the molecular pathways linked to ALI pathogenesis remain unclear. Recently, microRNAs (miRNAs/miRs) have emerged as important regulators of inflammation and apoptosis in sepsis-induced ALI; however, the exact regulatory mechanisms of miRNAs remain poorly understood. In the present study, the gene microarray dataset GSE133733 obtained from the Gene Expression Omnibus database was analyzed and a total of 38 differentially regulated miRNAs were identified, including 17 upregulated miRNAs and 21 downregulated miRNAs, in mice with lipopolysaccharide (LPS)-induced ALI, in comparison to the normal control mice. miR-129 was found to be the most significant miRNA, among the identified miRNAs. The upregulation of miR-129 markedly alleviated LPS-induced lung injury, as indicated by the decrease in lung permeability in and the wet-to-dry lung weight ratio, as well as the improved survival rate of mice with ALI administered miR-129 mimic. Moreover, the upregulation of miR-129 reduced pulmonary inflammation and apoptosis in mice with ALI. Of note, transforming growth factor activated kinase-1 (TAK1), a well-known regulator of the nuclear factor-κB (NF-κB) pathway, was directly targeted by miR-129 in RAW 264.7 cells. More importantly, miR-129 upregulation impeded the LPS-induced activation of the TAK1/NF-κB signaling pathway, as illustrated by the suppression of the nuclear phosphorylated-p65, p-IκB-α and p-IKKβ expression levels. Collectively, the findings of the present study indicate that miR-129 protects mice against sepsis-induced ALI by suppressing pulmonary inflammation and apoptosis through the regulation of the TAK1/NF-κB signaling pathway. This introduces the basis for future research concerning the application of miR-129 and its targets for the treatment of ALI.
Collapse
Affiliation(s)
- Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Lei Xu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Saisai Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
11
|
Ma X, Li X, Di Q, Zhao X, Zhang R, Xiao Y, Sun P, Tang H, Quan J, Xiao W, Chen W. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother 2021; 138:111543. [PMID: 34311538 DOI: 10.1016/j.biopha.2021.111543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) is a severe lung disease with limited therapeutic strategies. Munronoid I, a limonoid, which is extracted and purified from Munronia sinica, exhibits effective anti-neoplastic activities. In this study, we attempted to determine the anti-inflammatory effects of Munronoid I using both the lipopolysaccharide (LPS)-induced in vivo murine ALI models and in vitro assays. Our results demonstrated that Munronoid I treatment ameliorated LPS-induced ALI and inflammation in mice. Moreover, it also significantly inhibited LPS-induced pathological injuries, infiltration of inflammatory cells, and production of IL-1β and IL-6. Furthermore, the in vitro assay showed that Munronoid I could inhibit the LPS-induced expression of inflammatory mediators such as iNOS, COX2, and production of pro-inflammatory cytokines by suppressing the activation of NF-κB signaling pathway in mouse peritoneal macrophages. Munronoid I reduced the LPS-, tumor necrosis factor alpha (TNF-α)- or interleukin 1 beta (IL-1β)-induced transforming growth factor beta-activated kinase 1 (TAK1) phosphorylation and protein expression. Furthermore, the Munronoid I also promoted K48-linked ubiquitination and proteasomal degradation of TAK1. Taken together, these results demonstrated that Munronoid I exhibited anti-inflammatory activities both in vitro and in vivo, which might be a potential therapeutic candidate for the treatment of ALI and pulmonary inflammation.
Collapse
Affiliation(s)
- Xingyu Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China.
| |
Collapse
|
12
|
Solaguren-Beascoa M, Bujakowska KM, Méjécase C, Emmenegger L, Orhan E, Neuillé M, Mohand-Saïd S, Condroyer C, Lancelot ME, Michiels C, Demontant V, Antonio A, Letexier M, Saraiva JP, Lonjou C, Carpentier W, Léveillard T, Pierce EA, Dollfus H, Sahel JA, Bhattacharya SS, Audo I, Zeitz C. WDR34, a candidate gene for non-syndromic rod-cone dystrophy. Clin Genet 2020; 99:298-302. [PMID: 33124039 DOI: 10.1111/cge.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.
Collapse
Affiliation(s)
- Maria Solaguren-Beascoa
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Kinga M Bujakowska
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Cécile Méjécase
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Lisa Emmenegger
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Orhan
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marion Neuillé
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Saddek Mohand-Saïd
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, CIC 1423, Paris, France
| | - Christel Condroyer
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marie-Elise Lancelot
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christelle Michiels
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Vanessa Demontant
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - Christine Lonjou
- Plateforme Post-Génomique P3S, Hôpital Pitié Salpêtrière, Paris, France
| | - Wassila Carpentier
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Plateforme Post-Génomique P3S, Hôpital Pitié Salpêtrière, Paris, France
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Hélène Dollfus
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire UMRS_1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - José-Alain Sahel
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine University, Pittsburgh, USA.,Académie des Sciences-Institut de France, Paris, France
| | - Shomi S Bhattacharya
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,UCL-Institute of Ophthalmology, London, UK.,Department of Cellular Therapy and Regenerative Medicine, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Isabelle Audo
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, CIC 1423, Paris, France.,UCL-Institute of Ophthalmology, London, UK
| | - Christina Zeitz
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
13
|
Mc Fie M, Koneva L, Collins I, Coveney CR, Clube AM, Chanalaris A, Vincent TL, Bezbradica JS, Sansom SN, Wann AKT. Ciliary proteins specify the cell inflammatory response by tuning NFκB signalling, independently of primary cilia. J Cell Sci 2020; 133:jcs.239871. [PMID: 32503942 PMCID: PMC7358134 DOI: 10.1242/jcs.239871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Complex inflammatory signalling cascades define the response to tissue injury but also control development and homeostasis, limiting the potential for these pathways to be targeted therapeutically. Primary cilia are subcellular regulators of cellular signalling, controlling how signalling is organized, encoded and, in some instances, driving or influencing pathogenesis. Our previous research revealed that disruption of ciliary intraflagellar transport (IFT), altered the cell response to IL-1β, supporting a putative link emerging between cilia and inflammation. Here, we show that IFT88 depletion affects specific cytokine-regulated behaviours, changing cytosolic NFκB translocation dynamics but leaving MAPK signalling unaffected. RNA-seq analysis indicates that IFT88 regulates one third of the genome-wide targets, including the pro-inflammatory genes Nos2, Il6 and Tnf. Through microscopy, we find altered NFκB dynamics are independent of assembly of a ciliary axoneme. Indeed, depletion of IFT88 inhibits inflammatory responses in the non-ciliated macrophage. We propose that ciliary proteins, including IFT88, KIF3A, TTBK2 and NPHP4, act outside of the ciliary axoneme to tune cytoplasmic NFκB signalling and specify the downstream cell response. This is thus a non-canonical function for ciliary proteins in shaping cellular inflammation. This article has an associated First Person interview with the first author of the paper. Summary: Ciliary proteins, acting independently of the ciliary axoneme, regulate the dynamics of cytosolic NFκB, but not other signalling pathways, defining an important subset of the inflammatory response.
Collapse
Affiliation(s)
- Megan Mc Fie
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lada Koneva
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Isabella Collins
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Clarissa R Coveney
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Aisling M Clube
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Anastasios Chanalaris
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Jelena S Bezbradica
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Angus K T Wann
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
14
|
The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators Inflamm 2020; 2020:8293921. [PMID: 32189997 PMCID: PMC7072120 DOI: 10.1155/2020/8293921] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
A joint is the point of connection between two bones in our body. Inflammation of the joint leads to several diseases, including osteoarthritis, which is the concern of this review. Osteoarthritis is a common chronic debilitating joint disease mainly affecting the elderly. Several studies showed that inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. This stimulates the release of early-stage inflammatory cytokines like interleukin-1 beta (IL-1β), which in turn induces the activation of signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase (MAPK). These events, in turn, generate more inflammatory molecules. Subsequently, collagenase like matrix metalloproteinases-13 (MMP-13) will degrade the extracellular matrix. As a result, anatomical and physiological functions of the joint are altered. This review is aimed at summarizing the previous studies highlighting the involvement of inflammation in the pathogenesis of osteoarthritis.
Collapse
|
15
|
WDR34 Activates Wnt/Beta-Catenin Signaling in Hepatocellular Carcinoma. Dig Dis Sci 2019; 64:2591-2599. [PMID: 30877610 DOI: 10.1007/s10620-019-05583-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Wnt ligand binding initiates the interaction between Frizzled and Dvl proteins. However, the regulation of Frizzled-Dvl proteins interaction remains largely unknown. AIMS The present study aims to elucidate the regulation of Frizzled-Dvl interaction by WDR34. METHODS The protein levels of WDR34 in hepatocellular carcinoma (HCC) tissues were examined by western blot and immunohistochemistry. The effects of WDR34 on the growth and migration of HCC cells were examined using MTT assay and Boyden chamber assay. The interaction between Frizzled and Dvl was evaluated by immunoprecipitation and GST pull-down assay. RESULTS In this study, we have shown that WDR34, the binding protein of Frizzled (Fz) activated beta-catenin/TCF signaling by enhancing the interaction between Fz and Dvl2. WDR34 was found to up-regulate in HCC tissues, and its expression was negatively correlated with the survival of HCC patients. WDR34 promoted the growth, colony formation and migration of HCC cells. However, knocking down the expression of WDR34 inhibited the growth, colony formation and migration of HCC cells. CONCLUSION Taken together, this study demonstrated the oncogenic roles of WDR34 in the progression of HCC and suggested that WDR34 might be a therapeutic target for HCC.
Collapse
|
16
|
Hu DJ, Shi WJ, Yu M, Zhang L. High WDR34 mRNA expression as a potential prognostic biomarker in patients with breast cancer as determined by integrated bioinformatics analysis. Oncol Lett 2019; 18:3177-3187. [PMID: 31452794 PMCID: PMC6676453 DOI: 10.3892/ol.2019.10634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
The WD-repeat domain (WDR) family is distributed in the majority of eukaryotes and has several unique biological functions. It serves important roles in signal transduction, cytoskeleton assembly, protein transport, RNA processing, chromatin modification and transcription mechanisms. WD repeat domain 34 (WDR34) has been recently identified as a member of the WDR family. Overexpression of WDR34 was accompanied by the presence of multiple centrioles in the cell, suggesting that it was associated with tumor occurrence. However, its association with breast cancer was unclear. To the best of our knowledge, it has not yet been confirmed whether WDR34 gene expression is associated with breast cancer. Therefore, the current study attempted to clarify this by performing a comprehensive study using multiple datasets in the Oncomine, Breast Cancer Gene-Expression Miner and Kaplan-Meier Plotter databases. The analysis indicated that the mRNA expression levels of WDR34 were increased in breast cancer tissues compared with normal tissues. Consistent with this result, the Broad-Novartis Cancer Cell Line Encyclopedia revealed that WDR34 mRNA expression levels were upregulated in breast cancer cell lines compared with other cancer cells. It was noted that high WDR34 mRNA expression was associated with forkhead box M1 and PTTG1 regulator of sister chromatid separation, securing in co-expression analysis. Expression profile characteristics of WDR34 mRNA were identified in different molecular subtypes of breast cancer. Furthermore, survival analysis revealed that increased expression levels of WDR34 mRNA were associated with poor overall survival in patients with breast cancer, particularly in luminal B, lymph node status-positive and estrogen receptor (ER)-negative subgroups. Additionally, Kaplan-Meier curves revealed that high WDR34 mRNA expression was associated with shorter relapse-free survival in patients with breast cancer, particularly in ER-positive, human epidermal growth factor receptor 2-negative and progesterone receptor-positive subgroups. These results suggested that WDR34 may be used as a prognosis predictor in breast cancer and may provide a novel target for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Dao-Jun Hu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| | - Wen-Jie Shi
- Department of Breast Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Miao Yu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| | - Li Zhang
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| |
Collapse
|
17
|
You SH, Lee YS, Lee CP, Lin CP, Lin CY, Tsai CL, Chang YL, Cheng PJ, Wang TH, Chang SD. Identification of a c.544C>T mutation in WDR34 as a deleterious recessive allele of short rib-polydactyly syndrome. Taiwan J Obstet Gynecol 2018; 56:857-862. [PMID: 29241935 DOI: 10.1016/j.tjog.2017.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Single-nucleotide polymorphism (SNP) microarrays and whole-exome sequencing (WES) are tools to precisely diagnose rare autosomal recessive (AR) diseases. In this study, SNP chip and WES were used to identify a mutated location in WDR34 in a baby born to consanguineous parents. CASE REPORT The baby, born at 36 gestational weeks had a small thoracic cage, symmetric short proximal bones, and polydactyly. Radiography showed short ribs with reduced lung volume and pulmonary opacities, compatible with asphyxiating thoracic dystrophy or short rib-polydactyly syndrome (SRPS). At 4 months of age, she died of pulmonary hypoplasia and sepsis. SNP microarray and evaluation tool confirmed WDR34 as the candidate gene. WES detected an AR mutation at c.554C > T [p.Arg182Trp] in WDR34. CONCLUSION This study was the first to identify c.544C > T [p.Arg182Trp] mutation in WDR34 in a patient with SRPS. According to the database, the homozygous mutation of c.544C > T in WDR34 was deleterious and the prevalence of heterozygous mutation was relatively higher in Asian population. More studies of this mutation in patients with SRPS are required.
Collapse
Affiliation(s)
- Shu-Han You
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan 333, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan; Department of Biotechnology, Min-Chuan University, Tao-Yuan 333, Taiwan
| | - Chueh-Pai Lee
- Bioinformatics Division, Yourgene Bioscience Inc., New Taipei City, Taiwan
| | - Chih-Peng Lin
- Department of Biotechnology, Min-Chuan University, Tao-Yuan 333, Taiwan; Bioinformatics Division, Yourgene Bioscience Inc., New Taipei City, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan 333, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Yao-Lung Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan 333, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan 333, Taiwan
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan 333, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan; College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Shuenn-Dyh Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan 333, Taiwan.
| |
Collapse
|
18
|
MiR-149 suppresses the inflammatory response of chondrocytes in osteoarthritis by down-regulating the activation of TAK1/NF-κB. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.133] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
Yamamoto JI, Kasamatsu A, Okubo Y, Nakashima D, Fushimi K, Minakawa Y, Kasama H, Shiiba M, Tanzawa H, Uzawa K. Evaluation of tryptophan-aspartic acid repeat-containing protein 34 as a novel tumor-suppressor molecule in human oral cancer. Biochem Biophys Res Commun 2017; 495:2469-2474. [PMID: 29278705 DOI: 10.1016/j.bbrc.2017.12.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Tryptophan-aspartic acid (WD) repeat-containing protein 34 (WDR34), one of the WDR protein superfamilies with five WD40 domains, inhibits a transforming growth factor-beta (TGF-β) activated kinase 1 (TAK1)-associated NF-κB activation pathway. Nevertheless, little is known about the roles of WDR34 in cancer. The current study sought to elucidate the clinical relevance of WDRsfb34 in oral squamous cell carcinoma (OSCC). We found WDR34 down-regulation in OSCCs compared with normal control tissues using real-time quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunohistochemistry. Models of overexpression of WDR34 (oeWDR34) showed depressed cellular growth through cell-cycle arrest at the G1 phase. To investigate the inhibitory function of WDR34, we challenged oeWDR34 cells with interleukin (IL)-1, a ligand for activation of the TAK1-NF-κB pathway and assessed the expression of a target gene of the pathway. oeWDR34 strongly inhibited IL-6 expression, which is closely related to tumoral growth, compared with control cells, suggesting that WDR34 would be a critical molecule for control of tumoral progression. In addition to the in vitro experiments, WDR34 negativity was correlated with tumoral growth of OSCCs. Our findings suggested that WDR34 inhibits OSCC progression and might be a potential tumor-suppressor molecule in OSCCs.
Collapse
Affiliation(s)
- Jun-Ichiro Yamamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuaki Fushimi
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Yasuyuki Minakawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Division of Dentistry, Chiba Prefectural Sawara Hospital, Chiba, Japan
| | - Hiroki Kasama
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
20
|
Walker A, Russmann V, Deeg CA, von Toerne C, Kleinwort KJH, Szober C, Rettenbeck ML, von Rüden EL, Goc J, Ongerth T, Boes K, Salvamoser JD, Vezzani A, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav Immun 2016; 53:138-158. [PMID: 26685804 DOI: 10.1016/j.bbi.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis. Taken together, the findings deepen our understanding of modulation of inflammatory signaling during epileptogenesis providing an excellent and comprehensive basis for the identification of target and biomarker candidates.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | | | - Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joanna Goc
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Boes
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annamaria Vezzani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
21
|
Affiliation(s)
- Yuqing Hou
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
22
|
Wann AKT, Chapple JP, Knight MM. The primary cilium influences interleukin-1β-induced NFκB signalling by regulating IKK activity. Cell Signal 2014; 26:1735-42. [PMID: 24726893 PMCID: PMC4064300 DOI: 10.1016/j.cellsig.2014.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 01/02/2023]
Abstract
The primary cilium is an organelle acting as a master regulator of cellular signalling. We have previously shown that disruption of primary cilia assembly, through targeting intraflagellar transport, is associated with muted nitric oxide and prostaglandin responses to the inflammatory cytokine interleukin-1β (IL-1β). Here, we show that loss of the primary cilium disrupts specific molecular signalling events in cytosolic NFκB signalling. The induction of cyclooxygenase 2 (COX2) and inducible nitrous oxide synthase (iNOS) protein is abolished. Cells unable to assemble cilia exhibit unaffected activation of IκB kinase (IKK), but delayed and reduced degradation of IκB, due to diminished phosphorylation of inhibitor of kappa B (IκB) by IKK. This results in both delayed and reduced NFκB p65 nuclear translocation and nuclear transcript binding. We also demonstrate that heat shock protein 27 (hsp27), an established regulator of IKK, is localized to the ciliary axoneme and cellular levels are dramatically disrupted with loss of the primary cilium. These results suggest that the primary cilia compartment exerts influence over NFκB signalling. We propose that the cilium is a locality for regulation of the molecular events defining NFκB signalling events, tuning signalling as appropriate. Hypermorphic mutation of IFT88 results in partial loss of the primary cilium. Cilia loss leads to inhibition of COX2 and iNOS induction in response to IL-1. In cells without cilia, IKK is activated but does not phosphorylate IκB. This leads to sustained IκB expression, and reduced and mistimed NFκB signalling. We propose the cilium to be a location for hsp27 regulation of IKK activity.
Collapse
Affiliation(s)
- A K T Wann
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Bancroft Road, Mile End, London E1 4NS, United Kingdom.
| | - J P Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, John Vane science building, Charterhouse square, London EC1M 6BQ, United Kingdom.
| | - M M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Bancroft Road, Mile End, London E1 4NS, United Kingdom.
| |
Collapse
|
23
|
Huber C, Wu S, Kim A, Sigaudy S, Sarukhanov A, Serre V, Baujat G, Le Quan Sang KH, Rimoin D, Cohn D, Munnich A, Krakow D, Cormier-Daire V. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. Am J Hum Genet 2013; 93:926-31. [PMID: 24183449 DOI: 10.1016/j.ajhg.2013.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/26/2013] [Accepted: 10/02/2013] [Indexed: 01/15/2023] Open
Abstract
Short-rib polydactyly (SRP) syndrome type III, or Verma-Naumoff syndrome, is an autosomal-recessive chondrodysplasia characterized by short ribs, a narrow thorax, short long bones, an abnormal acetabulum, and numerous extraskeletal malformations and is lethal in the perinatal period. Presently, mutations in two genes, IFT80 and DYNC2H1, have been identified as being responsible for SRP type III. Via homozygosity mapping in three affected siblings, a locus for the disease was identified on chromosome 9q34.11, and homozygosity for three missense mutations in WDR34 were found in three independent families, as well as compound heterozygosity for mutations in one family. WDR34 encodes a member of the WD repeat protein family with five WD40 domains, which acts as a TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. We showed, through structural modeling, that two of the three mutations altered specific structural domains of WDR34. We found that primary cilia in WDR34 mutant fibroblasts were significantly shorter than normal and had a bulbous tip. This report expands on the pathogenesis of SRP type III and demonstrates that a regulator of the NF-κB activation pathway is involved in the pathogenesis of the skeletal ciliopathies.
Collapse
|
24
|
Schmidts M, Vodopiutz J, Christou-Savina S, Cortés C, McInerney-Leo A, Emes R, Arts H, Tüysüz B, D’Silva J, Leo P, Giles T, Oud M, Harris J, Koopmans M, Marshall M, Elçioglu N, Kuechler A, Bockenhauer D, Moore A, Wilson L, Janecke A, Hurles M, Emmet W, Gardiner B, Streubel B, Dopita B, Zankl A, Kayserili H, Scambler P, Brown M, Beales P, Wicking C, Duncan E, Mitchison H. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 2013; 93:932-44. [PMID: 24183451 PMCID: PMC3824113 DOI: 10.1016/j.ajhg.2013.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022] Open
Abstract
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.
Collapse
Affiliation(s)
- Miriam Schmidts
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonia Christou-Savina
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Claudio R. Cortés
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aideen M. McInerney-Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Heleen H. Arts
- Department of Human Genetics, Radboud University Medical Centre, Radboud University, 6500 HB Nijmegen, the Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Beyhan Tüysüz
- Department of Pediatrics, Division of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University, 34303 Istanbul, Turkey
| | - Jason D’Silva
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Paul J. Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Tom C. Giles
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Machteld M. Oud
- Department of Human Genetics, Radboud University Medical Centre, Radboud University, 6500 HB Nijmegen, the Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Jessica A. Harris
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Marije Koopmans
- Department of Clinical Genetics, Center for Human and Clinical Genetics, Leiden University Medical Centre, 2333 AL Leiden, the Netherlands
| | - Mhairi Marshall
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Nursel Elçioglu
- Department of Pediatrics, Marmara University Hospital, Istanbul 34716, Turkey
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | - Detlef Bockenhauer
- Great Ormond Street Hospital and Nephro-Urology Unit, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Anthony T. Moore
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PH, UK
| | - Louise C. Wilson
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Andreas R. Janecke
- Department of Pediatrics I, and Division of Human Genetics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Matthew E. Hurles
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1RQ, UK
| | - Warren Emmet
- Department of Genetics, Environment and Evolution, UCL Genetics Institute (UGI), University College London, London WC1E 6BT, UK
| | - Brooke Gardiner
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Berthold Streubel
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Belinda Dopita
- Department of Genetics, The Canberra Hospital, Woden, ACT 2606, Australia
| | - Andreas Zankl
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia
| | - Hülya Kayserili
- Istanbul Medical Faculty, Medical Genetics Department, Istanbul University, 34390 Istanbul, Turkey
| | - Peter J. Scambler
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Matthew A. Brown
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Philip L. Beales
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Emma L. Duncan
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
- Department of Endocrinology, James Mayne Building, Royal Brisbane and Women’s Hospital, Butterfield Road, Herston, QLD 4029, Australia
| | - Hannah M. Mitchison
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| |
Collapse
|
25
|
Wang ZQ, Yu Y, Zhang XH, Qin J, Floyd E. Gene expression profile in human skeletal muscle cells infected with human adenovirus type 36. J Med Virol 2012; 84:1254-66. [PMID: 22711354 DOI: 10.1002/jmv.23332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human adenovirus type-36 (HAdV-36) is a specific pathogen that may lead to increased adiposity and obesity. In order to evaluate the effects of HAdV-36 on gene transcription, a microarray analysis of muscle cells infected with HAdV-36 was performed. Gene expression profile was determined by microarray analysis in cultured human skeletal muscle cells with or without HAdV-36 infection. Quantitative real-time PCR (qPCR) assay was performed in selected 35 genes to verify the results of the microarray analysis. A total of 13,060 unique genes were detected in the HAdV-36 infected muscle cells infected with HAdV-36. Among them, 1,004 genes were significantly altered by using a cut-off point at fold change ≥1.5 and P value <0.05. Most of the principal 100 altered genes were involved in development, immune response, signal transduction, transcriptional regulation as well as carbohydrate, lipid and protein metabolism. Thirty-two genes (91.4%) from the 35 selected genes were confirmed by qPCR assay. In addition, HAdV-36 altered 252 genes that are associated with cancer. The study showed HAdV-36 infection upregulated host cell antiviral defense. HAdV-36 also induces changes in gene expression related to cellular signaling pathways of signal transduction, transcriptional regulation as well as carbohydrate, lipid and protein metabolism. However, it remains to be investigated if HAdV-36 infection could lead to oncogenesis.
Collapse
Affiliation(s)
- Zhong Q Wang
- Nutrition and Diabetes Research Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | | | | | | | | |
Collapse
|
26
|
Geurts J, van den Brand BT, Wolf A, Abdollahi-Roodsaz S, Arntz OJ, Kracht M, van den Berg WB, van de Loo FAJ. Toll-like receptor 4 signalling is specifically TGF-beta-activated kinase 1 independent in synovial fibroblasts. Rheumatology (Oxford) 2011; 50:1216-25. [PMID: 21335610 DOI: 10.1093/rheumatology/ker021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Activated synovial fibroblasts are key players in the pathogenesis of RA by driving inflammation and joint destruction. Numerous molecules including cytokines and Toll-like receptor (TLR) ligands induce pro-inflammatory signalling and gene expression through a hierarchical network of kinases. Upstream mitogen-activated protein kinase kinase kinases (MAP3Ks) represent an attractive target for RA treatment. In this study, we sought to determine the role of the MAP3K TGF-β-activated kinase 1 (TAK1) in cytokine and TLR-mediated signalling. METHODS TAK1 activity was inhibited using either a small molecule inhibitor or lentivirally overexpressed kinase-inactive TAK1-K63W mutant in murine embryonic and human dermal and synovial fibroblasts. Fibroblasts were stimulated with IL-1, TNF, TLR2 or TLR4 agonists and responses were evaluated using transcriptional reporters, western blotting and analysis of gene expression of collagenases (MMP3 and MMP13), cytokines (IL-1β and IL-6) and chemokines (IL-8 and MCP-1). RESULTS TAK1 inhibition abrogated cytokine- and TLR-induced nuclear factor-κB (NF-κB) and Saa3-promoter reporter activation in murine and human dermal fibroblasts. In synovial fibroblasts, TAK1 regulated IL-1 and TNF-mediated NF-κB, but not Saa3-promoter reporter activation. Inducible mRNA expression of cytokines, collagenases and chemokines, except MCP-1, was TAK1 dependent for IL-1, TNF and TLR2 signalling. Unexpectedly, TLR4-mediated NF-κB reporter activation and inducible mRNA expression was fully TAK1 independent. Accordingly, NF-κB p65 and p38 MAPK phosphorylation was unaffected by TAK1 inhibition. CONCLUSION In general, TAK1 crucially regulates IL-1 and TNF signalling in fibroblasts. Interestingly, TLR4 signalling is specifically TAK1 independent in synovial fibroblasts. Consequently, therapeutic TAK1 inhibition in arthropathies may not dampen the damage-associated molecular pattern-mediated TLR4 activation of synovial fibroblasts.
Collapse
Affiliation(s)
- Jeroen Geurts
- Department of Rheumatology, Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulation of virus-triggered type I interferon signaling by cellular and viral proteins. ACTA ACUST UNITED AC 2010; 5:12-31. [PMID: 32215003 PMCID: PMC7088834 DOI: 10.1007/s11515-010-0013-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/15/2009] [Indexed: 02/07/2023]
Abstract
Host pattern recognition receptors (PRRs) recognize invading viral pathogens and initiate a series of signaling cascades that lead to the expression of type I interferons (IFNs) and inflammatory cytokines. During the past decade, significant progresses have been made to characterize PRRs such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) and elucidate the molecular mechanisms of TLR- and RLR-mediated signaling. To avoid excessive and harmful immune effects caused by over-activation of these signaling pathways, host cells adopt a number of strategies to regulate them. In addition, invading viruses also employ a variety of mechanisms to inhibit the production of type I IFNs, thereby evading the supervision and clearance by the host. In this review, we briefly summarize the TLR- and RLR-mediated type I IFN signaling and then focus on the mechanisms by which host cellular and viral components regulate the expression of type I IFNs.
Collapse
|
28
|
|