1
|
Takayasu BS, Rodrigues SS, Madureira Trufen CE, Machado-Santelli GM, Onuki J. Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays. Heliyon 2023; 9:e18317. [PMID: 37539139 PMCID: PMC10393766 DOI: 10.1016/j.heliyon.2023.e18317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Snake envenomation is a neglected tropical disease. In Brazil, the Bothrops genus is responsible for about 86% of snakebite accidents. Despite extensive evidence of the cytotoxicity of snake venoms, the cellular and molecular mechanisms involved are not fully understood, especially regarding the effects on cell cycle progression and cytoskeleton organization. Traditionally, the effectiveness and quality control tests of venoms and antivenoms are assessed by in vivo assays. Despite this, there is a rising effort to develop surrogate in vitro models according to the 3R principle (Replacement, Reduction, and Refinement). In this study, we treated rat liver cells (BRL-3A) with venoms from five Bothrops species (B. jararaca, B. jararacussu, B. moojeni, B. alternatus, and B. neuwiedi) and analyzed cell viability and IC50 by MTT assay, cell cycle phases distribution by flow cytometry, and morphology and cytoskeleton alterations by immunofluorescence. In addition, we evaluated the correlation between IC50 and the enzymatic and biological activities of each venom. Our results indicated that Bothrops spp. venoms decreased the cell viability of rat liver BRL-3A cells. The rank order of potency was B. jararacussu > B. moojeni > B. alternatus > B. jararaca > B. neuwiedi. The mechanisms of cytotoxicity were related to microtubules and actin network disruption, but not to cell cycle arrest. No clear correlation was found between the IC50 and retrieved literature data of in vitro enzymatic and in vivo biological activities. This work contributed to understanding cellular and molecular mechanisms underlying the Bothrops spp. venom cytotoxicity, which can help to improve envenomation treatment, as well as disclose potential therapeutic properties of snake venoms.
Collapse
Affiliation(s)
- Bianca Sayuri Takayasu
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janice Onuki
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Laboratory of Herpetology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
2
|
Sun Y, Kuang Y, Zuo Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int J Mol Sci 2021; 22:2333. [PMID: 33652750 PMCID: PMC7956436 DOI: 10.3390/ijms22052333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the process of exploring space, the astronaut's body undergoes a series of physiological changes. At the level of cellular behavior, microgravity causes significant alterations, including bone loss, muscle atrophy, and cardiovascular deconditioning. At the level of gene expression, microgravity changes the expression of cytokines in many physiological processes, such as cell immunity, proliferation, and differentiation. At the level of signaling pathways, the mitogen-activated protein kinase (MAPK) signaling pathway participates in microgravity-induced immune malfunction. However, the mechanisms of these changes have not been fully elucidated. Recent studies suggest that the malfunction of macrophages is an important breakthrough for immune disorders in microgravity. As the first line of immune defense, macrophages play an essential role in maintaining homeostasis. They activate specific immune responses and participate in large numbers of physiological activities by presenting antigen and secreting cytokines. The purpose of this review is to summarize recent advances on the dysfunction of macrophages arisen from microgravity and to discuss the mechanisms of these abnormal responses. Hopefully, our work will contribute not only to the future exploration on the immune system in space, but also to the development of preventive and therapeutic drugs against the physiological consequences of spaceflight.
Collapse
Affiliation(s)
- Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.K.); (Z.Z.)
| | | | | |
Collapse
|
3
|
Shin JW, Lee JC. Roles of microglial membranes in Alzheimer's disease. CURRENT TOPICS IN MEMBRANES 2020; 86:301-314. [PMID: 33837697 PMCID: PMC8082413 DOI: 10.1016/bs.ctm.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of Alzheimer's disease (AD) risk genes are highly and selectively expressed by microglia in the brain. Several of these genes are related to lipid and cholesterol metabolism, lipid synthesis, lipid transport, endocytosis, exocytosis and phagocytosis. Therefore, studying the roles of cellular membrane biophysics in microglial function should improve our understanding of the AD pathology. In this chapter, we discuss how lipid rafts and membrane-cytoskeleton adhesion impact microglial-mediated oxidative stress and clearance of amyloid-β peptide (Aβ). We also discuss potential roles of lipid membrane-bound extracellular vesicles as carriers of pathological factors to promote inflammation and cytotoxicity.
Collapse
Affiliation(s)
- Jae-Won Shin
- Department of Bioengineering, University of Illinois at Chicago, College of Medicine, Chicago, IL, United States; Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, IL, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, College of Medicine, Chicago, IL, United States.
| |
Collapse
|
4
|
Teng T, Dong L, Ridgley DM, Ghura S, Tobin MK, Sun GY, LaDu MJ, Lee JC. Cytosolic Phospholipase A 2 Facilitates Oligomeric Amyloid-β Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity. Mol Neurobiol 2018; 56:3222-3234. [PMID: 30112630 DOI: 10.1007/s12035-018-1304-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) mediates oligomeric amyloid-β peptide (oAβ)-induced oxidative and inflammatory responses in glial cells. Increased activity of cPLA2 has been implicated in the neuropathology of Alzheimer's disease (AD), suggesting that cPLA2 regulation of oAβ-induced microglial activation may play a role in the AD pathology. We demonstrate that LPS, IFNγ, and oAβ increased phosphorylated cPLA2 (p-cPLA2) in immortalized mouse microglia (BV2). Aβ association with primary rat microglia and BV2 cells, possibly via membrane-binding and/or intracellular deposition, presumably indicative of microglia-mediated clearance of the peptide, was reduced by inhibition of cPLA2. However, cPLA2 inhibition did not affect the depletion of this associated Aβ when cells were washed and incubated in a fresh medium after oAβ treatment. Since the depletion was abrogated by NH4Cl, a lysosomal inhibitor, these results suggested that cPLA2 was not involved in the degradation of the associated Aβ. To further dissect the effects of cPLA2 on microglia cell membranes, atomic force microscopy (AFM) was used to determine endocytic activity. The force for membrane tether formation (Fmtf) is a measure of membrane-cytoskeleton connectivity and represents a mechanical barrier to endocytic vesicle formation. Inhibition of cPLA2 increased Fmtf in both unstimulated BV2 cells and cells stimulated with LPS + IFNγ. Thus, increasing p-cPLA2 would decrease Fmtf, thereby increasing endocytosis. These results suggest a role of cPLA2 activation in facilitating oAβ endocytosis by microglial cells through regulation of the membrane-cytoskeleton connectivity.
Collapse
Affiliation(s)
- Tao Teng
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA
| | - Li Dong
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Devin M Ridgley
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA
| | - Shivesh Ghura
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Matthew K Tobin
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Mkrtschjan MA, Gaikwad SB, Kappenman KJ, Solís C, Dommaraju S, Le LV, Desai TA, Russell B. Lipid signaling affects primary fibroblast collective migration and anchorage in response to stiffness and microtopography. J Cell Physiol 2017; 233:3672-3683. [PMID: 29034471 DOI: 10.1002/jcp.26236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Cell migration is regulated by several mechanotransduction pathways, which consist of sensing and converting mechanical microenvironmental cues to internal biochemical cellular signals, such as protein phosphorylation and lipid signaling. While there has been significant progress in understanding protein changes in the context of mechanotransduction, lipid signaling is more difficult to investigate. In this study, physical cues of stiffness (10, 100, 400 kPa, and glass), and microrod or micropost topography were manipulated in order to reprogram primary fibroblasts and assess the effects of lipid signaling on the actin cytoskeleton. In an in vitro wound closure assay, primary cardiac fibroblast migration velocity was significantly higher on soft polymeric substrata. Modulation of PIP2 availability through neomycin treatment nearly doubled migration velocity on 10 kPa substrata, with significant increases on all stiffnesses. The distance between focal adhesions and the lamellar membrane (using wortmannin treatment to increase PIP2 via PI3K inhibition) was significantly shortest compared to untreated fibroblasts grown on the same surface. PIP2 localized to the leading edge of migrating fibroblasts more prominently in neomycin-treated cells. The membrane-bound protein, lamellipodin, did not vary under any condition. Additionally, fifteen micron-high micropost topography, which blocks migration, concentrates PIP2 near to the post. Actin dynamics within stress fibers, measured by fluorescence recovery after photobleaching, was not significantly different with stiffness, microtopography, nor with drug treatment. PIP2-modulating drugs delivered from microrod structures also affected migration velocity. Thus, manipulation of the microenvironment and lipid signaling regulatory drugs might be beneficial in improving therapeutics geared toward wound healing.
Collapse
Affiliation(s)
- Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Snehal B Gaikwad
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Kevin J Kappenman
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher Solís
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Sagar Dommaraju
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Long V Le
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California
| | - Brenda Russell
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Beaulieu E, Ioffe J, Watson SN, Hermann PM, Wildering WC. Oxidative-stress induced increase in circulating fatty acids does not contribute to phospholipase A2-dependent appetitive long-term memory failure in the pond snail Lymnaea stagnalis. BMC Neurosci 2014; 15:56. [PMID: 24886155 PMCID: PMC4013061 DOI: 10.1186/1471-2202-15-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
Background Reactive oxygen species (ROS) are essential for normal physiological functioning of the brain. However, uncompensated increase in ROS levels may results in oxidative stress. Phospholipase A2 (PLA2) is one of the key players activated by elevated ROS levels resulting in the hydrolysis of various products from the plasmamembrane such as peroxidized fatty acids. Free fatty acids (FFAs) and fatty acid metabolites are often implicated to the genesis of cognitive impairment. Previously we have shown that age-, and experimentally induced oxidative stress causes PLA2-dependent long-term memory (LTM) failure in an aversive operant conditioning model in Lymnaea stagnalis. In the present study, we investigate the effects of experimentally induced oxidative stress and the role of elevated levels of circulating FFAs on LTM function using a non-aversive appetitive classical conditioning paradigm. Results We show that intracoelomic injection of exogenous PLA2 or pro-oxidant induced PLA2 activation negatively affects LTM performance in our learning paradigm. In addition, we show that experimental induction of oxidative stress causes significant temporal changes in circulating FFA levels. Importantly, the time of training coincides with the peak of this change in lipid metabolism. However, intracoelomic injection with exogenous arachidonic acid, one of the main FFAs released by PLA2, does not affect LTM function. Moreover, sequestrating circulating FFAs with the aid of bovine serum albumin does not rescue pro-oxidant induced appetitive LTM failure. Conclusions Our data substantiates previous evidence linking lipid peroxidation and PLA2 activation to age- and oxidative stress-related cognitive impairment, neuronal dysfunction and disease. In addition however, our data indicate that lipid peroxidation induced increased levels of circulating (per)oxidized FFAs are not a factor in oxidative stress induced LTM impairment.
Collapse
Affiliation(s)
| | | | | | | | - Willem C Wildering
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
7
|
Elsherbiny ME, Emara M, Godbout R. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res 2013; 52:562-70. [PMID: 23981365 DOI: 10.1016/j.plipres.2013.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
8
|
Li Q, Mei Q, Huyan T, Xie L, Che S, Yang H, Zhang M, Huang Q. Effects of simulated microgravity on primary human NK cells. ASTROBIOLOGY 2013; 13:703-14. [PMID: 23919749 PMCID: PMC3746215 DOI: 10.1089/ast.2013.0981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The deleterious effects of microgravity on lymphocytes have been demonstrated in previous studies. However, research on the effects of microgravity on human natural killer (NK) cells remains exceedingly limited. In this study, we demonstrated that NK cell cytotoxicity was significantly decreased under simulated microgravity (SMG) conditions (p<0.05). Several processes, including apoptosis, receptor expression, and cytokine secretion, were investigated in human NK cells under SMG. We observed decreased cytotoxicity, concurrent with increased apoptosis and necrosis, in NK cells after exposure to SMG (p<0.05). Additionally, interferon (IFN)-γ and perforin expression decreased significantly, and the expression of granzyme-B was only slightly reduced. Meanwhile, SMG selectively inhibited the expression of certain surface receptors on NK cells. Specifically, the expression of NKG2A and NKG2D were significantly downregulated under SMG, but the expression of NKp30 and NKp44 was not affected. We also found that interleukin (IL)-15 alone or in combination with IL-12 could counteract the inhibition of NK cell cytotoxicity under SMG. Our findings indicate that human NK cells were sensitive to SMG, as reflected by their decreased cytotoxicity. Factors such as increased early apoptosis and late apoptosis/necrosis and the decreased expression of INF-γ, cytolytic proteins, and cell surface receptors may be responsible for the loss of cytotoxicity in human NK cells under SMG. A combination of IL-12 and IL-15 may be useful as a therapeutic strategy for overcoming the effects of microgravity on human NK cells during long space missions.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Qibing Mei
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Ting Huyan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Su Che
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Mingjie Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| |
Collapse
|
9
|
Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJ, Hemmersbach R. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. ASTROBIOLOGY 2013; 13:1-17. [PMID: 23252378 PMCID: PMC3549630 DOI: 10.1089/ast.2012.0876] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/13/2012] [Indexed: 05/20/2023]
Abstract
Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.
Collapse
Affiliation(s)
- Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ralf Anken
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | - Johannes Boonstra
- Department of Biology, Faculty of Science, University of Utrecht, Utrecht, the Netherlands
| | - Markus Braun
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Peter C.M. Christianen
- High Field Magnet Laboratory (HFML), Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Maarten de Geest
- Department of Biology, Faculty of Science, University of Utrecht, Utrecht, the Netherlands
| | - Jens Hauslage
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Reinhard Hilbig
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | - Richard J.A. Hill
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Michael Lebert
- Biology Department, Cell Biology, University of Erlangen, Erlangen, Germany
| | | | - Nicole Vagt
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jack J.W.A. van Loon
- Dutch Experiment Support Center (DESC) @ ACTA, University of Amsterdam & VU University Amsterdam, Amsterdam; Department of Oral Cell Biology, Research Institute MOVE, Amsterdam; European Space Agency (ESA), TEC-MMG, ESTEC, Noordwijk, the Netherlands
| | - Ruth Hemmersbach
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| |
Collapse
|
10
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
11
|
Abstract
Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These "rings" then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures.
Collapse
|
12
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
13
|
Moes MJA, Zhou Y, Boonstra J. Co-localization of the PDGF β-Receptor and Actin during PDGF Stimulation in Mouse Fibroblasts. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/568104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The subcellular localization of the PDGF β-receptor was investigated in relation with PDGF-induced actin and membrane dynamics in mouse C3H10T1/2 fibroblasts. Serum-starved cells exhibit a nonhomogenous distribution of PDGF β-receptors. However, the observed pattern does not resemble the localization of PDGF-induced actin structures. Interestingly, the PDGF β-receptor showed a changed subcellular distribution in relation to the formation of PDGF-BB-induced actin structures. Upon PDGF exposure, PDGF β-receptors were found to accumulate in dorsal circular ruffles. The presence of both macropinosomes and clathrin in the induced circular ruffles suggests that the accumulation of PDGF β-receptors in circular ruffles results in the efficient internalization of PDGF β-receptors.
Collapse
Affiliation(s)
- Maarten J. A. Moes
- Cell Biology, Department of Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yeping Zhou
- Cell Biology, Department of Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- Cell Biology, Department of Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
14
|
Liu DX, Zhao WD, Fang WG, Chen YH. cPLA2α-mediated actin rearrangements downstream of the Akt signaling is required for Cronobacter sakazakii invasion into brain endothelial cells. Biochem Biophys Res Commun 2011; 417:925-30. [PMID: 22138395 DOI: 10.1016/j.bbrc.2011.11.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 12/20/2022]
Abstract
Cronobacter sakazakii (C. sakazakii) is an opportunistic pathogen that causes sepsis and meningitis in neonate. The molecular mechanism involved in the pathogenesis of C. sakazakii meningitis remains unclear. In this study, we found that C. sakazakii invasion was significantly decreased in human brain microvascular endothelial cells (HBMEC) treated with cytosolic phospholipases A(2)α (cPLA(2)α) inhibitor. Increased phosphorylation of cPLA(2)α was observed in HBMEC infected with C. sakazakii, which was prevented by treatment with cPLA(2)α inhibitor. cPLA(2)α knockdown in HBMEC significantly attenuated C. sakazakii invasion into HBMEC. Immunofluorescence demonstrated that the rearrangements of actin filaments in HBMEC induced by C. sakazakii were effectively blocked by either treatment with cPLA(2)α inhibitor or transfection with cPLA(2)α siRNA. Interestingly, we found that C. sakazakii infection promoted the aggregation of phosphorylated cPLA(2)α, which was associated with depolymerized actin filaments in HBMEC. Furthermore, our data revealed that cPLA(2)α acts downstream of Akt signaling pathway in HBMEC stimulated with C. sakazakii. Taken together, our results illustrated that cPLA(2)α-mediated actin filament rearrangements downstream of Akt activation is required for C. sakazakii invasion into brain endothelial cells.
Collapse
Affiliation(s)
- Dong-Xin Liu
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Heping District, Shenyang, China
| | | | | | | |
Collapse
|
15
|
Investigating circular dorsal ruffles through varying substrate stiffness and mathematical modeling. Biophys J 2011; 101:2122-30. [PMID: 22067149 DOI: 10.1016/j.bpj.2011.09.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/16/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022] Open
Abstract
Circular dorsal ruffles (CDRs) are transient actin-rich ringlike structures that form on the dorsal surface of growth-factor stimulated cells. However, the dynamics and mechanism of formation of CDRs are still unknown. It has been observed that CDR formation leads to stress fibers disappearing near the CDRs. Because stress fiber formation can be modified by substrate stiffness, we examined the effect of substrate stiffness on CDR formation by seeding NIH 3T3 fibroblasts on glass and polydimethylsiloxane substrates of varying stiffnesses from 20 kPa to 1800 kPa. We found that increasing substrate stiffness increased the lifetime of the CDRs. We developed a mathematical model of the signaling pathways involved in CDR formation to provide insight into this lifetime and size dependence that is linked to substrate stiffness via Rac-Rho antagonism. From the model, increasing stiffness raised mDia1-nucleated stress fiber formation due to Rho activation. The increased stress fibers present increased replenishment of the G-actin pool, therefore prolonging Arp2/3-nucleated CDR formation due to Rac activation. Negative feedback by WAVE-related RacGAP on Rac explained how CDR actin propagates as an excitable wave, much like wave propagation in other excitable medium, e.g., nerve signal transmission.
Collapse
|
16
|
Abstract
Both growth factor directed and integrin dependent signal transduction were shown to take place directly after completion of mitosis. The local activation of these signal transduction cascades was investigated in early G1 cells. Interestingly, various key signal transduction proteins were found in blebs at the cell membrane within 30 min after mitosis. These membrane blebs appeared in round, mitotic-like cells and disappeared rapidly during spreading of the cells in G1 phase. In addition to tyrosine-phosphorylated proteins, the blebs contained also phosphorylated FAK and phosphorylated MAP kinase. The formation of membrane blebs in round, mitotic cells before cell spreading is not specific for mitotic cells, because similar features were observed in trypsinized cells. Just before cell spreading also these cells exhibited membrane blebs containing active signal transduction proteins. Inhibition of signal transduction did not affect membrane bleb formation, suggesting that the membrane blebs were formed independent of signal transduction.
Collapse
|
17
|
Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T, Paria B, Munaron L, Ambudkar IS. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 2011; 31:200-12. [PMID: 21685934 DOI: 10.1038/onc.2011.231] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in intracellular calcium [Ca(2+)](i) levels control critical cytosolic and nuclear events that are involved in the initiation and progression of tumor angiogenesis in endothelial cells (ECs). Therefore, the mechanism(s) involved in agonist-induced Ca(2+)(i) signaling is a potentially important molecular target for controlling angiogenesis and tumor growth. Several studies have shown that blood vessels in tumors differ from normal vessels in their morphology, blood flow and permeability. We had previously reported a key role for arachidonic acid (AA)-mediated Ca(2+) entry in the initial stages of tumor angiogenesis in vitro. In this study we assessed the mechanism involved in AA-induced EC migration. We report that TRPV4, an AA-activated channel, is differentially expressed in EC derived from human breast carcinomas (BTEC) as compared with 'normal' EC (HMVEC). BTEC display a significant increase in TRPV4 expression, which was correlated with greater Ca(2+) entry, induced by AA or 4αPDD (a selective TRPV4 agonist) in the tumor-derived ECs. Wound-healing assays revealed a key role of TRPV4 in regulating cell migration of BTEC but not HMVEC. Knockdown of TRPV4 expression completely abolished AA-induced BTEC migration, suggesting that TRPV4 mediates the pro-angiogenic effects promoted by AA. Furthermore, pre-incubation of BTEC with AA induced actin remodeling and a subsequent increase in the surface expression of TRPV4. This was consistent with the increased plasma membrane localization of TRPV4 and higher AA-stimulated Ca(2+) entry in the migrating cells. Together, the data presented herein demonstrate that: (1) TRPV4 is differentially expressed in tumor-derived versus 'normal' EC; (2) TRPV4 has a critical role in the migration of tumor-derived but not 'normal' EC migration; and (3) AA induces actin remodeling in BTEC, resulting in a corresponding increase of TRPV4 expression in the plasma membrane. We suggest that the latter is critical for migration of EC and thus in promoting angiogenesis and tumor growth.
Collapse
Affiliation(s)
- A Fiorio Pla
- Department of Animal and Human Biology, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee JCM, Simonyi A, Sun AY, Sun GY. Phospholipases A2 and neural membrane dynamics: implications for Alzheimer's disease. J Neurochem 2011; 116:813-9. [PMID: 21214562 DOI: 10.1111/j.1471-4159.2010.07033.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are essential enzymes in cells. They are not only responsible for maintaining the structural organization of cell membranes, but also play a pivotal role in the regulation of cell functions. Activation of PLA(2) s results in the release of fatty acids and lysophospholipids, products that are lipid mediators and compounds capable of altering membrane microdomains and physical properties. Although not fully understood, recent studies have linked aberrant PLA(2) activity to oxidative signaling pathways involving NADPH oxidase that underlie the pathophysiology of a number of neurodegenerative diseases. In this paper, we review studies describing the involvement of cytosolic PLA(2) in oxidative signaling pathways leading to neuronal impairment and activation of glial cell inflammatory responses. In addition, this review also includes information on the role of cytosolic PLA(2) and exogenous secretory PLA(2) on membrane physical properties, dynamics, and membrane proteins. Unraveling the mechanisms that regulate specific types of PLA(2)s and their effects on membrane dynamics are important prerequisites towards understanding their roles in the pathophysiology of Alzheimer's disease, and in the development of novel therapeutics to retard progression of the disease.
Collapse
Affiliation(s)
- James C-M Lee
- Biological Engineering Department, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
19
|
Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, Koese M, Grewal T. Annexin A6-Linking Ca(2+) signaling with cholesterol transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:935-47. [PMID: 20888375 DOI: 10.1016/j.bbamcr.2010.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/17/2022]
Abstract
Annexin A6 (AnxA6) belongs to a conserved family of Ca(2+)-dependent membrane-binding proteins. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in cellular membranes in a dynamic and reversible fashion, in particular during the regulation of endocytic and exocytic pathways. High amounts of AnxA6 sequester cholesterol in late endosomes, thereby lowering the levels of cholesterol in the Golgi and the plasma membrane. These AnxA6-dependent redistributions of cellular cholesterol pools give rise to reduced cytoplasmic phospholipase A2 (cPLA(2)) activity, retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. In addition to regulating cholesterol and caveolin distribution, AnxA6 acts as a scaffold/targeting protein for several signaling proteins, the best characterized being the Ca(2+)-dependent membrane targeting of p120GAP to downregulate Ras activity. AnxA6 also stimulates the Ca(2+)-inducible involvement of PKC in the regulation of HRas and possibly EGFR signal transduction pathways. The ability of AnxA6 to recruit regulators of the EGFR/Ras pathway is likely potentiated by AnxA6-induced actin remodeling. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to modulate intracellular cholesterol homeostasis, (ii) to create a scaffold for the formation of multifactorial signaling complexes, and (iii) to regulate transient membrane-actin interactions during endocytic and exocytic transport. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Linkous AG, Yazlovitskaya EM, Hallahan DE. Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. J Natl Cancer Inst 2010; 102:1398-412. [PMID: 20729478 PMCID: PMC2943523 DOI: 10.1093/jnci/djq290] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Lung cancer and glioblastoma multiforme are highly angiogenic and, despite advances in treatment, remain resistant to therapy. Cytosolic phospholipase A2 (cPLA2) activation contributes to treatment resistance through transduction of prosurvival signals. We investigated cPLA2 as a novel molecular target for antiangiogenesis therapy. Methods Glioblastoma (GL261) and Lewis lung carcinoma (LLC) heterotopic tumor models were used to study the effects of cPLA2 expression on tumor growth and vascularity in C57/BL6 mice wild type for (cPLA2α+/+) or deficient in (cPLA2α−/−) cPLA2α, the predominant isoform in endothelium (n = 6–7 mice per group). The effect of inhibiting cPLA2 activity on GL261 and LLC tumor growth was studied in mice treated with the chemical cPLA2 inhibitor 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Endothelial cell proliferation and function were evaluated by Ki-67 immunofluorescence and migration assays in primary cultures of murine pulmonary microvascular endothelial cells (MPMEC) isolated from cPLA2α+/+ and cPLA2α−/− mice. Proliferation, invasive migration, and tubule formation were assayed in mouse vascular endothelial 3B-11 cells treated with CDIBA. Effects of lysophosphatidylcholine, arachidonic acid, and lysophosphatidic acid (lipid mediators of tumorigenesis and angiogenesis) on proliferation and migration were examined in 3B-11 cells and cPLA2α−/− MPMEC. All statistical tests were two-sided. Results GL261 tumor progression proceeded normally in cPLA2α+/+ mice, whereas no GL261 tumors formed in cPLA2α−/− mice. In the LLC tumor model, spontaneous tumor regression was observed in 50% of cPLA2α−/− mice. Immunohistochemical examination of the remaining tumors from cPLA2α−/− mice revealed attenuated vascularity (P ≤ .001) compared with tumors from cPLA2α+/+ mice. Inhibition of cPLA2 activity by CDIBA resulted in a delay in tumor growth (eg, LLC model: average number of days to reach tumor volume of 700 mm3, CDIBA vs vehicle: 16.8 vs 11.8, difference = 5, 95% confidence interval = 3.6 to 6.4, P = .04) and a decrease in tumor size (eg, GL261 model: mean volume on day 21, CDIBA vs vehicle: 40.1 vs 247.4 mm3, difference = 207.3 mm3, 95% confidence interval = 20.9 to 293.7 mm3, P = .021). cPLA2 deficiency statistically significantly reduced MPMEC proliferation and invasive migration (P = .002 and P = .004, respectively). Compared with untreated cells, cPLA2α−/− MPMEC treated with lysophosphatidylcholine and lysophosphatidic acid displayed increased cell proliferation (P = .011) and invasive migration (P < .001). Conclusions In these mouse models of brain and lung cancer, cPLA2 and lysophospholipids have key regulatory roles in tumor angiogenesis. cPLA2 inhibition may be a novel effective antiangiogenic therapy.
Collapse
|