1
|
Mamun MMA, Khan MR, Zhu Y, Zhang Y, Zhou S, Xu R, Bukhari I, Thorne RF, Li J, Zhang XD, Liu G, Chen S, Wu M, Song X. Stub1 maintains proteostasis of master transcription factors in embryonic stem cells. Cell Rep 2022; 39:110919. [PMID: 35675767 DOI: 10.1016/j.celrep.2022.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
The pluripotency and differentiation states of embryonic stem cells (ESCs) are regulated by a set of core transcription factors, primarily Sox2, Oct4, and Nanog. Although their transcriptional regulation has been studied extensively, the contribution of posttranslational modifications in Sox2, Oct4, and Nanog are poorly understood. Here, using a CRISPR-Cas9 knockout library screen in murine ESCs, we identify the E3 ubiquitin ligase Stub1 as a negative regulator of pluripotency. Manipulation of Stub1 expression in murine ESCs shows that ectopic Stub1 expression significantly reduces the protein half-life of Sox2, Oct4, and Nanog. Mechanistic investigations reveal Stub1 catalyzes the polyubiquitination and 26S proteasomal degradation of Sox2 and Nanog through K48-linked ubiquitin chains and Oct4 via K63 linkage. Stub1 deficiency positively enhances somatic cell reprogramming and delays differentiation, whereas its enforced expression triggers ESC differentiation. The discovery of Stub1 as an integral pluripotency regulator strengthens our understanding of ESC regulation beyond conventional transcriptional control mechanisms.
Collapse
Affiliation(s)
- Md Mahfuz Al Mamun
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Muhammad Riaz Khan
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| | - Yifu Zhu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Ran Xu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ihtisham Bukhari
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2258, Australia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu 223300, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Xiaoyuan Song
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Lee HJ, Min HY, Yong YS, Ann J, Nguyen CT, La MT, Hyun SY, Le HT, Kim H, Kwon H, Nam G, Park HJ, Lee J, Lee HY. A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics 2022; 12:105-125. [PMID: 34987637 PMCID: PMC8690924 DOI: 10.7150/thno.63788] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: The heat shock protein (Hsp) system plays important roles in cancer stem cell (CSC) and non-CSC populations. However, limited efficacy due to drug resistance and toxicity are obstacles to clinical use of Hsp90 inhibitors, suggesting the necessity to develop novel Hsp90 inhibitors overcoming these limitations. Methods: The underlying mechanism of resistance to Hsp90 inhibitors was investigated by colony formation assay, sphere formation assay, western blot analysis, and real-time PCR. To develop anticancer Hsp90 inhibitors that overcome the signal transducer and activator of transcription 3 (STAT3)-mediated resistance, we synthesized and screened a series of synthetic deguelin-based compounds in terms of inhibition of colony formation, migration, and viability of non-small cell lung cancer (NSCLC) cells and toxicity to normal cells. Regulation of Hsp90 by the selected compound NCT-80 [5-methoxy-N-(3-methoxy-4-(2-(pyridin-3-yl)ethoxy)phenyl)-2,2-dimethyl-2H-chromene-6-carboxamide] was investigated by immunoprecipitation, drug affinity responsive target stability assay, binding experiments using ATP-agarose beads and biotinylated drug, and docking analysis. The antitumor, antimetastatic, and anti-CSC effects of NCT-80 were examined in vitro and in vivo using various assays such as MTT, colony formation, and migration assays and flow cytometric analysis and tumor xenograft models. Results: We demonstrated a distinct mechanism in which Hsp90 inhibitors that block N-terminal ATP-binding pocket causes transcriptional upregulation of Wnt ligands through Akt- and ERK-mediated activation of STAT3, resulting in NSCLC cell survival in an autocrine or paracrine manner. In addition, NCT-80 effectively reduced viability, colony formation, migration, and CSC-like phenotypes of NSCLC cells and their sublines with acquired resistance to anticancer drugs by inducing apoptosis and inhibiting epithelial-mesenchymal transition and the growth of NSCLC patient-derived xenograft tumors without overt toxicity. With regards to mechanism, NCT-80 directly bound to the C-terminal ATP-binding pocket of Hsp90, disrupting the interaction between Hsp90 and STAT3 and degrading STAT3 protein. Moreover, NCT-80 inhibited chemotherapy- and EGFR TKI-induced programmed cell death ligand 1 expression and potentiated the antitumor effect of chemotherapy in the LLC-Luc allograft model. Conclusions: These data indicate the potential of STAT3/Wnt signaling pathway as a target to overcome resistance to Hsp90 inhibitors and NCT-80 as a novel Hsp90 inhibitor that targets both CSCs and non-CSCs in NSCLC.
Collapse
Affiliation(s)
- Ho Jin Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sik Yong
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyae Ann
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cong Truong Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minh Thanh La
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeob Hyun
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Huong Thuy Le
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyukjin Kwon
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Egawa N, Suzuki H, Takahashi R, Hayakawa K, Li W, Lo EH, Arai K, Inoue H. From in vitro to in vivo reprogramming for neural transdifferentiation: An approach for CNS tissue remodeling using stem cell technology. J Cereb Blood Flow Metab 2020; 40:1739-1751. [PMID: 32423328 PMCID: PMC7446571 DOI: 10.1177/0271678x20910324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in stem cell technology have provided three approaches to address the demanding issue of the treatment of intractable neurological disease. One of the approaches is the screening of compounds attenuating pathological phenotypes in stem-cell based models. A second approach consists of exogenous-targeted cell supplementation to the lesion with stem cell-derived differentiated cells. A third approach involves in vivo direct programming to transdifferentiate endogenous somatic cells and to boost CNS tissue remodeling. In this review, we outline research advances in stem cell technology of direct reprogramming in vitro and in vivo and discuss the future challenge of tissue remodeling by neural transdifferentiation.
Collapse
Affiliation(s)
- Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidefumi Suzuki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Haruhisa Inoue
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
4
|
Popowski M, Lee BK, Rhee C, Iyer VR, Tucker HO. Arid3a regulates mesoderm differentiation in mouse embryonic stem cells. JOURNAL OF STEM CELL THERAPY AND TRANSPLANTATION 2017; 1:52-62. [PMID: 31080945 PMCID: PMC6510499 DOI: 10.29328/journal.jsctt.1001005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Research into regulation of the differentiation of stem cells is critical to understanding early developmental decisions and later development growth. The transcription factor ARID3A previously was shown to be critical for trophectoderm and hematopoetic development. Expression of ARID3A increases during embryonic differentiation, but the underlying reason remained unclear. Here we show that Arid3a null embryonic stem (ES) cells maintain an undifferentiated gene expression pattern and form teratomas in immune-compromised mice. However, Arid3a null ES cells differentiated in vitro into embryoid bodies (EBs) significantly faster than control ES cells, and the majority forming large cystic embryoid EBs. Analysis of gene expression during this transition indicated that Arid3a nulls differentiated spontaneously into mesoderm and neuroectoderm lineages. While young ARID3A-deficient mice showed no gross tissue morphology, proliferative and structural abnormalities were observed in the kidneys of older null mice. Together these data suggest that ARID3A is not only required hematopoiesis, but is critical for early mesoderm differentiation.
Collapse
Affiliation(s)
- Melissa Popowski
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Bum-kyu Lee
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Cathy Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Address for Correspondence: Haley O Tucker, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
5
|
Characterization of calcium signals in human embryonic stem cells and in their differentiated offspring by a stably integrated calcium indicator protein. Cell Signal 2013; 25:752-9. [PMID: 23305950 DOI: 10.1016/j.cellsig.2012.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/15/2012] [Accepted: 12/28/2012] [Indexed: 11/23/2022]
Abstract
Intracellular calcium signaling pathways play a major role in cellular responses such as proliferation, differentiation and apoptosis. Human embryonic stem cells (hESC) provide new possibilities to explore the development and differentiation of various cell types of the human body. Intracellular calcium responses to various ligands and the calcium signaling pathways, however, have not been thoroughly studied in embryonic stem cells and in their differentiated progenies. In our previous work we demonstrated that the use of the fluorescent calcium indicator Fluo-4 with confocal microscopy allows sensitive and reliable measurements of calcium modulation in human embryonic stem cells and stem-cell derived cardiomyocytes. Here we developed a human embryonic stem cell line stably expressing a genetically encoded Ca(2+) indicator (GCaMP2) using a transposon-based gene delivery system. We found that the differentiation properties were fully preserved in the GCaMP2-expressing hESC lines and Ca imaging could be performed without the need of toxic dye-loading of the cells. In undifferentiated hES cells the calcium signals induced by various ligands, ATP, LPA, trypsin or angiotensin II were comparable to those in Fluo-4 loaded cells. In accordance with previous findings, no calcium signal was evoked by thrombin, histamine or GABA. Cardiomyocyte colonies differentiated from hES-GCaMP2 cells could be recognized by spontaneous contractions and Ca(2+) oscillations. GCaMP2-expressing neural cells were identified based on their morphological and immuno-staining properties and Ca signals were characterized on those cells. Characteristics of both the spontaneous and ligand-induced Ca(2+) signals, as well as their pharmacological modification could be successfully examined in these model cells by fluorescence imaging.
Collapse
|
6
|
Chaudhury H, Raborn E, Goldie LC, Hirschi KK. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine. Cells Tissues Organs 2011; 195:41-7. [PMID: 22005724 DOI: 10.1159/000331423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources including human embryonic stem cells and induced pluripotent stem cells. We review the vascular potential of these human pluripotent stem cells, the mechanisms by which they are induced to differentiate toward a vascular endothelial cell fate, and their applications in regenerative medicine.
Collapse
Affiliation(s)
- Hera Chaudhury
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Tex., USA
| | | | | | | |
Collapse
|
7
|
Tiscornia G, Izpisúa Belmonte JC. MicroRNAs in embryonic stem cell function and fate. Genes Dev 2011; 24:2732-41. [PMID: 21159814 DOI: 10.1101/gad.1982910] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since their discovery in the early 1990s, microRNAs (miRs) have gone from initially being considered an oddity to being recognized as a level of gene expression regulation that is integral to the normal function of cells and organisms. They are implicated in many if not all biological processes in animals, from apoptosis and cell signaling to organogenesis and development. Our understanding of cell regulatory states, as determined primarily by transcription factor (TF) profiles, is incomplete without consideration of the corresponding miR profile. The miR complement of a cell provides robust and redundant control over the output of hundreds of possible targets for each miR. miRs are common components of regulatory pathways, and in some cases can constitute on-off switches that regulate crucial fate decisions. In this review, we summarize our current knowledge about the biogenesis and regulation of miRs and describe their involvement in the pathways that regulate cell division, pluripotency, and reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Gustavo Tiscornia
- Centre of Regenerative Medicine in Barcelona, Barcelona 08003, Spain
| | | |
Collapse
|
8
|
Fuellen G, Struckmann S. Evolution of gene regulation of pluripotency--the case for wiki tracks at genome browsers. Biol Direct 2010; 5:67. [PMID: 21190561 PMCID: PMC3024949 DOI: 10.1186/1745-6150-5-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/29/2010] [Indexed: 12/23/2022] Open
Abstract
Background Experimentally validated data on gene regulation are hard to obtain. In particular, information about transcription factor binding sites in regulatory regions are scattered around in the literature. This impedes their systematic in-context analysis, e.g. the inference of their conservation in evolutionary history. Results We demonstrate the power of integrative bioinformatics by including curated transcription factor binding site information into the UCSC genome browser, using wiki and custom tracks, which enable easy publication of annotation data. Data integration allows to investigate the evolution of gene regulation of the pluripotency-associated genes Oct4, Sox2 and Nanog. For the first time, experimentally validated transcription factor binding sites in the regulatory regions of all three genes were assembled together based on manual curation of data from 39 publications. Using the UCSC genome browser, these data were then visualized in the context of multi-species conservation based on genomic alignment. We confirm previous hypotheses regarding the evolutionary age of specific regulatory patterns, establishing their "deep homology". We also confirm some other principles of Carroll's "Genetic theory of Morphological Evolution", such as "mosaic pleiotropy", exemplified by the dual role of Sox2 reflected in its regulatory region. Conclusions We were able to elucidate some aspects of the evolution of gene regulation for three genes associated with pluripotency. Based on the expected return on investment for the community, we encourage other scientists to contribute experimental data on gene regulation (original work as well as data collected for reviews) to the UCSC system, to enable studies of the evolution of gene regulation on a large scale, and to report their findings. Reviewers This article was reviewed by Dr. Gustavo Glusman and Dr. Juan Caballero, Institute for Systems Biology, Seattle, USA (nominated by Dr. Doron Lancet, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel), Dr. Niels Grabe, TIGA Center (BIOQUANT) and Medical Systems Biology Group, Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany (nominated by Dr. Mikhail Gelfand, Department of Bioinformatics, Institute of Information Transfer Problems, Russian Academy of Science, Moscow, Russian Federation) and Dr. Franz-Josef Müller, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA, USA and University Hospital for Psychiatry and Psychotherapy (part of ZIP gGmbH), University of Kiel, Germany (nominated by Dr. Trey Ideker, University of California, San Diego, La Jolla CA, United States).
Collapse
Affiliation(s)
- Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research - IBIMA, University of Rostock, Medical Faculty, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany.
| | | |
Collapse
|
9
|
Giandomenico V. Molecular pathology of gastrointestinal neuroendocrine tumours – selected topics. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.mpdhp.2010.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|