1
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
2
|
Saby C, Maquoi E, Saltel F, Morjani H. Collagen and Discoidin Domain Receptor 1 Partnership: A Multifaceted Role in the Regulation of Breast Carcinoma Cell Phenotype. Front Cell Dev Biol 2022; 9:808625. [PMID: 35004699 PMCID: PMC8727774 DOI: 10.3389/fcell.2021.808625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Type I collagen, the major components of breast interstitial stroma, is able to regulate breast carcinoma cell behavior. Discoidin domain receptor 1 (DDR1) is a type I collagen receptor playing a key role in this process. In fact, collagen/DDR1 axis is able to trigger the downregulation of cell proliferation and the activation of BIK-mediated apoptosis pathway. The aim of this review is to discuss the role of two important factors that regulate these processes. The first factor is the level of DDR1 expression. DDR1 is highly expressed in epithelial-like breast carcinoma cells, but poorly in basal-like ones. Moreover, DDR1 undergoes cleavage by MT1-MMP, which is highly expressed in basal-like breast carcinoma cells. The second factor is type I collagen remodeling since DDR1 activation depends on its fibrillar organization. Collagen remodeling is involved in the regulation of cell proliferation and apoptosis through age- and proteolysis-related modifications.
Collapse
Affiliation(s)
- Charles Saby
- Unité BioSpecT, EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Erik Maquoi
- Laboratory of Tumour and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué (GIGA), Unit of Cancer, University of Liège, Liège, Belgium
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | - Hamid Morjani
- Unité BioSpecT, EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
3
|
Nada H, Lee K, Gotina L, Pae AN, Elkamhawy A. Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Comput Biol Med 2022; 142:105217. [PMID: 35032738 DOI: 10.1016/j.compbiomed.2022.105217] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Dysregulation of the discoidin domain receptor (DDR1), a collagen-activated receptor tyrosine kinase, has been linked to several human cancer diseases including non-small cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to several inflammatory and neurological conditions. Although there are some selective DDR1 inhibitors that have been discovered during the last two decades, a combination of elevated cytotoxicity, kinome selectivity and/or poor DMPK profile has prevented more in-depth studies from being performed. As such, no DDR1 inhibitor has reached clinical investigation to date, forming an urgent need to develop specific DDR1 inhibitor(s) using various drug discovery means. However, the recent discovery of VU6015929, a potent and selective DDR1 kinase inhibitor, with enhanced physiochemical and DMPK properties in addition to its clean kinome profile marked a milestone in the development of DDR1 inhibitors. Herein, VU6015929 was used to construct a 3D e-pharmacophore model which was validated via calculating the difference of score between the active compounds and decoys. The validated e-pharmacophore model was then utilized to screen 20 million drug-like compounds obtained from the freely accessible Zinc database. The generated hits were ranked using high throughput virtual screening technique (HTVS), and the top 8 small molecules were subjected to a molecular docking study and MM-GBSA calculations. Protein-ligand complexes of compounds 1, 2, 3 and the standard compound (VU6015929) were performed for 100 ns and compared with the DDR1 unbound protein state and the DDR1 bound to a co-crystallized ligand. The molecular docking, MD and MM-GBSA outputs revealed compounds 1-3 as potential DDR1 inhibitors, with compound 2 displaying superior binding affinity, comparable binding stability and average binding free energy for the ligand-enzyme complex compared to VU6015929.
Collapse
Affiliation(s)
- Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Lizaveta Gotina
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K. The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight Against Cancer. Int J Mol Sci 2021; 22:ijms22126535. [PMID: 34207360 PMCID: PMC8235339 DOI: 10.3390/ijms22126535] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Correspondence:
| |
Collapse
|
5
|
DDR1 and DDR2: a review on signaling pathway and small molecule inhibitors as an anticancer agent. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
7
|
Targeting Discoidin Domain Receptor 1 (DDR1) Signaling and Its Crosstalk with β 1-integrin Emerges as a Key Factor for Breast Cancer Chemosensitization upon Collagen Type 1 Binding. Int J Mol Sci 2020; 21:ijms21144956. [PMID: 32668815 PMCID: PMC7404217 DOI: 10.3390/ijms21144956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Collagen type 1 (COL1) is a ubiquitously existing extracellular matrix protein whose high density in breast tissue favors metastasis and chemoresistance. COL1-binding of MDA-MB-231 and MCF-7 breast cancer cells is mainly dependent on β1-integrins (ITGB1). Here, we elucidate the signaling of chemoresistance in both cell lines and their ITGB1-knockdown mutants and elucidated MAPK pathway to be strongly upregulated upon COL1 binding. Notably, Discoidin Domain Receptor 1 (DDR1) was identified as another important COL1-sensor, which is permanently active but takes over the role of COL1-receptor maintaining MAPK activation in ITGB1-knockdown cells. Consequently, inhibition of DDR1 and ERK1/2 act synergistically, and sensitize the cells for cytostatic treatments using mitoxantrone, or doxorubicin, which was associated with an impaired ABCG2 drug efflux transporter activity. These data favor DDR1 as a promising target for cancer cell sensitization, most likely in combination with MAPK pathway inhibitors to circumvent COL1 induced transporter resistance axis. Since ITGB1-knockdown also induces upregulation of pEGFR in MDA-MB-231 cells, inhibitory approaches including EGFR inhibitors, such as gefitinib appear promising for pharmacological interference. These findings provide evidence for the highly dynamic adaptation of breast cancer cells in maintaining matrix binding to circumvent cytotoxicity and highlight DDR1 signaling as a target for sensitization approaches.
Collapse
|
8
|
Han T, Mignatti P, Abramson SB, Attur M. Periostin interaction with discoidin domain receptor-1 (DDR1) promotes cartilage degeneration. PLoS One 2020; 15:e0231501. [PMID: 32330138 PMCID: PMC7182230 DOI: 10.1371/journal.pone.0231501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is characterized by progressive loss of articular cartilage accompanied by the new bone formation and, often, a synovial proliferation that culminates in pain, loss of joint function, and disability. However, the cellular and molecular mechanisms of OA progression and the relative contributions of cartilage, bone, and synovium remain unclear. We recently found that the extracellular matrix (ECM) protein periostin (Postn, or osteoblast-specific factor, OSF-2) is expressed at high levels in human OA cartilage. Multiple groups have also reported elevated expression of Postn in several rodent models of OA. We have previously reported that in vitro Postn promotes collagen and proteoglycan degradation in human chondrocytes through AKT/β-catenin signaling and downstream activation of MMP-13 and ADAMTS4 expression. Here we show that Postn induces collagen and proteoglycan degradation in cartilage by signaling through discoidin domain receptor-1 (DDR1), a receptor tyrosine kinase. The genetic deficiency or pharmacological inhibition of DDR1 in mouse chondrocytes blocks Postn-induced MMP-13 expression. These data show that Postn is signaling though DDR1 is mechanistically involved in OA pathophysiology. Specific inhibitors of DDR1 may provide therapeutic opportunities to treat OA.
Collapse
Affiliation(s)
- Tianzhen Han
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| | - Paolo Mignatti
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| | - Steven B. Abramson
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| |
Collapse
|
9
|
Yeh YC, Lin HH, Tang MJ. Dichotomy of the function of DDR1 in cells and disease progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118473. [PMID: 30954568 DOI: 10.1016/j.bbamcr.2019.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
Discoidin domain receptors DDR1 and DDR2 are collagen receptor tyrosine kinases that have many roles in tissue development and disease progression. Under physiological conditions, DDR1 is predominantly expressed in epithelial cells and functions to maintain cell differentiation and tissue homeostasis. A switch in expression from DDR1 to DDR2 occurs during epithelial-to-mesenchymal transition. However, opposite effects of DDR1 are reported to be involved in the progression of cancer and fibrotic diseases. Accumulating evidence suggests that DDR1 is involved in pro-metastasis and pro-survival signals. This review summarizes the roles of DDR1 in epithelial cell differentiation, cell migration, cancer progression and tissues fibrosis and highlights how the dichotomous functions of DDR1 may relevant to different cell types and statues. Elucidation of the underlying mechanism of the dichotomous functions of DDR1 will help to develop DDR1 as a therapeutic target.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- International Center for Wound Repair and Regeneration, Tainan, Taiwan
| | - Hsi-Hui Lin
- International Center for Wound Repair and Regeneration, Tainan, Taiwan; Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, Tainan, Taiwan; Department of Physiology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Wu A, Chen Y, Liu Y, Lai Y, Liu D. miR-199b-5p inhibits triple negative breast cancer cell proliferation, migration and invasion by targeting DDR1. Oncol Lett 2018; 16:4889-4896. [PMID: 30250555 PMCID: PMC6144876 DOI: 10.3892/ol.2018.9255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) has received increasing attention from oncologists worldwide due to its poor prognosis and paucity of targeted therapies. MicroRNAs (miRs) are a group of small non-coding RNAs that are responsible for the post-transcriptional regulation of various target genes. The present study demonstrated that the expression of miR-199b-5p in breast cancer tissue was significantly reduced compared with that in normal breast tissues by reverse transcription-quantitative polymerase chain reaction. In addition, western blot analysis and luciferase reporter assays revealed that miR-199b-5p in TNBC cells inhibited discoidin domain receptor tyrosine kinase 1 expression by directly targeting its 3′-untranslated region. Furthermore, miR-199b-5p markedly suppressed the proliferation and invasion of TNBC cells, as demonstrated by using wound-healing, migration, invasion and proliferation assays. Collectively, these results indicate that miR-199b-5p may be a novel alternative therapeutic target for TNBC.
Collapse
Affiliation(s)
- Anhao Wu
- Department of Breast Surgery Ward I, The Third Affiliated Hospital, Kunming Medical University, Tumor Hospital of Yunnan Kunming Province, Kunming, Yunnan 650100, P.R. China
| | - Yan Chen
- Cancer Institute, The Third Affiliated Hospital, Kunming Medical University, Tumor Hospital of Yunnan Kunming Province, Kunming, Yunnan 650100, P.R. China
| | - Yang Liu
- Department of Breast Surgery Ward I, The Third Affiliated Hospital, Kunming Medical University, Tumor Hospital of Yunnan Kunming Province, Kunming, Yunnan 650100, P.R. China
| | - Yafang Lai
- Public Health, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dequan Liu
- Department of Breast Surgery Ward I, The Third Affiliated Hospital, Kunming Medical University, Tumor Hospital of Yunnan Kunming Province, Kunming, Yunnan 650100, P.R. China
| |
Collapse
|
11
|
Takai K, Drain AP, Lawson DA, Littlepage LE, Karpuj M, Kessenbrock K, Le A, Inoue K, Weaver VM, Werb Z. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev 2018; 32:244-257. [PMID: 29483153 PMCID: PMC5859966 DOI: 10.1101/gad.301366.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Here, Takai et al. researched the function of discoidin domain receptor 1 (DDR1), a member of the subfamily of receptor tyrosine kinases activated by collagens that is overexpressed in breast and other carcinoma cells. Using bioinformatics analysis, breast cancer cell lines, and knockout mice, they demonstrate that DDR1 ablation leads to aggressive breast cancer, and their findings suggest that the absence of DDR1 provides a growth and adhesion advantage that favors the expansion of basal cells, potentiates fibrosis, and enhances necrosis/hypoxia and basal differentiation of transformed cells to increase their aggression and metastatic potential. The discoidin domain receptor 1 (DDR1) is overexpressed in breast carcinoma cells. Low DDR1 expression is associated with worse relapse-free survival, reflecting its controversial role in cancer progression. We detected DDR1 on luminal cells but not on myoepithelial cells of DDR1+/+ mice. We found that DDR1 loss compromises cell adhesion, consistent with data that older DDR1−/− mammary glands had more basal/myoepithelial cells. Basal cells isolated from older mice exerted higher traction forces than the luminal cells, in agreement with increased mammary branches observed in older DDR1−/− mice and higher branching by their isolated organoids. When we crossed DDR1−/− mice with MMTV-PyMT mice, the PyMT/DDR1−/− mammary tumors grew faster and had increased epithelial tension and matricellular fibrosis with a more basal phenotype and increased lung metastases. DDR1 deletion induced basal differentiation of CD90+CD24+ cancer cells, and the increase in basal cells correlated with tumor cell mitoses. K14+ basal cells, including K8+K14+ cells, were increased adjacent to necrotic fields. These data suggest that the absence of DDR1 provides a growth and adhesion advantage that favors the expansion of basal cells, potentiates fibrosis, and enhances necrosis/hypoxia and basal differentiation of transformed cells to increase their aggression and metastatic potential.
Collapse
Affiliation(s)
- Ken Takai
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA.,Division of Breast Oncology, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Allison P Drain
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, California 94143, USA
| | - Devon A Lawson
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Laurie E Littlepage
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Marcela Karpuj
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Kai Kessenbrock
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Annie Le
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Kenichi Inoue
- Division of Breast Oncology, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, California 94143, USA.,Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94143, USA.,Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Zena Werb
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
12
|
Jing H, Song J, Zheng J. Discoidin domain receptor 1: New star in cancer-targeted therapy and its complex role in breast carcinoma. Oncol Lett 2018; 15:3403-3408. [PMID: 29467865 DOI: 10.3892/ol.2018.7795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by various types of collagens that performs a critical role in cell attachment, migration, survival and proliferation. The functions of DDR1 in various types of tumor have been studied extensively. However, in breast carcinoma, the roles of collagen-evoked DDR1 remain ill defined. Although a number of studies have reported that DDR1 promotes apoptosis and inhibits migration in breast carcinoma, it has also been reported to be associated with tumor cell survival, chemoresistance to genotoxic drugs and the facilitation of invasion. The present review summarizes current progress and the complex effects of DDR1 in the field of breast carcinoma, and presents DDR1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Hui Jing
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, Jiangsu 221002, P.R. China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
13
|
Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. J Ovarian Res 2017; 10:50. [PMID: 28743276 PMCID: PMC5526233 DOI: 10.1186/s13048-017-0333-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background Discoidin Domain Receptor 1 (DDR1) belongs to the family of collagen receptor tyrosine kinases that confers the progression of various cancers. Aberrant expression of DDR1 was detected in several human cancers including ovarian cancer, which had been shown to increase the migration and invasion of tumor cells. However, the precise mechanisms underlying the abnormal expression of DDR1 in ovarian cancer has not been well investigated in previous studies. Results In this work, a negative correlation between DDR1 and a tumor suppressor miRNA, miR-199a-3p, was observed in ovarian cancer tissues. Furthermore, in vitro experimental results confirmed that miR-199a-3p decreased the expression of DDR1 via targeting the 3’UTR of DDR1 mRNA. To explore the mechanisms for miR-199a-3p silence in ovarian cancer, the methylation status of the miR-199a promoter was analyzed in ovarian epithelial or cancer cells by methylation-specific PCR and bisulphite sequencing. As expected, the miR-199a promoter was hypermethylated in ovarian cancer cells but not in normal ovarianepithelial cells. Interestingly, knockdown of DNA methyltransferase 3A (DNMT3A) notably increased miR-199a-3p level and then attenuated the expression of DDR1 in ovarian cancer cells, which suggested that DNMT3A was responsible for the miR-199a promoter hypermethylation. Phenotype experiments showed that overexpression of miR-199a-3p significantly impaired the migratory, invasive, and tumorigenic capabilities of ovarian cancer cells as well as enhanced cisplatin resistance through inhibiting DDR1 expression. Conclusion These findings demonstrate a critical role of miR-199a-3p/DDR1 pathway in ovarian cancer development.
Collapse
|
14
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
15
|
Hou X, Lin L, Xing W, Yang Y, Duan X, Li Q, Gao X, Lin Y. Spleen tyrosine kinase regulates mammary epithelial cell proliferation in mammary glands of dairy cows. J Dairy Sci 2016; 99:3858-3868. [PMID: 26947307 DOI: 10.3168/jds.2015-10118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/17/2016] [Indexed: 11/19/2022]
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that has been considered a hematopoietic cell-specific signal transducer involved in cell proliferation and differentiation. However, the role of SYK in normal mammary gland is still poorly understood. Here we show that SYK is expressed in mammary glands of dairy cows. Expression of SYK was higher in dry period mammary tissues than in lactating mammary tissues. Knockdown and overexpression of SYK affected dairy cow mammary epithelial cell proliferation as well as the expression of signal molecules involved in proliferation, including protein kinase B (PKB, also known as AKT1), p42/44 mitogen-activated protein kinase (MAPK), and signal transducer and activator of transcription 5 (STAT5). Dual-luciferase reporter assay showed that SYK increased the transcriptional activity of the AKT1 promoter, and cis-elements within the AKT1 promoter region from -439 to -84 bp mediated this regulation. These results suggest that SYK affects mammary epithelial cell proliferation by activating AKT1 at the transcriptional level in mammary glands of dairy cows, which is important for the mammary remodeling process in dry cows as well as for increasing persistency of lactation in lactating cows.
Collapse
Affiliation(s)
- Xiaoming Hou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Lin
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Weinan Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Duan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xuejun Gao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Ye Lin
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Rammal H, Saby C, Magnien K, Van-Gulick L, Garnotel R, Buache E, El Btaouri H, Jeannesson P, Morjani H. Discoidin Domain Receptors: Potential Actors and Targets in Cancer. Front Pharmacol 2016; 7:55. [PMID: 27014069 PMCID: PMC4789497 DOI: 10.3389/fphar.2016.00055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 01/11/2023] Open
Abstract
The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy.
Collapse
Affiliation(s)
- Hassan Rammal
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Charles Saby
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Kevin Magnien
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Laurence Van-Gulick
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Roselyne Garnotel
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Emilie Buache
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Hassan El Btaouri
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Pierre Jeannesson
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Hamid Morjani
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| |
Collapse
|
17
|
Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 2016; 97:28-40. [PMID: 26519775 DOI: 10.1016/j.addr.2015.10.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.
Collapse
|
18
|
Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, Keshavjee S, Chow CW. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant 2016; 16:342-52. [PMID: 26308240 DOI: 10.1111/ajt.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction, the major cause of death following lung transplantation, usually manifests as irreversible airflow obstruction associated with obliterative bronchiolitis (OB), a lesion characterized by chronic inflammation, lymphoid neogenesis, fibroproliferation and small airway obliteration. Spleen tyrosine kinase (Syk), a tyrosine kinase that regulates B cell function and innate immunity, has been implicated in the pathogenesis of chronic inflammation and tissue repair. This study evaluated the role of Syk in development of OB, using an intrapulmonary tracheal transplant model of OB with the conditional Syk-knockout Syk(flox/flox) //rosa26-CreER(T2) mice and a Syk-selective inhibitor, GSK2230413. BALB/c trachea allografts were transplanted into Syk-knockout (Syk(del/del) ) mice or wild-type C57BL/6 recipients treated with GSK2230413. At day 28, histological analysis revealed that in the Syk(del/del) and GSK2230413-treated C57BL/6 recipients, the graft lumen remained open compared with allografts transplanted into Syk-expressing (Syk(flox/flox) ) and placebo control-treated C57BL/6 recipients. Immunofluorescence showed lymphoid neogenesis with distinct B and T cell zones in control mice. In contrast, lymphoid neogenesis was absent and few B or T cells were found in Syk(del/del) and GSK2230413-treated mice. These observations suggest that inhibition of Syk may be a potential therapeutic strategy for the management of OB following lung transplantation.
Collapse
Affiliation(s)
- Y Matsuda
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - X Wang
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - H Oishi
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Z Guan
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Saito
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Liu
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - S Keshavjee
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - C-W Chow
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Li Y, Lu X, Ren X, Ding K. Small Molecule Discoidin Domain Receptor Kinase Inhibitors and Potential Medical Applications. J Med Chem 2015; 58:3287-301. [DOI: 10.1021/jm5012319] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yupeng Li
- State Key Laboratory
of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, No. 190
Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyun Lu
- State Key Laboratory
of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, No. 190
Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaomei Ren
- State Key Laboratory
of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, No. 190
Kaiyuan Avenue, Guangzhou 510530, China
| | - Ke Ding
- State Key Laboratory
of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, No. 190
Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|
20
|
Reyes-Uribe E, Serna-Marquez N, Perez Salazar E. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells. Oncogene 2014; 34:4491-9. [PMID: 25531330 DOI: 10.1038/onc.2014.380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV)-encoded Latent Membrane Protein 2A (LMP2A) is an EBV latency-associated protein regularly expressed in nasopharyngeal carcinoma (NPC). In B cells, LMP2A activity resembles that of a constitutively activated antigen receptor, which recruits the Syk tyrosine kinase to activate a set of downstream signaling pathways. LMP2A also downregulates cellular Syk levels. In the present study, we demonstrate that Syk interacts with the integrin β4 subunit (ITGβ4) of integrin α6β4 in epithelial cells and that concurrent LMP2A expression interferes with this interaction by competitive binding to Syk. We find that both Syk and LMP2A have an effect on ITGβ4 cell surface expression. However, in LMP2A expressing cells, ITGβ4 remains concentrated at the cellular protrusions, an expression pattern characteristic of motile cells, including NPC-derived epithelial cells. This effect of LMP2A on ITGβ4 localization is associated with a greater propensity for migration and invasion in-vitro, and may contribute to the invasive property of LMP2A-expressing NPC.
Collapse
|
22
|
Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:39-87. [PMID: 24725424 DOI: 10.1016/b978-0-12-800180-6.00002-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors that are members of the receptor tyrosine kinase family. Both DDRs bind a number of different collagen types and play important roles in embryo development. Dysregulated DDR function is associated with progression of various human diseases, including fibrosis, arthritis, and cancer. By interacting with key components of the extracellular matrix and displaying distinct activation kinetics, the DDRs form a unique subfamily of receptor tyrosine kinases. DDR-facilitated cellular functions include cell migration, cell survival, proliferation, and differentiation, as well as remodeling of extracellular matrices. This review summarizes the current knowledge of DDR-ligand interactions, DDR-initiated signal pathways and the molecular mechanisms that regulate receptor function. Also discussed are the roles of DDRs in development and disease progression.
Collapse
Affiliation(s)
- Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Groessl M, Slany A, Bileck A, Gloessmann K, Kreutz D, Jaeger W, Pfeiler G, Gerner C. Proteome Profiling of Breast Cancer Biopsies Reveals a Wound Healing Signature of Cancer-Associated Fibroblasts. J Proteome Res 2014; 13:4773-82. [DOI: 10.1021/pr500727h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Michael Groessl
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna A-1090, Austria
| | - Astrid Slany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna A-1090, Austria
| | - Andrea Bileck
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna A-1090, Austria
| | - Kerstin Gloessmann
- Department
of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Spitalgasse 23, Vienna A-1090, Austria
| | - Dominique Kreutz
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna A-1090, Austria
| | - Walter Jaeger
- Department
of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse
14, Vienna A-1090, Austria
| | - Georg Pfeiler
- Division
of Special Gynaecology, Department of Obstetrics and Gynecology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
| | - Christopher Gerner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna A-1090, Austria
| |
Collapse
|
24
|
Blancato J, Graves A, Rashidi B, Moroni M, Tchobe L, Ozdemirli M, Kallakury B, Makambi KH, Marian C, Mueller SC. SYK Allelic Loss and the Role of Syk-Regulated Genes in Breast Cancer Survival. PLoS One 2014; 9:e87610. [PMID: 24523870 PMCID: PMC3921124 DOI: 10.1371/journal.pone.0087610] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/20/2013] [Indexed: 11/26/2022] Open
Abstract
Heterozygotic loss of SYK, a non-receptor tyrosine kinase, gives rise to mouse mammary tumor formation where Syk protein levels are reduced by about half; loss of SYK mRNA is correlated with invasive cell behavior in in vitro models; and SYK loss has been correlated with distant metastases in patients. Here, allelic loss of the SYK gene was explored in breast ductal carcinoma in situ (DCIS) using fluorescence in situ hybridization and pyrosequencing, respectively, and in infiltrating ductal carcinoma (IDC) using genomic data from The Cancer Genome Atlas (TCGA). Allelic loss was present in a subset of DCIS cases where adjacent IDC was present. SYK copy number loss was found in about 26% of 1002 total breast cancer cases and 30% of IDC cases. Quantitative immunofluorescence revealed Syk protein to be six-fold higher in infiltrating immune cells compared with epithelial cells. This difference distorted tumor cell mRNA and protein levels in extracts. 20% of 1002 IDC cases contained elevated immune cell infiltration as estimated by elevated immune-specific mRNAs. In cases without immune cell infiltration, loss of SYK copy number was associated with a significant reduction of SYK mRNA. Here we define a 55 Gene Set consisting of Syk interacting, motility- and invasion-related genes. We found that overall survival was significantly reduced in IDC and Luminal A+B cases where copy number and mutations of these 55 genes were affected (Kaplan-Meier, Logrank test p-value 0.007141 and Logrank test p-value 0.001198, respectively). We conclude that reduction in Syk expression and contributions of genomic instability to copy number and mutations in the 55 Syk interacting genes significantly contribute to poorer overall patient survival. A closer examination of the role of Syk interacting motility and invasion genes and their prognostic and/or causative association with metastatic disease and patient outcome is warranted.
Collapse
Affiliation(s)
- Jan Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Ashley Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Banafsheh Rashidi
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Maria Moroni
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Leopold Tchobe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
- University of the District of Columbia/Lombardi Comprehensive Cancer Center Partnership, Washington, D. C., United States of America
| | - Metin Ozdemirli
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Kepher H. Makambi
- Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Catalin Marian
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Biochemistry Department, University of Medicine and Pharmacy, “Victor Babes”, Timisoara, Romania
| | - Susette C. Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
25
|
Gao M, Duan L, Luo J, Zhang L, Lu X, Zhang Y, Zhang Z, Tu Z, Xu Y, Ren X, Ding K. Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem 2013; 56:3281-95. [PMID: 23521020 DOI: 10.1021/jm301824k] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is an emerging potential molecular target for new anticancer drug discovery. We have discovered a series of 3-(2-(pyrazolo[1,5-a]pyrimidin-6-yl) ethynyl)benzamides that are selective and orally bioavailable DDR1 inhibitors. The two most promising compounds (7rh and 7rj) inhibited the enzymatic activity of DDR1, with IC50 values of 6.8 and 7.0 nM, respectively, but were significantly less potent in suppressing the kinase activities of DDR2, Bcr-Abl, and c-Kit. Further study revealed that 7rh bound with DDR1 with a Kd value of 0.6 nM, while it was significantly less potent to the other 455 kinases tested. The S(35) and S(10) selectivity scores of 7rh were 0.035 and 0.008, respectively. The compounds also potently inhibited the proliferation of cancer cells expressing high levels of DDR1 and strongly suppressed cancer cell invasion, adhesion, and tumorigenicity. Preliminary pharmacokinetic studies suggested that they possessed good PK profiles, with oral bioavailabilities of 67.4% and 56.2%, respectively.
Collapse
Affiliation(s)
- Mingshan Gao
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, no. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem 2013; 288:16738-16746. [PMID: 23530036 DOI: 10.1074/jbc.m112.431528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Cristian Gruppi
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Diana Rubel
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Remigio Moratti
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Balduini
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
27
|
Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 2012; 31:295-321. [PMID: 22366781 DOI: 10.1007/s10555-012-9346-z] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has been translated into novel therapeutic strategies that target these cell surface receptors in cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the discoidin domain receptors (DDRs) play a key role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to and are activated by collagen. DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific- and context-dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes and discusses the current knowledge on DDR expression and function in cancer. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Rajeshwari R Valiathan
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
28
|
Friedl P, Alexander S. Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell 2011; 147:992-1009. [DOI: 10.1016/j.cell.2011.11.016] [Citation(s) in RCA: 1419] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 02/07/2023]
|