1
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
2
|
Rosén E, Mangukiya HB, Elfineh L, Stockgard R, Krona C, Gerlee P, Nelander S. Inference of glioblastoma migration and proliferation rates using single time-point images. Commun Biol 2023; 6:402. [PMID: 37055469 PMCID: PMC10102065 DOI: 10.1038/s42003-023-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Cancer cell migration is a driving mechanism of invasion in solid malignant tumors. Anti-migratory treatments provide an alternative approach for managing disease progression. However, we currently lack scalable screening methods for identifying novel anti-migratory drugs. To this end, we develop a method that can estimate cell motility from single end-point images in vitro by estimating differences in the spatial distribution of cells and inferring proliferation and diffusion parameters using agent-based modeling and approximate Bayesian computation. To test the power of our method, we use it to investigate drug responses in a collection of 41 patient-derived glioblastoma cell cultures, identifying migration-associated pathways and drugs with potent anti-migratory effects. We validate our method and result in both in silico and in vitro using time-lapse imaging. Our proposed method applies to standard drug screen experiments, with no change needed, and emerges as a scalable approach to screen for anti-migratory drugs.
Collapse
Affiliation(s)
- Emil Rosén
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Ludmila Elfineh
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Rebecka Stockgard
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Krona
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip Gerlee
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sven Nelander
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Ribeiro E, Araújo D, Pereira M, Lopes B, Sousa P, Sousa AC, Coelho A, Rêma A, Alvites R, Faria F, Oliveira C, Porto B, Maurício AC, Amorim I, Vale N. Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines 2023; 11:799. [PMID: 36979779 PMCID: PMC10044866 DOI: 10.3390/biomedicines11030799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) ranked as the fifth most incident cancer in 2020 and the third leading cause of cancer mortality. Surgical prevention and radio/chemotherapy are the main approaches used in GC treatment, and there is an urgent need to explore and discover innovative and effective drugs to better treat this disease. A new strategy arises with the use of repurposed drugs. Drug repurposing coupled with drug combination schemes has been gaining interest in the scientific community. The main objective of this project was to evaluate the therapeutic effects of alternative drugs in GC. For that, three GC cell lines (AGS, MKN28, and MKN45) were used and characterized. Cell viability assays were performed with the reference drug 5-fluororacil (5-FU) and three repurposed drugs: natamycin, nitazoxanide, and benztropine. Nitazoxanide displayed the best results, being active in all GC cells. Further, 5-FU and nitazoxanide in combination were tested in MKN28 GC cells, and the results obtained showed that nitazoxanide alone was the most promising drug for GC therapy. This work demonstrated that the repurposing of drugs as single agents has the ability to decrease GC cell viability in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Le MCN, Xu K, Wang Z, Beverung S, Steward RL, Florczyk SJ. Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res A 2021; 109:1990-2000. [PMID: 33811775 DOI: 10.1002/jbm.a.37191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Breast cancer (BCa) is one of the most common cancers for women and metastatic BCa causes the majority of deaths. The extracellular matrix (ECM) stiffens during cancer progression and provides biophysical signals to modulate proliferation, morphology, and metastasis. Cells utilize mechanotransduction and integrins to sense and respond to ECM stiffness. Chitosan-alginate (CA) scaffolds have been used for 3D culture, but lack integrin binding ligands, resulting in round cell morphology and limited cell-material interaction. In this study, 2, 4, and 6 wt% CA scaffolds were produced to mimic the stages of BCa progression and evaluate the BCa response to CA scaffold stiffness. All three CA scaffold compositions highly porous with interconnected pores and scaffold stiffness increased with increasing polymer concentration. MDA-MB-231 (231) cells were cultured in CA scaffolds and 2D cultures for 7 d. All CA scaffold cultures had similar cell numbers at 7 d and the 231 cells formed clusters that increased in size during the culture. The 2 wt% CA had the largest clusters throughout the 7 d culture compared with the 4 and 6 wt% CA. The 231 cell migration was evaluated on 2D surfaces after 7 d culture. The 6 wt% CA cultured cells had the greatest migration speed, followed by 4 wt% CA, 2D cultures, and 2 wt% CA. These results suggest that 231 cells sensed the stiffness of CA scaffolds without the presence of focal adhesions. This indicates that a non-integrin-based mechanism may explain the observed mechanotransduction response.
Collapse
Affiliation(s)
- Minh-Chau N Le
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sean Beverung
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Robert L Steward
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Stephanie J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci 2021; 22:ijms22041939. [PMID: 33669272 PMCID: PMC7920023 DOI: 10.3390/ijms22041939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.
Collapse
|
6
|
Dhanaraj T, Mohan M, Arunakaran J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch Biochem Biophys 2021; 701:108795. [PMID: 33577840 DOI: 10.1016/j.abb.2021.108795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most deadly gynaecology related cancer due to its high metastasizing ability. Quercetin is the most abundant flavonoids received increased interest due to its anti-cancer properties. Although the anticancer property of quercetin is very well known, its anti-metastatic effect on metastatic ovarian cancer cells and their underlying molecular mechanism remains to be elucidated. Quercetin treatment at 50 μM and 75 μM concentration inhibit human metastatic ovarian cancer PA-1 cell survival and proliferation via inactivating PI3k/Akt, Ras/Raf pathways and EGFR expression. It also alters the expression of N-cadherin in PA-1 cells. Quercetin also decreases the secretion of gelatinase enzyme, proteolytic activity of MMP-2/-9, and both MMPs gene expression in metastatic ovarian cancer PA-1 cells. In addition to this quercetin inhibits the migration of PA-1 cells. Treatment of quercetin with PA-1 cells also downregulates the tight junctional molecules such as Claudin-4 and Claudin-11 while upregulates the expression of occludin. It is further validated by cell adhesion assay in which quercetin reduces the adhesion of PA-1 ovarian cancer cells. Results suggest that quercetin inhibits cell survival, proliferation, migration, and adhesion which plays crucial role in ovarian cancer metastasis. Hence, it could be a valuable therapeutic drug for the treatment and prevention of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Teekaraman Dhanaraj
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai - 600 113, Tamil Nadu, India
| | - Manju Mohan
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai - 600 113, Tamil Nadu, India
| | - Jagadeesan Arunakaran
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai - 600 113, Tamil Nadu, India.
| |
Collapse
|
7
|
Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 2019; 19:376. [PMID: 31014286 PMCID: PMC6480622 DOI: 10.1186/s12885-019-5587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 01/30/2023] Open
Abstract
Background Previous work in our laboratory demonstrated that antiprogestin mifepristone impairs the growth and adhesion of highly metastatic cancer cells, and causes changes in their cellular morphology. In this study, we further assess the anti-metastatic properties of mifepristone, by studying whether cytostatic doses of the drug can inhibit the migration and invasion of various cancer cell lines using a double fluorescence cytochemical labeling approach. Methods Cell lines representing cancers of the ovary (SKOV-3), breast (MDA-MB-231), glia (U87MG), or prostate (LNCaP) were treated with cytostatic concentrations of mifepristone. Wound healing and Boyden chamber assays were utilized to study cellular migration. To study cellular invasion, the Boyden chamber assay was prepared by adding a layer of extracellular matrix over the polycarbonate membrane. We enhanced the assays with the addition of double fluorescence cytochemical staining for fibrillar actin (F-actin) and DNA to observe the patterns of cytoskeletal distribution and nuclear positioning while cells migrate and invade. Results When exposed to cytostatic concentrations of mifepristone, all cancer cells lines demonstrated a decrease in both migration and invasion capacities measured using standard approaches. Double fluorescence cytochemical labeling validated that mifepristone-treated cancer cells exhibit reduced migration and invasion, and allowed to unveil a distinct migration pattern among the different cell lines, different arrays of nuclear localization during migration, and apparent redistribution of F-actin to the nucleus. Conclusion This study reports that antiprogestin mifepristone inhibits migration and invasion of highly metastatic cancer cell lines, and that double fluorescence cytochemical labeling increases the value of well-known approaches to study cell movement. Electronic supplementary material The online version of this article (10.1186/s12885-019-5587-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina J Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - BreeAnn N Brandhagen
- Present address: Research Acceleration Office, 2001 Campus Delivery, University Services Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alicia A Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada.
| |
Collapse
|
8
|
Chen N, Ritsma LMA, Vrisekoop N. In vivo characteristics of human and mouse breast tumor cell lines. Exp Cell Res 2019; 381:86-93. [PMID: 30980788 DOI: 10.1016/j.yexcr.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Although two- and three-dimensional in vitro studies of breast tumor cell lines have increased our knowledge on tumor growth and metastasis formation, the complex in vivo microenvironment is not taken into consideration. The goal of our study was to illustrate the in vivo morphology and motility of widely used breast tumor cell lines. Intravital microscopy allows real-time visualization of individual cells inside tissues of living animals. We used this technique to study breast cancer migration in the complex orthotopic microenvironment. More specifically, we characterized cell morphology, cell-cell interactions, polarity and motility of mouse tumor cell lines 4T1 and mILC-1 and human tumor cell lines MDA-MB-231 and T47D. Almost all measured parameters were remarkably heterogeneous even between positions within the same tumor. Migrating tumor cells were circular in all tumor models, indicating predominantly amoeboid motility. This overview of the in vivo characteristics of mouse and human breast tumor cell lines illustrates their heterogeneity and complexity in real life, and additionally exemplifies caution should be taken to extrapolate in vitro assays of tumor invasiveness.
Collapse
Affiliation(s)
- Na Chen
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands
| | - Laila M A Ritsma
- Department of Molecular Cell Biology, Leiden University Medical Center, the Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
9
|
Zhuo B, Li Y, Gu F, Li Z, Sun Q, Shi Y, Shen Y, Zhang F, Wang R, Wang X. Overexpression of CD155 relates to metastasis and invasion in osteosarcoma. Oncol Lett 2018; 15:7312-7318. [PMID: 29725446 DOI: 10.3892/ol.2018.8228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The rapid development of metastatic lesions remains the leading cause of mortality for patients with osteosarcoma. CD155 serves a key role in cancer cell migration, invasion and metastasis. However, the function and mechanism of CD155 has not been explored in osteosarcoma metastasis. In the present study, we found that CD155 was significantly upregulated in lung metastatic tissue and the highly metastatic cell line K7M2-WT (K7M2) of osteosarcoma. Overexpression of CD155 in K7M2 cells enhanced lung metastasis, while inhibition of CD155 by an anti-CD155 monoclonal antibody reduced metastasis. Blocking of CD155 also decreased migration and invasion of K7M2 cells in vitro. A western blot analysis revealed that blocking of CD155 inhibits metastasis by downregulating focal adhesion kinase (FAK) and phosphorylated FAK (pFAK) in osteosarcoma. The results revealed that CD155 serves a crucial role in the metastasis of osteosarcoma by regulating FAK and may provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China.,Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhengwei Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yang Shen
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Fengfei Zhang
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaodong Wang
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
10
|
Zhan JS, Gao K, Chai RC, Jia XH, Luo DP, Ge G, Jiang YW, Fung YWW, Li L, Yu ACH. Astrocytes in Migration. Neurochem Res 2017; 42:272-282. [PMID: 27837318 DOI: 10.1007/s11064-016-2089-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.
Collapse
Affiliation(s)
- Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Dao Peng Luo
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Yu Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yin-Wan Wendy Fung
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
11
|
Integrated, multi-scale, spatial–temporal cell biology – A next step in the post genomic era. Methods 2016; 96:3-5. [DOI: 10.1016/j.ymeth.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022] Open
|
12
|
Taking Aim at Moving Targets in Computational Cell Migration. Trends Cell Biol 2016; 26:88-110. [DOI: 10.1016/j.tcb.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
|
13
|
Shafqat-Abbasi H, Kowalewski JM, Kiss A, Gong X, Hernandez-Varas P, Berge U, Jafari-Mamaghani M, Lock JG, Strömblad S. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes. eLife 2016; 5:e11384. [PMID: 26821527 PMCID: PMC4749554 DOI: 10.7554/elife.11384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration.
Collapse
Affiliation(s)
| | - Jacob M Kowalewski
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alexa Kiss
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Ulrich Berge
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - John G Lock
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
14
|
Boas SEM, Navarro Jimenez MI, Merks RMH, Blom JG. A global sensitivity analysis approach for morphogenesis models. BMC SYSTEMS BIOLOGY 2015; 9:85. [PMID: 26589144 PMCID: PMC4654849 DOI: 10.1186/s12918-015-0222-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. RESULTS To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. CONCLUSIONS We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
Collapse
Affiliation(s)
- Sonja E M Boas
- Life Sciences, CWI, Science Park 123, Amsterdam, 1098XG, The Netherlands.
- Mathematical Institute, University of Leiden, Niels Bohrweg 1, Leiden, 2333CA, The Netherlands.
| | - Maria I Navarro Jimenez
- CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Roeland M H Merks
- Life Sciences, CWI, Science Park 123, Amsterdam, 1098XG, The Netherlands.
- Mathematical Institute, University of Leiden, Niels Bohrweg 1, Leiden, 2333CA, The Netherlands.
| | - Joke G Blom
- Life Sciences, CWI, Science Park 123, Amsterdam, 1098XG, The Netherlands.
| |
Collapse
|
15
|
Kondakova IV, Iunusova NV, Spirina LV, Kolomiets LA, Villert AB. [Association of intracellular proteinase activities with the content of locomotor proteins in tissues of primary tumors and metastasis in ovarian cancer]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:735-42. [PMID: 25895370 DOI: 10.1134/s1068162014060089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ability to active movement in extracellular matrix wherein significant role plays remodeling of the cytoskeleton by actin-binding proteins may influence on the metastatic potential of tumor cells. We studied the expression of actin-binding proteins and β-catenin in connection with proteasome and calpain functioning in the tissues of primary tumors and metastases of ovarian cancer. The chymotrypsin-like proteasome activity and calpain activity were shown to be significantly higher in ovarian cancer than in normal tissues. Furthermore, the activity of the proteasome and calpain were significantly higher in the peritoneal metastases in comparison with primary tumors. Correlation analysis showed in the primary tumor tissue the presence of a positive relationship between the activity of calpain and chymotrypsin-like proteasome activity (r = 0.82; p = 0.0005), whereas in metastases this connection was not revealed. Contents of p45 Ser β-catenin and the actin-severing protein gelzolin were decreased in metastases relative to primary tumors. Level of cofilin, functionally similar to gelzolin protein, was significantly higher in metastases compared to primary ovarian tumor tissue. In ovarian cancer significant reduction in the number of the monomer binder protein thymosin-β4 was observed in primary tumors and metastases as compared to normal tissues, but significant differences between the primary tumor and metastases were not observed. In the tissues of primary tumors negative correlations were observed between the chymotrypsin-like activity of the proteasome and the amount of p45 Ser β-catenin and protein Arp3, a member of the Arp2/3 complex. In metastasis negative correlation were revealed between the activity of calpain and content Arp3, cofilin, thymosin. The data obtained suggest the existence of different mechanisms of proteolytic regulation of locomotor proteins in primary tumors and metastases in ovarian cancer.
Collapse
|
16
|
Harder N, Batra R, Diessl N, Gogolin S, Eils R, Westermann F, König R, Rohr K. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells. Cytometry A 2015; 87:524-40. [DOI: 10.1002/cyto.a.22632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nathalie Harder
- Department of Bioinformatics and Functional Genomics; Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University; 69120 Heidelberg Germany
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Richa Batra
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Nicolle Diessl
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Sina Gogolin
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Roland Eils
- Department of Bioinformatics and Functional Genomics; Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University; 69120 Heidelberg Germany
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Rainer König
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital; 07747 Jena Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena; 07745 Jena Germany
| | - Karl Rohr
- Department of Bioinformatics and Functional Genomics; Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University; 69120 Heidelberg Germany
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| |
Collapse
|
17
|
Bertolo A, Gemperli A, Gruber M, Gantenbein B, Baur M, Pötzel T, Stoyanov J. In vitro cell motility as a potential mesenchymal stem cell marker for multipotency. Stem Cells Transl Med 2014; 4:84-90. [PMID: 25473086 DOI: 10.5966/sctm.2014-0156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use.
Collapse
Affiliation(s)
- Alessandro Bertolo
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Armin Gemperli
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Marco Gruber
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Benjamin Gantenbein
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Martin Baur
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Tobias Pötzel
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| |
Collapse
|
18
|
Bergman A, Condeelis JS, Gligorijevic B. Invadopodia in context. Cell Adh Migr 2014; 8:273-9. [PMID: 24713806 PMCID: PMC4198352 DOI: 10.4161/cam.28349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/16/2022] Open
Abstract
Invadopodia are dynamic protrusions in motile tumor cells whose function is to degrade extracellular matrix so that cells can enter into new environments. Invadopodia are specifically identified by microscopy as proteolytic invasive protrusions containing TKS5 and cortactin. The increasing complexity in models for the study of invadopodia, including engineered 3D environments, explants, or animal models in vivo, entails a higher level of microenvironment complexity as well as cancer cell heterogeneity. Such experimental setups are rich in information and offer the possibility of contextualizing invadopodia and other motility-related structures. That is, they hold the promise of revealing more realistic microenvironmental conditions under which the invadopodium assembles and functions or in which tumor cells switch to a different cellular phenotype (focal adhesion, lamellipodia, proliferation, and apoptosis). For such an effort, we need a systemic approach to microscopy, which will integrate information from multiple modalities. While the individual technologies needed to achieve this are mostly available, data integration and standardization is not a trivial process. In a systems microscopy approach, microscopy is used to extract information on cell phenotypes and the microenvironment while -omics technologies assess profiles of cancer cell and microenvironment genetic, transcription, translation, and protein makeups. Data are classified and linked via in silico modeling (including statistical and mathematical models and bioinformatics). Computational considerations create predictions to be validated experimentally by perturbing the system through use of genetic manipulations and molecular biology. With such a holistic approach, a deeper understanding of function of invadopodia in vivo will be reached, opening the potential for personalized diagnostics and therapies.
Collapse
Affiliation(s)
- Aviv Bergman
- Department of Systems and Computational Biology; Albert Einstein College of Medicine; Price Center; Bronx, NY USA
| | - John S Condeelis
- Gruss-Lipper Biophotonic Center; Albert Einstein College of Medicine; Price Center, Bronx, NY USA
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Price Center; Bronx, NY USA
| | - Bojana Gligorijevic
- Department of Systems and Computational Biology; Albert Einstein College of Medicine; Price Center; Bronx, NY USA
- Gruss-Lipper Biophotonic Center; Albert Einstein College of Medicine; Price Center, Bronx, NY USA
| |
Collapse
|
19
|
Automated analysis of NF-κB nuclear translocation kinetics in high-throughput screening. PLoS One 2012; 7:e52337. [PMID: 23300644 PMCID: PMC3531459 DOI: 10.1371/journal.pone.0052337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/12/2012] [Indexed: 01/26/2023] Open
Abstract
Nuclear entry and exit of the NF-κB family of dimeric transcription factors plays an essential role in regulating cellular responses to inflammatory stress. The dynamics of this nuclear translocation can vary significantly within a cell population and may dramatically change e.g. upon drug exposure. Furthermore, there is significant heterogeneity in individual cell response upon stress signaling. In order to systematically determine factors that define NF-κB translocation dynamics, high-throughput screens that enable the analysis of dynamic NF-κB responses in individual cells in real time are essential. Thus far, only NF-κB downstream signaling responses of whole cell populations at the transcriptional level are in high-throughput mode. In this study, we developed a fully automated image analysis method to determine the time-course of NF-κB translocation in individual cells, suitable for high-throughput screenings in the context of compound screening and functional genomics. Two novel segmentation methods were used for defining the individual nuclear and cytoplasmic regions: watershed masked clustering (WMC) and best-fit ellipse of Voronoi cell (BEVC). The dynamic NFκB oscillatory response at the single cell and population level was coupled to automated extraction of 26 analogue translocation parameters including number of peaks, time to reach each peak, and amplitude of each peak. Our automated image analysis method was validated through a series of statistical tests demonstrating computational efficient and accurate NF-κB translocation dynamics quantification of our algorithm. Both pharmacological inhibition of NF-κB and short interfering RNAs targeting the inhibitor of NFκB, IκBα, demonstrated the ability of our method to identify compounds and genetic players that interfere with the nuclear transition of NF-κB.
Collapse
|
20
|
Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering. LEVERAGING APPLICATIONS OF FORMAL METHODS, VERIFICATION AND VALIDATION. APPLICATIONS AND CASE STUDIES 2012. [DOI: 10.1007/978-3-642-34032-1_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Fu S, Guo Y, Chen H, Xu ZM, Qiu GB, Zhong M, Sun KL, Fu WN. MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and may participate in laryngeal carcinogenesis. PLoS One 2011; 6:e25648. [PMID: 21998677 PMCID: PMC3187795 DOI: 10.1371/journal.pone.0025648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/07/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. METHODOLOGY/PRINCIPAL FINDINGS Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within -886 to -655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. CONCLUSIONS/SIGNIFICANCE Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function.
Collapse
Affiliation(s)
- Shuang Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Hong Chen
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Ming Xu
- Department of Otolaryngology, The 463 Hospital of PLA, Shenyang, People's Republic of China
| | - Guang-Bin Qiu
- Department of Clinical Laboratory, No. 202 Hospital of PLA, Shenyang, People's Republic of China
| | - Ming Zhong
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Kai-Lai Sun
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
22
|
Veiseh O, Kievit FM, Ellenbogen RG, Zhang M. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 2011; 63:582-96. [PMID: 21295093 DOI: 10.1016/j.addr.2011.01.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 12/19/2022]
Abstract
Cell invasion is an intrinsic cellular pathway whereby cells respond to extracellular stimuli to migrate through and modulate the structure of their extracellular matrix (ECM) in order to develop, repair, and protect the body's tissues. In cancer cells this process can become aberrantly regulated and lead to cancer metastasis. This cellular pathway contributes to the vast majority of cancer related fatalities, and therefore has been identified as a critical therapeutic target. Researchers have identified numerous potential molecular therapeutic targets of cancer cell invasion, yet delivery of therapies remains a major hurdle. Nanomedicine is a rapidly emerging technology which may offer a potential solution for tackling cancer metastasis by improving the specificity and potency of therapeutics delivered to invasive cancer cells. In this review we examine the biology of cancer cell invasion, its role in cancer progression and metastasis, molecular targets of cell invasion, and therapeutic inhibitors of cell invasion. We then discuss how the field of nanomedicine can be applied to monitor and treat cancer cell invasion. We aim to provide a perspective on how the advances in cancer biology and the field of nanomedicine can be combined to offer new solutions for treating cancer metastasis.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
| | | | | | | |
Collapse
|
23
|
Balestrieri C, Vanoni M, Hautaniemi S, Alberghina L, Chiaradonna F. Integrative transcriptional analysis between human and mouse cancer cells provides a common set of transformation associated genes. Biotechnol Adv 2011; 30:16-29. [PMID: 21736933 DOI: 10.1016/j.biotechadv.2011.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 12/26/2022]
Abstract
Mouse functional genomics is largely used to investigate relevant aspects of mammalian physiology and pathology. To which degree mouse models may offer accurate representations of molecular events underlining human diseases such as cancer is not yet fully established. Herein we compare gene expression signatures between a set of human cancer cell lines (NCI-60 cell collection) and a mouse cellular model of oncogenic K-ras dependent transformation in order to identify their closeness at the transcriptional level. The results of our integrative and comparative analysis show that in both species as compared to normal cells or tissues the transformation process involves the activation of a transcriptional response. Furthermore, the cellular mouse model of K-ras dependent transformation has a good degree of similarity with several human cancer cell lines and in particular with cell lines containing oncogenic Ras mutations. Moreover both species have similar genetic signatures that are associated to the same altered cellular pathways (e.g. Spliceosome and Proteasome) or to deregulation of the same genes (e.g. cyclin D1, AHSA1 and HNRNPD) detected in the comparison between cancer cells versus normal cells or tissues. In summary, we report one of the first in-depth analysis of global gene expression profiles of a K-ras dependent mouse cell model of transformation and a large collection of human cancer cells as compared to their normal counterparts. Taken together our findings show a strong correlation in the transcriptional and pathway alteration responses between the two species, therefore validating the use of the mouse model as an appropriate tool to investigate human cancer, and indicating that the comparative analysis, as described here, offers a useful approach to identify cancer-specific gene signatures.
Collapse
Affiliation(s)
- C Balestrieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | |
Collapse
|
24
|
van Roosmalen W, Le Dévédec SE, Zovko S, de Bont H, van de Water B. Functional screening with a live cell imaging-based random cell migration assay. Methods Mol Biol 2011; 769:435-448. [PMID: 21748693 DOI: 10.1007/978-1-61779-207-6_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cell migration, essential in cancer progression, is a complex process comprising a number of spatiotemporally regulated and well-coordinated mechanisms. In order to study (random) cell migration in the context of responses to various external cues (such as growth factors) or intrinsic cell signaling, a number of different tools and approaches have been developed. In order to unravel the key pathways and players involved in the regulation of (cancer) cell migration, a systematical mapping of the players/pathways is required. For this purpose, we developed a cell migration assay based on automatic high-throughput microscopy screen. This approach allows for screening of hundreds of genes, e.g., those encoding various kinases and phosphatases but can also be used for screening of drugs libraries. Moreover, we have developed an automatic analysis pipeline comprising of (a) automatic data acquisition (movie) and (b) automatic analysis of the acquired movies of the migrating cells. Here, we describe various facets of this approach. Since cell migration is essential in progression of cancer metastasis, we describe two examples of experiments performed on highly motile (metastatic) cancer cells.
Collapse
Affiliation(s)
- Wies van Roosmalen
- Leiden/Amsterdam Center for Drug Research, Division of Toxicology, University of Leiden, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|