1
|
Montano C, Flores-Arenas C, Carpenter S. LncRNAs, nuclear architecture and the immune response. Nucleus 2024; 15:2350182. [PMID: 38738760 PMCID: PMC11093052 DOI: 10.1080/19491034.2024.2350182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Long noncoding RNAs (LncRNAs) are key regulators of gene expression and can mediate their effects in both the nucleus and cytoplasm. Some of the best-characterized lncRNAs are localized within the nucleus, where they modulate the nuclear architecture and influence gene expression. In this review, we discuss the role of lncRNAs in nuclear architecture in the context of their gene regulatory functions in innate immunity. Here, we discuss various approaches to functionally characterize nuclear-localized lncRNAs and the challenges faced in the field.
Collapse
Affiliation(s)
- Christy Montano
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Cristina Flores-Arenas
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Susan Carpenter
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Xu H, Wu X, Yang Z, Shi X, Guo A, Hu C. N 6-methyladenosine-modified lncRNA in Staphylococcus aureus-injured bovine mammary epithelial cells. Arch Microbiol 2024; 206:431. [PMID: 39395056 DOI: 10.1007/s00203-024-04156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Staphylococcus aureus-induced mastitis is a serious disease in dairy bovine, with no currently effective treatment. Antibiotics demonstrate certain therapeutic potency in dairy husbandry; they generate drug-resistant bacteria, thereby harming public health. LncRNAs and m6A have been verified as potential targets in infectious diseases and have powerful regulatory capabilities. However, the biological regulation of lncRNAs with m6A modification in mastitis needs further investigation. This study aims to determine the m6A-modified lncRNAs in bovine mammary epithelial cells and their diversity during S. aureus induction. Heat-inactivated S. aureus was used to develop the cell injury model, and we subsequently found low cell viability and different m6A modification levels. Our analysis of m6A-modified lncRNA profiles through MeRIP-seq revealed significant differences in 140 peaks within 130 lncRNAs when cells were injured by S. aureus. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these differential m6A-modified lncRNAs were mainly enriched in the WNT pathway, and their functions were associated with amino acid metabolism, lipid translocation, and metalloproteinase activity. Here, we report for the first time lncRNAs with m6A modification in regulating S. aureus infection, revealing potential mechanisms and targets of infectious diseases, such as mastitis, from an epigenetics perspective.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiming Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhuai Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
López-Royo T, Moreno-Martínez L, Zaragoza P, García-Redondo A, Manzano R, Osta R. Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis. Open Biol 2024; 14:240015. [PMID: 39406341 PMCID: PMC11479763 DOI: 10.1098/rsob.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor function and muscle mass loss. Despite extensive research in the field, the underlying causes of ALS remain incompletely understood, contributing to the absence of specific diagnostic and prognostic biomarkers and effective therapies. This study investigates the expression of long-non-coding RNAs (lncRNAs) in skeletal muscle as a potential source of biomarkers and therapeutic targets for the disease. The expression profiles of 12 lncRNAs, selected from the literature, were evaluated across different disease stages in tissue and muscle biopsies from the SOD1G93A transgenic mouse model of ALS. Nine out of the 12 lncRNAs were differentially expressed, with Pvt1, H19 and Neat1 showing notable increases in the symptomatic stages of the disease, and suggesting their potential as candidate biomarkers to support diagnosis and key players in muscle pathophysiology in ALS. Furthermore, the progression of Myhas and H19 RNA levels across disease stages correlated with longevity in the SOD1G93A animal model, effectively discriminating between long- and short-term survival individuals, thereby highlighting their potential as prognostic indicators. These findings underscore the involvement of lncRNAs, especially H19 and Myhas, in ALS pathophysiology, offering novel insights for diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Tresa López-Royo
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Moreno-Martínez
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Alberto García-Redondo
- Neurology Department, ALS Unit, Hospital 12 de Octubre Health Research Institute (i+12), CIBERER U-723 (Instituto de Salud Carlos III), Avenida Córdoba, s/n, 28041 Madrid, Spain
| | - Raquel Manzano
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
4
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
5
|
Li YH, Liu C, Xu RZ, Fan YP, Wang JY, Li H, Zhang J, Zhang HJ, Wang JJ, Li DK. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1475-1491. [PMID: 39310708 PMCID: PMC11413265 DOI: 10.1007/s12298-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
Collapse
Affiliation(s)
- Ya-hui Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Chun Liu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Run-zhe Xu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Yu-peng Fan
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Ji-yuan Wang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Hu Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jian Zhang
- Institute of Vegetables, Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Anhui Academy of Agricultural Sciences, Huaibei Normal University, Nongke South Road 40, Hefei, 230031 Anhui Province People’s Republic of China
| | - Hui-jun Zhang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jing-jing Wang
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| | - Da-kui Li
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| |
Collapse
|
6
|
Lei Z, Zhu Z, Yao Z, Dai X, Dong Y, Chen B, Wang S, Wang S, Bentum-Ennin L, Jin L, Gu H, Hu W. Reciprocal interactions between lncRNAs and MYC in colorectal cancer: partners in crime. Cell Death Dis 2024; 15:539. [PMID: 39075086 PMCID: PMC11286766 DOI: 10.1038/s41419-024-06918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Proto-oncogenic MYC is frequently dysregulated in colorectal cancer (CRC). In the past decades, long noncoding RNAs (lncRNAs) have emerged as important regulators in cancers, acting as scaffolds, molecular decoys, post-transcriptional regulators, and others. Interestingly, lncRNAs are able to control MYC expression both at transcriptional and post-transcriptional levels. It is suggested that the reciprocal interaction of MYC and lncRNAs often occurs in CRC. MYC can affect the cell fate by promoting or inhibiting the transcription of some lncRNAs. At the same time, some lncRNAs can also affect MYC expression or transcriptional activity, and in turn decide the cell fate. In this review we summarized the current knowledge about the MYC and lncRNA axis, focusing on its mutual regulation, roles in CRC, and proposed potential therapeutic prospects for CRC treatment.
Collapse
Affiliation(s)
- Zhen Lei
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipu Zhu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihui Yao
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Xiangyu Dai
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Yi Dong
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Bing Chen
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Songyu Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Siyue Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Lutterodt Bentum-Ennin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China
| | - Lei Jin
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China.
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China.
| |
Collapse
|
7
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
8
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
9
|
Sharma S, Houfani AA, Foster LJ. Pivotal functions and impact of long con-coding RNAs on cellular processes and genome integrity. J Biomed Sci 2024; 31:52. [PMID: 38745221 PMCID: PMC11092263 DOI: 10.1186/s12929-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Qiu J, Gu R, Shi Q, Zhang X, Gu J, Xiang J, Xu J, Yang Y, Shan K. Long noncoding RNA ZFAS1: A novel anti-apoptotic target in Fuchs endothelial corneal dystrophy. Exp Eye Res 2024; 241:109832. [PMID: 38369232 DOI: 10.1016/j.exer.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial keratoplasty without efficacious drug treatment. Recent studies have emphasized the involvement of epigenetic regulation in FECD development. Long non-coding RNAs (lncRNAs) are recognized as crucial epigenetic regulators in diverse cellular processes and ocular diseases. In this study, we revealed the expression patterns of lncRNAs using high-throughput sequencing technology in FECD mouse model, and identified 979 significantly dysregulated lncRNAs. By comparing the data from FECD human cell model, we obtained a series of homologous lncRNAs with similar expression patterns, and revealed that these homologous lncRNAs were enriched in FECD related biological functions, with apoptosis (mmu04210) showing the highest enrichment score. In addition, we investigated the role of lncRNA zinc finger antisense 1 (ZFAS1) in apoptotic process. This study would broaden our understanding of epigenetic regulation in FECD development, and provide potential anti-apoptotic targets for FECD therapy.
Collapse
Affiliation(s)
- Jini Qiu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Ruiping Gu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Qian Shi
- Yixing Eye Hospital, Yixing, Jiangsu, China
| | - Xueling Zhang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jiayu Gu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jun Xiang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jianjiang Xu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Yujing Yang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Kun Shan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
11
|
Liang X, Di F, Wei H, Liu N, Chen C, Wang X, Sun M, Zhang M, Li M, Zhang J, Zhang S. Functional identification of long non-coding RNAs induced by PM 2.5 in microglia through microarray analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116136. [PMID: 38387142 DOI: 10.1016/j.ecoenv.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
As a dominating air pollutant, atmospheric fine particulate matter within 2.5 μm in diameter (PM2.5) has attracted increasing attention from the researchers all over the world, which will lead to various adverse effects on the central nervous system (CNS), yet the potential mechanism is unclear. In this study, the microglia (BV2 cell line) were exposed to different concentrations of PM2.5 (5, 10 and 20 μg/cm2) for 24 h. It was found that PM2.5 could result in adverse effects on microglia such as decreased cell viability, structural damage and even cell death. And it was reported that long non-coding RNAs (lncRNAs) could participate in multitudinous neurological diseases. Therefore, the microarray analysis was conducted in order to disclose the underlying neurotoxicity mechanism of PM2.5 by ascertaining the differentially expressed lncRNAs (DElncRNAs). The consequences indicated that the DElncRNAs were enriched in various biological pathways, including ferroptosis, IL-17 signaling pathway and NOD-like receptor signaling pathway. Moreover, the cis- and trans-regulated mRNAs by DElncRNAs as well as the corresponding transcriptional factors (TFs) were observed, such as CEBPA, MYC, MEIS1 and KLF4. In summary, our study supplies some candidate libraries and potential preventive target against PM2.5-induced toxicity through targeting lncRNAs. Furthermore, the post-transcriptional regulation will contribute to the future research on PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Xue Liang
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China.
| | - Fanglin Di
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Haiyun Wei
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Natong Liu
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Chao Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Xinzhi Wang
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Min Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| |
Collapse
|
12
|
Li J, Guo S, Li T, Hu S, Xu J, Xu X. Long non-coding RNA CCAT1 acts as an oncogene to promote radiation resistance in lung adenocarcinoma: an epigenomics-based investigation. Funct Integr Genomics 2024; 24:52. [PMID: 38448654 DOI: 10.1007/s10142-024-01330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Long non-coding RNAs (lncRNAs) appear to be the crucial modulators in various processes and critically influence the oncogenesis. As one of the LncRNAs, LncRNA CCAT1 has been reported to be closely associated with the progression multiple cancers, but its role in modulating the radioresistance of lung adenocarcinoma (LUAD) remains unclear. In our present study, we screened the potential radioresistance related LncRNAs in LUAD based on the data from The Cancer Genome Atlas (TCGA) database. Data suggested that CCAT1 was abundantly expressed in LUAD and CCAT1 was significantly associated with poor prognosis and radioresistance. Moreover, our in vitro experiments showed that radiation treatment could trigger elevated expression of CCAT1 in the human LUAD cell lines. Further loss/gain-of-function investigations indicated that CCAT1 knockdown significantly inhibited cell proliferation, migration and promoted cell apoptosis in NCI-H1299 cells under irradiation, whereas CCAT1 overexpression in A549 cells yield the opposite effects. In summary, we identified the promoting role of CCAT1 in radioresistance of LUAD, which may provide a theoretical basis for radiotherapy sensitization of LUAD.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Shengnan Guo
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Tianhao Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Songliu Hu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Jianyu Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Xiangying Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China.
- Department of Radiotherapy, The Third Affilliated Hospital of Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
13
|
Zhang Y, Lu G, Guan Y, Xu T, Duan Z, Li G. LINC00960 affects osteosarcoma treatment and prognosis by regulating the tumor immune microenvironment. Heliyon 2024; 10:e24990. [PMID: 38352756 PMCID: PMC10862516 DOI: 10.1016/j.heliyon.2024.e24990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Background Osteosarcoma (OS), the commonest primary malignant bone tumor, is mainly seen in children and teenagers. LINC00960, a newly discovered long intergenic non-protein coding RNA, has been shown to be important in certain cancers. The objective of this study was to assess LINC00960's prognostic and therapeutic value and analyze its mechanism of action in osteosarcoma. Methods With the transcriptome information of 85 osteosarcomas from the TARGET database, the Cox regression analyses, K-M curve, and ROC curve, were conducted for survival and prognostic analysis. The functional analysis was conducted using GO, KEGG, GSEA, and GSVA. The ESTIMATE, ssGSEA, MCP-counter, ImmuCellAI algorithms, and immune checkpoint correlation analysis were performed for immune-related analysis. The single-cell RNA sequencing data of 6 osteosarcoma patients was obtained from the Gene Expression Omnibus database. The Tumor Immune Dysfunction and Exclusion algorithm and the "pRRophetic" R package were performed to predict the response to immunotherapy and chemotherapy. Results LINC00960 overexpression is associated with osteosarcoma metastasis and poor prognosis. Based on the LINC00960 expression, the nomogram prediction model was created, which showed good accuracy and precision to predict the overall survival of osteosarcoma. Single-cell and immune-related analysis showed that LINC00960 is mainly highly expressed in the tumor-exhausted CD8 T cells in osteosarcoma. In osteosarcoma, the expression of LIC00960 was favorably connected with immune checkpoint-related genes and negatively correlated with immune infiltration. TIDE analysis indicated that low LINC00960 expression patients might have a better response to immunotherapy. Drug sensitivity analysis showed that high LINC00960 expression patients might have better responses to Bleomycin and Doxorubicin. Conclusion LINC00960 has the potential to be a novel biomarker for predicting overall survival in osteosarcoma patients and to guide more individualized treatment and clinical decision-making.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guanghua Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yonghao Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengwei Duan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
14
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
15
|
Mulati Y, Lai C, Luo J, Hu J, Xu X, Kong D, Xiao Y, Liu C, Xu K. Establishment of a prognostic risk prediction model incorporating disulfidptosis-related lncRNA for patients with prostate cancer. BMC Cancer 2024; 24:44. [PMID: 38191330 PMCID: PMC10775669 DOI: 10.1186/s12885-023-11778-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
PURPOSE Prostate cancer (PCa) is one of the major tumor diseases that threaten men's health globally, and biochemical recurrence significantly impacts its prognosis. Disulfidptosis, a recently discovered cell death mechanism triggered by intracellular disulfide accumulation leading to membrane rupture, is a new area of research in the context of PCa. Currently, its impact on PCa remains largely unexplored. This study aims to investigate the correlation between long non-coding RNAs (lncRNAs) associated with disulfidptosis and the prognosis of PCa, seeking potential connections between the two. METHODS Transcriptomic data for a PCa cohort were obtained from the Cancer Genome Atlas database. Disulfidptosis-related lncRNAs (DDRLs) were identified through differential expression and Pearson correlation analysis. DDRLs associated with biochemical recurrence-free survival (BRFS) were precisely identified using univariate Cox and LASSO regression, resulting in the development of a risk score model. Clinical factors linked to BRFS were determined through both univariate and multivariate Cox analyses. A prognostic nomogram combined the risk score with key clinical variables. Model performance was assessed using Receiver Operating Characteristic (ROC) curves, Decision Curve Analysis (DCA), and calibration curves. The functional impact of a critical DDRL was substantiated through assays involving CCK8, invasion, migration, and cell cloning. Additionally, immunohistochemical (IHC) staining for the disulfidptosis-related protein SLC7A11 was conducted. RESULTS The prognostic signature included AC026401.3, SNHG4, SNHG25, and U73166.1 as key components. The derived risk score from these signatures stood as one of the independent prognostic factor for PCa patients, correlating with poorer BRFS in the high-risk group. By combining the risk score with clinical variables, a practical nomogram was created, accurately predicting BRFS of PCa patients. Notably, silencing AC026401.3 significantly hindered PCa cell proliferation, invasion, migration, and colony formation. IHC staining revealed elevated expression of the dithiosulfatide-related protein SLC7A11 in tumor tissue. CONCLUSIONS A novel prognostic signature for PCa DDRLs, possessing commendable predictive power, has been constructed, simultaneously providing potential therapeutic targets associated with disulfidptosis, among which AC026401.3 has been validated in vitro and demonstrated inhibition of PCa tumorigenesis after its silencing.
Collapse
Affiliation(s)
- Yelisudan Mulati
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Jiawen Luo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Jintao Hu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Xiaoting Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Degeng Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Yunfei Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510000, Guangzhou, Guangdong, China
| | - Cheng Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, 510000, Guangzhou, Guangdong, China
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, 510000, Guangzhou, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, 510000, Guangzhou, Guangdong, China.
- Sun Yat-sen University School of Medicine, Sun Yat-sen University, 518000, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
17
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
18
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
19
|
Sosnovski KE, Braun T, Amir A, BenShoshan M, Abbas-Egbariya H, Ben-Yishay R, Anafi L, Avivi C, Barshack I, Denson LA, Haberman Y. Reduced LHFPL3-AS2 lncRNA expression is linked to altered epithelial polarity and proliferation, and to ileal ulceration in Crohn disease. Sci Rep 2023; 13:20513. [PMID: 37993670 PMCID: PMC10665440 DOI: 10.1038/s41598-023-47997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Disruption of intestinal epithelial functions is linked to Crohn disease (CD) pathogenesis. We identified a widespread reduction in the expression of long non-coding RNAs (lncRNAs) including LHFPL3-AS2 in the treatment-naïve CD ileum of the RISK pediatric cohort. We validated the reduction of LHFPL3-AS2 in adult CD and noted a further reduction in patients with more severe CD from the RISK cohort. LHFPL3-AS2 knockdown in Caco-2 cells robustly affected epithelial monolayer morphogenesis with markedly reduced confluency and spreading, showing atypical rounding, and clumping. mRNA-seq analysis of LHFPL3-AS2 knockdown cells highlighted the reduction of genes and pathways linked with apical polarity, actin bundles, morphogenesis, and the b-catenin-TCF4 complex. LHFPL3-AS2 knockdown significantly reduced the ability of cells to form an internal lumen within the 3-dimensional (3D) cyst model, with mislocalization of actin and adherent and tight junction proteins, affecting epithelial polarity. LHFPL3-AS2 knockdown also resulted in defective mitotic spindle formation and consequent reduction in epithelial proliferation. Altogether, we show that LHFPL3-AS2 reduction affects epithelial morphogenesis, polarity, mitotic spindle formation, and proliferation, which are key processes in maintaining epithelial homeostasis in CD. Reduced expression of LHFPL3-AS2 in CD patients and its further reduction with ileal ulceration outcome, emphasizes its significance in this context.
Collapse
Affiliation(s)
- Katya E Sosnovski
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Marina BenShoshan
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haya Abbas-Egbariya
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rakefet Ben-Yishay
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Liat Anafi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Camilla Avivi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Stacey VM, Kõks S. Genome-Wide Differential Transcription of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci 2023; 24:16344. [PMID: 38003532 PMCID: PMC10671291 DOI: 10.3390/ijms242216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) may contribute to the formation of psoriatic lesions. The present study's objective was to identify long lncRNA genes that are differentially expressed in patient samples of psoriasis through computational analysis techniques. By using previously published RNA sequencing data from psoriatic and healthy patients (n = 324), we analysed the differential expression of lncRNAs to determine transcripts of heightened expression. We computationally screened lncRNA transcripts as annotated by GENCODE across the human genome and compared transcription in psoriatic and healthy samples from two separate studies. We observed 54 differentially expressed genes as seen in two independent datasets collected from psoriasis and healthy patients. We also identified the differential expression of LINC01215 and LINC1206 associated with the cell cycle pathway and psoriasis pathogenesis. SH3PXD2A-AS1 was identified as a participant in the STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop. Both the SH3PXD2A-AS1 and CERNA2 genes have already been recognised as part of the IFN-γ signalling pathway regulation. Additionally, EPHA1-AS1, CYP4Z2P and SNHG12 gene upregulation have all been previously linked to inflammatory skin diseases. Differential expression of various lncRNAs affects the pathogenesis of psoriasis. Further characterisation of lncRNAs and their functions are important for developing our understanding of psoriasis.
Collapse
Affiliation(s)
- Valerie M. Stacey
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
21
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z, Radoňak J. Non-Coding RNAs in Human Cancer and Other Diseases: Overview of the Diagnostic Potential. Int J Mol Sci 2023; 24:16213. [PMID: 38003403 PMCID: PMC10671391 DOI: 10.3390/ijms242216213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are abundant single-stranded RNA molecules in human cells, involved in various cellular processes ranging from DNA replication and mRNA translation regulation to genome stability defense. MicroRNAs are multifunctional ncRNA molecules of 18-24 nt in length, involved in gene silencing through base-pair complementary binding to target mRNA transcripts. piwi-interacting RNAs are an animal-specific class of small ncRNAs sized 26-31 nt, responsible for the defense of genome stability via the epigenetic and post-transcriptional silencing of transposable elements. Long non-coding RNAs are ncRNA molecules defined as transcripts of more than 200 nucleotides, their function depending on localization, and varying from the regulation of cell differentiation and development to the regulation of telomere-specific heterochromatin modifications. The current review provides recent data on the several forms of small and long non-coding RNA's potential to act as diagnostic, prognostic or therapeutic target for various human diseases.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (R.B.); (D.S.)
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (R.B.); (D.S.)
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, Louis Pasteur University Hospital (UNLP) and Pavol Jozef Šafarik University, 04011 Košice, Slovakia
| |
Collapse
|
22
|
NOKKEAW ARCHITTAPON, THAMJAMRASSRI PANNATHON, CHANTARAVISOOT NAPHAT, TANGKIJVANICH PISIT, ARIYACHET CHAIYABOOT. Long non-coding RNA H19 promotes proliferation in hepatocellular carcinoma cells via H19/miR-107/CDK6 axis. Oncol Res 2023; 31:989-1005. [PMID: 37744274 PMCID: PMC10513943 DOI: 10.32604/or.2023.030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 09/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer death worldwide; nevertheless, current therapeutic options are limited or ineffective for many patients. Therefore, elucidation of molecular mechanisms in HCC biology could yield important insights for the intervention of novel therapies. Recently, various studies have reported dysregulation of long non-coding RNAs (lncRNAs) in the initiation and progression of HCC, including H19; however, the biological function of H19 in HCC remains unclear. Here, we show that knockdown of H19 disrupted HCC cell growth, impaired the G1-to-S phase transition, and promoted apoptosis, while overexpression of H19 yielded the opposite results. Screening for expression of cell cycle-related genes revealed a significant downregulation of CDK6 at both RNA and protein levels upon H19 suppression. Bioinformatic analysis of the H19 sequence and the 3' untranslated region (3' UTR) of CDK6 transcripts showed several binding sites for microRNA-107 (miR-107), and the dual luciferase reporter assay confirmed their direct interaction with miR-107. Consistently, blockage of miR-107 activity alleviated the growth suppression phenotypes induced by H19 downregulation, suggesting that H19 serves as a molecular sponge for miR-107 to promote CDK6 expression and cell cycle progression. Together, this study demonstrates a mechanistic function of H19 in driving the proliferation of HCC cells and suggests H19 suppression as a novel approach for HCC treatment.
Collapse
Affiliation(s)
- ARCHITTAPON NOKKEAW
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - PANNATHON THAMJAMRASSRI
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - NAPHAT CHANTARAVISOOT
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - PISIT TANGKIJVANICH
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - CHAIYABOOT ARIYACHET
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
23
|
Dong JG, Chen MR, Rao D, Zhang N, He S, Na L. Genome-wide analysis of long noncoding RNA profiles in pseudorabies-virus-infected PK15 cells. Arch Virol 2023; 168:240. [PMID: 37668724 DOI: 10.1007/s00705-023-05859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Recently, an increasing number of studies have shown that long noncoding RNAs (lncRNAs) are involved in host metabolism after infection with pseudorabies virus (PRV). In our study, via RNA sequencing analysis, a total of 418 mRNAs, 137 annotated lncRNAs, and 312 new lncRNAs were found to be differentially expressed. These lncRNAs were closely associated with metabolic regulation and immunity-related signalling pathways, including the T-cell receptor signalling pathway, chemokine signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway, TNF signalling pathway, Ras signalling pathway, calcium signalling pathway, and phosphatidylinositol signalling system. Real-time PCR indicated that several mRNAs and lncRNAs involved in the regulation of the immune effector process, T-cell receptor signalling pathway, TNF signalling pathway, MAPK signalling pathway, and chemokine signalling pathways were significantly expressed. These mRNAs and lncRNAs might play a role in PRV infection.
Collapse
Affiliation(s)
- Jian-Guo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ming-Rui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ning Zhang
- Jiangsu Vocational College Agriculture and Forestry, Jurong, 212400, China
- Henan Fengyuan Hepu Agriculture and Animal Husbandry Co. LTD, Zhumadian, 463900, China
| | - Shuhai He
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lei Na
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
24
|
Wu S, Wu Y, Deng S, Lei X, Yang X. Emerging roles of noncoding RNAs in human cancers. Discov Oncol 2023; 14:128. [PMID: 37439905 DOI: 10.1007/s12672-023-00728-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Studies have found that RNA encoding proteins only account for a small part of the total number, most RNA is non-coding RNA, and non-coding RNA may affect the occurrence and development of human cancers by affecting gene expression, therefore play an important role in human pathology. At present, ncRNAs studied include miRNA, circRNA, lncRNA, piRNA, and snoRNA, etc. After decades of research, the basic role of these ncRNAs in many cancers has been clear. As far as we know, the role of miRNAs in cancer is one of the hottest research directions, however, it is also found that the imbalance of ncRNAs will affect the occurrence of gastric cancer, breast cancer, lung cancer, meanwhile, it may also affect the prognosis of these cancers. Therefore, the study of ncRNAs in cancers may help to find new cancer diagnostic and treatment methods. Here, we reviewed the biosynthesis and characteristics of miRNA, cricRNA, and lncRNA etc., their roles in human cancers, as well as the mechanism through which these ncRNAs affect human cancers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
26
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
27
|
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ, Lin ZJ. Cell Cycle-Related lncRNAs as Innovative Targets to Advance Cancer Management. Cancer Manag Res 2023; 15:547-561. [PMID: 37426392 PMCID: PMC10327678 DOI: 10.2147/cmar.s407371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) longer than 200nt. They have complex biological functions and take part in multiple fundamental biological processes, such as cell proliferation, differentiation, survival and apoptosis. Recent studies suggest that lncRNAs modulate critical regulatory proteins involved in cancer cell cycle, such as cyclin, cell cycle protein-dependent kinases (CDK) and cell cycle protein-dependent kinase inhibitors (CKI) through different mechanisms. To clarify the role of lncRNAs in the regulation of cell cycle will provide new ideas for design of antitumor therapies which intervene with the cell cycle progression. In this paper, we review the recent studies about the controlling of lncRNAs on cell cycle related proteins such as cyclin, CDK and CKI in different cancers. We further outline the different mechanisms involved in this regulation and describe the emerging role of cell cycle-related lncRNAs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao-Ru Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Yan-Fei Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Li-Jie Zhang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhi-Juan Lin
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
28
|
Shree B, Das K, Sharma V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. CANCER PATHOGENESIS AND THERAPY 2023; 1:195-204. [PMID: 38327834 PMCID: PMC10846338 DOI: 10.1016/j.cpt.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2024]
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Despite aggressive therapy involving surgery and hormonal treatments, the recurrence and emergence of metastatic castration-resistant prostate cancer (CRPCa) remain a major challenge. Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway is crucial to PCa development and progression. This also contributes to androgen receptor activation and the emergence of CRPC. In addition, TGF-β signaling regulates long non-coding RNA (lncRNA) expression in multiple cancers, including PCa. Here, we discuss the complex regulatory network of lncRNAs and TGF-β signaling in PCa and their potential applications in diagnosing, prognosis, and treating PCa. Further investigations on the role of lncRNAs in the TGF-β pathway will help to better understand PCa pathogenesis.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koyel Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
29
|
Zhao X, Yuan J, Jia J, Zhang J, Liu J, Chen Q, Li T, Wu Z, Wu H, Miao X, Wu T, Li B, Cheng X. Role of non‑coding RNAs in cartilage endplate (Review). Exp Ther Med 2023; 26:312. [PMID: 37273754 PMCID: PMC10236100 DOI: 10.3892/etm.2023.12011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiwen Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
30
|
Liu S, Zhou J, Ye X, Chen D, Chen W, Lin Y, Chen Z, Chen B, Shang J. A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development. Leukemia 2023; 37:1421-1434. [PMID: 37157016 DOI: 10.1038/s41375-023-01923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) occur in up to 25% of acute myeloid leukemia (AML) patients and indicate a very poor prognosis. The role of long noncoding RNAs (lncRNAs) in FLT3-ITD AML progression remains unexplored. We identified a novel lncRNA, SNHG29, whose expression is specifically regulated by the FLT3-STAT5 signaling pathway and is abnormally down-regulated in FLT3-ITD AML cell lines. SNHG29 functions as a tumor suppressor, significantly inhibiting FLT3-ITD AML cell proliferation and decreasing sensitivity to cytarabine in vitro and in vivo models. Mechanistically, we demonstrated that SNHG29's molecular mechanism is EP300-binding dependent and identified the EP300-interacting region of SNHG29. SNHG29 modulates genome-wide EP300 genomic binding, affecting EP300-mediated histone modification and consequently influencing the expression of varies downstream AML-associated genes. Our study uncovers a novel molecular mechanism for SNHG29 in mediating FLT3-ITD AML biological behaviors through epigenetic modification, suggesting that SNHG29 could be a potential therapeutic target for FLT3-ITD AML.
Collapse
Affiliation(s)
- Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital; College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Zhou
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiangling Ye
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Danni Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Weimin Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhizhong Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Biyun Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jin Shang
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Swigonska S, Nynca A, Molcan T, Jablonska M, Ciereszko RE. Knock-down of aryl hydrocarbon receptor (AhR) affects the lncRNA-mediated response of porcine granulosa cells (AVG-16 cell line) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Anim Reprod Sci 2023; 255:107277. [PMID: 37315452 DOI: 10.1016/j.anireprosci.2023.107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Recently, we found that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) - the most toxic dioxin - affected multiple cellular processes in AhR-knocked-down granulosa cells, including the expression of genes and the abundance of proteins. Such alterations may imply the involvement of noncoding RNAs in the remodeling of intracellular regulatory tracks. The aims of the current study were to examine the effects of TCDD on the expression of lncRNAs in AhR-knocked-down granulosa cells of pigs and to indicate potential target genes for differentially expressed lncRNAs (DELs). In the current study, the abundance of AhR protein in porcine granulosa cells was reduced by 98.9% at 24 h after AhR targeted siRNA transfection. Fifty-seven DELs were identified in the AhR-deficient cells treated with TCDD mostly after 3 h (3 h: 56, 12 h: 0, 24 h: 2) after the dioxin treatment. This number was 2.5 times higher than that of intact TCDD-treated granulosa cells. The high number of DELs identified in the early stages of the TCDD action may be associated with a rapid defensive response of cells to harmful actions of this persistent environmental pollutant. In contrast to intact TCDD-treated granulosa cells, AhR-deficient cells were characterized by a broader representation of DELs enriched in GO terms related to the immune response and regulation of transcription and cell cycle. The obtained results support the notion that TCDD may act in an AhR-independent manner. They increase our knowledge on the intracellular mechanism of TCDD action and may in the future contribute to better coping with detrimental consequences of human and animal exposure to TCDD.
Collapse
Affiliation(s)
- Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland.
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Tomasz Molcan
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Monika Jablonska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Poland.
| | - Renata E Ciereszko
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland; Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
32
|
Wang K, Gong M, Zhao S, Lai C, Zhao L, Cheng S, Xia M, Li Y, Wang K, Sun H, Zhu P, Zhou Y, Ao Q, Deng X. A novel lncRNA DFRV plays a dual function in influenza A virus infection. Front Microbiol 2023; 14:1171423. [PMID: 37303776 PMCID: PMC10248499 DOI: 10.3389/fmicb.2023.1171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been associated with a variety of biological activities, including immune responses. However, the function of lncRNAs in antiviral innate immune responses are not fully understood. Here, we identified a novel lncRNA, termed dual function regulating influenza virus (DFRV), elevating in a dose- and time-dependent manner during influenza A virus (IAV) infection, which was dependent on the NFκB signaling pathway. Meanwhile, DFRV was spliced into two transcripts post IAV infection, in which DFRV long suppress the viral replication while DFRV short plays the opposite role. Moreover, DFRV regulates IL-1β and TNF-α via activating several pro-inflammatory signaling cascades, including NFκB, STAT3, PI3K, AKT, ERK1/2 and p38. Besides, DFRV short can inhibit DFRV long expression in a dose-dependent manner. Collectively, our studies reveal that DFRV may act as a potential dual-regulator to preserve innate immune homeostasis in IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meiliang Gong
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sumin Zhao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengcai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingna Zhao
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Sijie Cheng
- Center for Disease Prevention and Control, Changde, Hunan, China
| | - Min Xia
- Department of Vascular Cell Biology, Max Plank Institute for Molecular Biomedicine, Münster, Germany
| | - Yuru Li
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Wang
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Heqiang Sun
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Zhou
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiangguo Ao
- Department of Nephrology, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinli Deng
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Dabi Y, Favier A, Razakamanantsoa L, Suisse S, Marie Y, Touboul C, Ferrier C, Bendifallah S, Daraï E. Value of non-coding RNAs to assess lymph node status in cervical cancer. Front Oncol 2023; 13:1144672. [PMID: 37234986 PMCID: PMC10206114 DOI: 10.3389/fonc.2023.1144672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cervical cancer (CC) is the fourth cancer in women and is the leading cause of cancer death in 42 countries. Lymph node metastasis is a determinant prognostic factor, as underlined in the latest FIGO classification. However, assessment of lymph node status remains difficult, despite the progress of imaging such as PET-CT and MRI. In the specific setting of CC, all data underlined the need for new biomarkers easily available to assess lymph node status. Previous studies have underlined the potential value of ncRNA expression in gynecological cancers. In this review, we aimed to evaluate the contribution of ncRNAs in tissue and biofluid samples to determine lymph node status in CC with potential impact on both surgical and adjuvant therapies. In tissue samples, our analysis found that there are arguments to support the role of ncRNAs in physiopathology, differential diagnosis from normal tissue, preinvasive and invasive tumors. In biofluids, despite small studies especially concerning miRNAs expression, promising data opens up new avenue to establish a non-invasive signature for lymph node status as well as a tool to predict response to neo- and adjuvant therapies, thus improving management algorithm of patients with CC.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Amelia Favier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Léo Razakamanantsoa
- Sorbonne University, Inserm UMR S 938, Centre de recherche de saint Antoine (CRSA), Hôpital Saint Antoine, Paris, France
- Department of Radiology imaging and Interventional speciality imaging, Tenon Hospital, Paris, France
| | | | - Yannick Marie
- Gentoyping and Sequencing core facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cyril Touboul
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Clément Ferrier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Sofiane Bendifallah
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
34
|
Hu Q, Li Y, Li D, Yuan Y, Wang K, Yao L, Cheng Z, Han T. Amino acid metabolism regulated by lncRNAs: the propellant behind cancer metabolic reprogramming. Cell Commun Signal 2023; 21:87. [PMID: 37127605 PMCID: PMC10152737 DOI: 10.1186/s12964-023-01116-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023] Open
Abstract
Metabolic reprogramming is one of the main characteristics of cancer cells and plays pivotal role in the proliferation and survival of cancer cells. Amino acid is one of the key nutrients for cancer cells and many studies have focused on the regulation of amino acid metabolism, including the genetic alteration, epigenetic modification, transcription, translation and post-translational modification of key enzymes in amino acid metabolism. Long non-coding RNAs (lncRNAs) are composed of a heterogeneous group of RNAs with transcripts of more than 200 nucleotides in length. LncRNAs can bind to biological molecules such as DNA, RNA and protein, regulating the transcription, translation and post-translational modification of target genes. Now, the functions of lncRNAs in cancer metabolism have aroused great research interest and significant progress has been made. This review focuses on how lncRNAs participate in the reprogramming of amino acid metabolism in cancer cells, especially glutamine, serine, arginine, aspartate, cysteine metabolism. This will help us to better understand the regulatory mechanism of cancer metabolic reprogramming and provide new ideas for the development of anti-cancer drugs. Video Abstract.
Collapse
Affiliation(s)
- Qifan Hu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006, Jiangxi, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330200, Jiangxi, China
- School of Basic Medical Sciences, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Yutong Li
- Nanchang Vocational University, Nanchang City, 330500, Jiangxi, China
| | - Dan Li
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China
| | - Yi Yuan
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Keru Wang
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Lu Yao
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China.
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China.
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006, Jiangxi, China.
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330200, Jiangxi, China.
| |
Collapse
|
35
|
Li L, Guo N, Liu T, Yang S, Hu X, Shi S, Li S. Genome-wide identification and characterization of long non-coding RNA in barley roots in response to Piriformospora indica colonization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111666. [PMID: 36858207 DOI: 10.1016/j.plantsci.2023.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Currently, there is very limited information about long noncoding RNAs (lncRNAs) found in barley. It remains unclear whether barley lncRNAs are responsive to Piriformospora indica (P. indica) colonization.We found that barley roots exhibited fast development and that large roots branched after P. indica colonization. Genome-wide high-throughput RNA-seq and bioinformatic analysis showed that 4356 and 5154 differentially expressed LncRNAs (DELs) were found in response to P. indica at 3 and 7 days after colonization (dai), respectively, and 2456 DELs were found at 7 dai compared to 3 dai. Based on the coexpression correlation of lncRNAmRNA, we found that 98.6% of lncRNAs were positively correlated with 3430 mRNAs at 3 dai and 7 dai. Further GO analysis showed that 30 lncRNAs might be involved in the regulation of gene transcription; 23 lncRNAs might participate in cell cycle regulation. Moreover, the metabolite analysis indicated that chlorophyll a, sucrose, protein, gibberellin, and auxin were in accordance with the results of the transcriptome, and the respective lncRNAs were positively correlated with these target RNAs. Gene silencing suggested that lncRNA TCONS_00262342 is probably a key regulator of GA3 synthesis pathway, which participates in P. indica and barley interactions. We concluded that acting as a molecular material basis and resource, lncRNAs respond to P. indica colonization by regulating metabolite content in barley and coordinate the complex regulatory process of higher life by constructing highly positive correlations with their target mRNAs.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Nannan Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tiance Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinting Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Si Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
36
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
37
|
Guardia T, Zhang Y, Thompson KN, Lee SJ, Martin SS, Konstantopoulos K, Kontrogianni-Konstantopoulos A. OBSCN restoration via OBSCN-AS1 long-noncoding RNA CRISPR-targeting suppresses metastasis in triple-negative breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2215553120. [PMID: 36877839 PMCID: PMC10089184 DOI: 10.1073/pnas.2215553120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
Mounting evidence implicates the giant, cytoskeletal protein obscurin (720 to 870 kDa), encoded by the OBSCN gene, in the predisposition and development of breast cancer. Accordingly, prior work has shown that the sole loss of OBSCN from normal breast epithelial cells increases survival and chemoresistance, induces cytoskeletal alterations, enhances cell migration and invasion, and promotes metastasis in the presence of oncogenic KRAS. Consistent with these observations, analysis of Kaplan-Meier Plotter datasets reveals that low OBSCN levels correlate with significantly reduced overall and relapse-free survival in breast cancer patients. Despite the compelling evidence implicating OBSCN loss in breast tumorigenesis and progression, its regulation remains elusive, limiting any efforts to restore its expression, a major challenge given its molecular complexity and gigantic size (~170 kb). Herein, we show that OBSCN-Antisense RNA 1 (OBSCN-AS1), a novel nuclear long-noncoding RNA (lncRNA) gene originating from the minus strand of OBSCN, and OBSCN display positively correlated expression and are downregulated in breast cancer biopsies. OBSCN-AS1 regulates OBSCN expression through chromatin remodeling involving H3 lysine 4 trimethylation enrichment, associated with open chromatin conformation, and RNA polymerase II recruitment. CRISPR-activation of OBSCN-AS1 in triple-negative breast cancer cells effectively and specifically restores OBSCN expression and markedly suppresses cell migration, invasion, and dissemination from three-dimensional spheroids in vitro and metastasis in vivo. Collectively, these results reveal the previously unknown regulation of OBSCN by an antisense lncRNA and the metastasis suppressor function of the OBSCN-AS1/OBSCN gene pair, which may be used as prognostic biomarkers and/or therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Talia Guardia
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| |
Collapse
|
38
|
Shiny transcriptional junk: lncRNA-derived peptides in cancers and immune responses. Life Sci 2023; 316:121434. [PMID: 36706831 DOI: 10.1016/j.lfs.2023.121434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
By interacting with DNA, RNA, and proteins, long noncoding RNAs (lncRNAs) have been linked to several pathological states. LncRNA-derived peptides, as a novel modality of action of lncRNAs, have recently become a research hotspot. An increasing body of evidence has demonstrated the important role of these peptides in carcinogenesis and cancer progression and immune response. This review first describes lncRNA-derived peptides, the regulators that control their translation, and the roles of these peptides in multiple biological processes and disease states including cancers. In the following section, we comprehensively analyzed the significant role lncRNA-derived peptide played in the immune response. This review provides fresh perspectives on the biological role of lncRNAs and their relationship with diseases, particularly with cancers and the immune response, providing a theoretical basis for these lncRNA-derived peptides as therapeutic and diagnostic targets in cancers and inflammatory diseases.
Collapse
|
39
|
Gholizadeh O, Akbarzadeh S, Moein M, Yasamineh S, Hosseini P, Afkhami H, Amini P, Dadashpour M, Tahavvori A, Eslami M, Hossein Taherian M, Poortahmasebi V. The role of non-coding RNAs in the diagnosis of different stages (HCC, CHB, OBI) of hepatitis B infection. Microb Pathog 2023; 176:105995. [PMID: 36681203 DOI: 10.1016/j.micpath.2023.105995] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Despite the availability of an effective hepatitis B virus (HBV) vaccine and universal immunization schedules, HBV has remained a health problem in various stages such as occult hepatitis B infection (OBI), chronic hepatitis B (CHB), and hepatocellular carcinoma (HCC), which is considered one of the possible phases during chronic HBV infection. OBI is defined as the persistence of HBV genomes in hepatocytes of patients with a negative HBV surface antigen (HBsAg) test and detectable or undetectable HBV DNA in the blood. OBI is occasionally associated with infection caused by mutant viruses that produce a modified HBsAg that is undetected by diagnostic procedures or with replication-defective variations. Many aspects of HBV (OBI more than any other stage) including prevalence, pathobiology, and clinical implications has remained controversial. According to a growing body of research, non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been linked to the development and progression of a number of illnesses, including viral infectious disorders. Despite a shortage of knowledge regarding the expression and biological activities of lncRNAs and miRNAs in HBV infection, Hepatitis B remains a major global public health concern. This review summarizes the role of lncRNAs in the diagnosis and treatment of different stages of hepatitis B infection.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Sama Akbarzadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Paria Amini
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amir Tahavvori
- Internal Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Li Z, Fang Y, Zhang Y, Zhou X. RNA-seq analysis of differentially expressed LncRNAs from leishmaniasis patients compared to uninfected humans. Acta Trop 2023; 238:106738. [PMID: 36379256 DOI: 10.1016/j.actatropica.2022.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/02/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022]
Abstract
Leishmaniasis is a parasitic disease that seriously endangers human health. Furthermore, among the parasitic diseases, leishmaniasis is the third most common cause of death after malaria and schistosomiasis. However, the potential function of LncRNAs in leishmaniasis remain unclear. This study aimed to explore the differentially expressed LncRNAs in leishmaniasis. The sera of leishmaniasis patients and uninfected persons for controls were obtained and analyzed by high-throughput sequencing. Moreover, the expression of key LncRNAs was detected by qPCR. The results showed that 970 differentially expressed LncRNAs and 1692 differentially expressed mRNAs were screened compared to control groups. Then, 520 target genes were identified by using bioinformation analysis and the ENCORI database. The bioinformatics analysis revealed that the differentially expressed target genes were enriched in autophagy animal, FoxO signaling pathway, mTOR signaling pathway, and apoptosis, et al. Among those differentially expressed LncRNAs, nine key LncRNAs were selected (MALAT1, NUTM2A-AS1, and LINC00963 had high expression; LINC00622, MAPKAPK5-AS1, LINC02289, XPC-AS1, ZFAS1 and SNHG5 had low expression) by qPCR. This study suggests that different expressions of LncRNAs may involve in the potential function in leishmaniasis and provide a novel insight for diagnosis of this zoonotic disease.
Collapse
Affiliation(s)
- Zhongqiu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaonong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
41
|
Wang Y, Zhao Y, Guo W, Yadav GS, Bhaskarla C, Wang Z, Wang X, Li S, Wang Y, Chen Y, Pattarayan D, Xie W, Li S, Lu B, Kammula US, Zhang M, Yang D. Genome-wide gain-of-function screening characterized lncRNA regulators for tumor immune response. SCIENCE ADVANCES 2022; 8:eadd0005. [PMID: 36475797 PMCID: PMC9728976 DOI: 10.1126/sciadv.add0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
The majority of lncRNAs' roles in tumor immunology remain elusive. This project performed a CRISPR activation screening of 9744 lncRNAs in melanoma cells cocultured with human CD8+ T cells. We identified 16 lncRNAs potentially regulating tumor immune response. Further integrative analysis using tumor immunogenomics data revealed that IL10RB-DT and LINC01198 are significantly correlated with tumor immune response and survival in melanoma and breast cancer. Specifically, IL10RB-DT suppresses CD8+ T cells activation via inhibiting IFN-γ-JAK-STAT1 signaling and antigen presentation in melanoma and breast cancer cells. On the other hand, LINC01198's up-regulation sensitizes the killing of tumor cells by CD8+ T cells. Mechanistically, LINC01198 interacts and activates NF-κB component p65 to trigger the type I and type II interferon responses in melanoma and breast cancer cells. Our study systematically characterized novel lncRNAs involved in tumor immune response.
Collapse
Affiliation(s)
- Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Weiwei Guo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Chetana Bhaskarla
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaofei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Udai S. Kammula
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
Cai X, Liang X, Wang K, Liu Y, Hao M, Li H, Dai X, Ding L. Pyroptosis-related lncRNAs: A novel prognosis signature of colorectal cancer. Front Oncol 2022; 12:983895. [PMID: 36531020 PMCID: PMC9748486 DOI: 10.3389/fonc.2022.983895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 08/25/2023] Open
Abstract
Pyroptosis is a newly discovered programmed cell death mechanism involved in tumorigenesis. Long non-coding RNAs (lncRNAs) have been implicated in colorectal cancer (CRC). However, the potential role of pyroptosis-related lncRNAs (PRLs) in CRC remains unelucidated. Therefore, we retrieved transcriptomic data of CRC patients from The Cancer Genome Atlas (TCGA). With the use of univariate and multivariate Cox proportional hazards regression models and the random forest algorithm, a new risk model was constructed based on eight PRLs: Z99289.2, FENDRR, CCDC144NL-ASL, TEX41, MNX1-AS1, NKILA, LINC02798, and LINC02381. Then, according to the Kaplan-Meier plots, the relationship of PRLs with the survival of CRC patients was explored and validated with our risk model in external datasets (Gene Expression Omnibus (GEO) databases; GEO17536, n = 177, and GSE161158, n = 250). To improve its clinical utility, a nomogram combining PRLs that could predict the clinical outcome of CRC patients was established. A full-spectrum immune landscape of CRC patients mediated by PRLs could be described. The PRLs were stratified into two molecular subtypes involved in immune modulators, immune infiltration of tumor immune microenvironment, and inflammatory pathways. Afterward, Tumor Immune Dysfunction and Exclusion (TIDE) and microsatellite instability (MSI) scores were analyzed. Three independent methods were applied to predict PRL-related sensitivity to chemotherapeutic drugs. Our comprehensive analysis of PRLs in CRC patients demonstrates a potential role of PRLs in predicting response to treatment and prognosis of CRC patients, which may provide a better understanding of molecular mechanisms underlying CRC pathogenesis and facilitate the development of effective immunotherapy.
Collapse
Affiliation(s)
- Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022). Biomolecules 2022; 12:biom12121774. [PMID: 36551201 PMCID: PMC9775338 DOI: 10.3390/biom12121774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. It is also the main cause of blindness caused by multicellular damage involving retinal endothelial cells, ganglial cells, and pigment epithelial cells in adults worldwide. Currently available drugs for DR do not meet the clinical needs; thus, new therapeutic targets are warranted. Noncoding RNAs (ncRNAs), a new type of biomarkers, have attracted increased attention in recent years owing to their crucial role in the occurrence and development of DR. NcRNAs mainly include microRNAs, long noncoding RNAs, and circular RNAs, all of which regulate gene and protein expression, as well as multiple biological processes in DR. NcRNAs, can regulate the damage caused by various retinal cells; abnormal changes in the aqueous humor, exosomes, blood, tears, and the formation of new blood vessels. This study reviews the different sources of the three ncRNAs-microRNAs, long noncoding RNAs, and circular RNAs-involved in the pathogenesis of DR and the related drug development progress. Overall, this review improves our understanding of the role of ncRNAs in various retinal cells and offers therapeutic directions and targets for DR treatment.
Collapse
|
44
|
Li J, Wu X, Ma H, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. New developments in non-exosomal and exosomal ncRNAs in coronary artery disease. Epigenomics 2022; 14:1355-1372. [PMID: 36514887 DOI: 10.2217/epi-2022-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim & methods: Non-exosomal and exosomal ncRNAs have been reported to be involved in the regulation of coronary artery disease (CAD). Therefore, to explore the biological effects of non-exosomal/exosomal ncRNAs in CAD, the authors searched for studies published in the last 3 years on these ncRNAs in CAD and summarized their functions and mechanisms. Results: The authors summarized 120 non-exosomal ncRNAs capable of regulating CAD progression. In clinical studies, 47 non-exosomal and nine exosomal ncRNAs were able to serve as biomarkers for the diagnosis of CAD. Conclusion: Non-exosomal/exosomal ncRNAs are not only able to serve as biomarkers for CAD diagnosis but can also regulate CAD progression through ceRNA mechanisms and are a potential target for early clinical intervention in CAD.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xinyu Wu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Haocheng Ma
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Guihu Sun
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Peng Ding
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Si Lu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lijiao Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ping Yang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yunzhu Peng
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jingyun Fu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Luqiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
45
|
Dumitru A, Dobrica EC, Croitoru A, Cretoiu SM, Gaspar BS. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232012067. [PMID: 36292922 PMCID: PMC9603705 DOI: 10.3390/ijms232012067] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is considered one of the most aggressive and deadliest gynecological malignancies worldwide. Unfortunately, the therapeutic methods that are considered the gold standard at this moment are associated with frequent recurrences. Survival in ovarian cancer is associated with the presence of a high number of intra tumor infiltrating lymphocytes (TILs). Therefore, immunomodulation is considered to have an important role in cancer treatment, and immune checkpoint inhibitors may be useful for restoring T cell-mediated antitumor immunity. However, the data presented in the literature until now are not sufficient to allow for the identification and selection of patients who really respond to immunotherapy among those with ovarian cancer. Although there are some studies with favorable results, more prospective trials are needed in this sense. This review focuses on the current and future perspectives of PD-1/L1 blockade in ovarian cancer and analyzes the most important immune checkpoint inhibitors used, with the aim of achieving optimal clinical outcomes. Future studies and trials are needed to maximize the efficacy of immune checkpoint blockade therapy in ovarian cancer, as well as in all cancers, in general.
Collapse
Affiliation(s)
- Adrian Dumitru
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Elena-Codruta Dobrica
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Dermatology, Elias University Hospital, 011461 Bucharest, Romania
| | - Adina Croitoru
- Department of Medical Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Oncology, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence:
| | - Bogdan Severus Gaspar
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
46
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
47
|
Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. Int J Biol Macromol 2022; 222:1676-1687. [PMID: 36179873 DOI: 10.1016/j.ijbiomac.2022.09.209] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) were, once, viewed as "noise" for transcription. Recently, many lncRNAs are functionally linked to several human disorders, including cancer. Coiled-Coil Domain Containing 144 N-Terminal-Like antisense1 (CCDC144NL-AS1) is a newly discovered cytosolic lncRNA. Aberrant CCDC144NL-AS1 expression was discovered in hepatocellular carcinoma (HCC), ovarian cancer (OC), gastric cancer (GC), non-small cell lung cancer (NSCLC), and osteosarcoma. CCDC144NL-AS1 could be a promising prognostic biological marker and therapeutic target for cancer. In this review, we will collect and highlight the available information about CCDC144NL-AS1 role in various cancers. Moreover, we will discuss the diagnostic and prognostic utility of CCDC144NL-AS1 as a new molecular biomarker for several human malignancies, besides its potential therapeutic importance.
Collapse
|
48
|
Kanojia D, Kirtonia A, Srujana NSV, Jeevanandan SP, Shyamsunder P, Sampath SS, Dakle P, Mayakonda A, Kaur H, Yanyi J, Koeffler HP, Garg M. Transcriptome analysis identifies TODL as a novel lncRNA associated with proliferation, differentiation, and tumorigenesis in liposarcoma through FOXM1 Running Title: TODL lncRNA as a potential therapeutic target for liposarcoma. Pharmacol Res 2022; 185:106462. [PMID: 36167276 DOI: 10.1016/j.phrs.2022.106462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022]
Abstract
Liposarcoma, the most common soft tissue sarcoma, is a group of fat cell mesenchymal tumors with different histological subtypes. The dysregulation of long non-coding RNAs (lncRNAs) has been observed in human cancers including a few studies in sarcoma. However, the global transcriptome analysis and potential role of lncRNAs remain unexplored in liposarcoma. The present investigation uncovers the transcriptomic profile of liposarcoma by RNA sequencing to gain insight into the global transcriptional changes in liposarcoma. Our RNA sequencing analysis has identified that many oncogenic lncRNAs are differentially expressed in different subtypes of liposarcoma including MALAT1, PVT1, SNHG15, LINC00152, and MIR210HG. Importantly, we identified a highly overexpressed, unannotated, and novel lncRNA in dedifferentiated liposarcomas. We have named it TODL, transcript overexpressed in dedifferentiated liposarcoma. TODL lncRNA displayed significantly higher expression in dedifferentiated liposarcoma cell lines and patient samples. Interestingly, functional studies revealed that TODL lncRNA has an oncogenic function in liposarcoma cells by regulating proliferation, cell cycle, apoptosis, differentiation, and tumorigenesis in the murine model. Silencing of TODL lncRNA highlighted the enrichment of several key oncogenic signaling pathways including cell cycle, transcriptional misregulation, FOXM1 network, p53 signaling, PLK1 signaling, FoxO, and signaling Aurora signaling pathways. RNA pull-down assay revealed the binding of TODL lncRNA with FOXM1, an oncogenic transcription factor, and the key regulator of the cell cycle. Silencing of TODL lncRNA also induces adipogenesis in dedifferentiated liposarcomas. Altogether, our finding indicates that TODL could be utilized as a novel, specific diagnostic biomarker, and a pharmacological target for therapeutic development in controlling aggressive and metastatic dedifferentiated liposarcomas.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | | | | | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Harvinder Kaur
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Jiang Yanyi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, 90048, USA
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
49
|
Zhu CY, Zheng Q, Pan QQ, Jing J, Qin SQ, Lou MY, Yang YH, Wei JB, Li S, Fang FG, Liu Y, Ling YH. Analysis of lncRNA in the skeletal muscle of rabbits at different developmental stages. Front Vet Sci 2022; 9:948929. [PMID: 36213392 PMCID: PMC9533132 DOI: 10.3389/fvets.2022.948929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
It is universally acknowledged that lncRNA plays an important role in the regulation of animal skeletal muscle development regulation. However, there is a lack of relevant research on lncRNA in rabbit skeletal muscle development. Thus, we explored the expression profiles of lncRNA in rabbits at three growth stages (2-week-old fetus, 6-week-old post-weaning, and 6-month-old adult) using RNA-seq. A total of 554 differentially expressed lncRNAs (235 up- and 319 down-regulated) were found between the post-weaning and fetus groups and 19 (7 up- and 12 down-regulated) between the post-weaning and adult groups and 429 (115 up- and 314 down-regulated) between the fetus and adult. The enrichment pathways in the post-weaning and fetus groups were mainly concentrated at AMPK and PI3K-Akt signaling pathways, and the co-expression results revealed that LINC-2903, LINC-2374, LINC-8591 plays a role in early maintenance of skeletal muscle development. The enriched pathways in the fetus and adult groups were mainly involved in PI3K-Akt signaling pathways with a strong association found in mTOR signaling pathways. Analysis of the co-expression results suggests that LINC-5617 may be involved in the proliferation of embryonic skeletal muscle cells, and that LINC-8613 and LINC-8705 may provide energy for postnatal skeletal muscle development. The specific roles of different lncRNAs in different developmental stages of New Zealand White rabbits obtained. This will contribute to the subsequent study on the regulatory mechanism of muscle development in New Zealand White rabbits.
Collapse
Affiliation(s)
- Cuiyun Y. Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Qianqian Q. Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Shuaiqi Q. Qin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Mengyu Y. Lou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Yuhang H. Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Jinbo B. Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Shuang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Fugui G. Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Yinghui H. Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
50
|
Manukonda R, Yenuganti VR, Nagar N, Dholaniya PS, Malpotra S, Attem J, Reddy MM, Jakati S, Mishra DK, Reddanna P, Poluri KM, Vemuganti GK, Kaliki S. Comprehensive Analysis of Serum Small Extracellular Vesicles-Derived Coding and Non-Coding RNAs from Retinoblastoma Patients for Identifying Regulatory Interactions. Cancers (Basel) 2022; 14:cancers14174179. [PMID: 36077715 PMCID: PMC9454787 DOI: 10.3390/cancers14174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The present study employed nanoparticle tracking analysis, transmission electron microscopy, immunoblotting, RNA sequencing, and quantitative real-time PCR validation to characterize serum-derived small extracellular vesicles (sEVs) from RB patients and age-matched controls. Bioinformatics methods were used to analyze functions, and regulatory interactions between coding and non-coding (nc) sEVs RNAs. The results revealed that the isolated sEVs are round-shaped with a size < 150 nm, 5.3 × 1011 ± 8.1 particles/mL, and zeta potential of 11.1 to −15.8 mV, and expressed exosome markers CD9, CD81, and TSG101. A total of 6514 differentially expressed (DE) mRNAs, 123 DE miRNAs, and 3634 DE lncRNAs were detected. Both miRNA-mRNA and lncRNA-miRNA-mRNA network analysis revealed that the cell cycle-specific genes including CDKNI1A, CCND1, c-MYC, and HIF1A are regulated by hub ncRNAs MALAT1, AFAP1-AS1, miR145, 101, and 16-5p. Protein-protein interaction network analysis showed that eye-related DE mRNAs are involved in rod cell differentiation, cone cell development, and retinol metabolism. In conclusion, our study provides a comprehensive overview of the RB sEV RNAs and regulatory interactions between them.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India or
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Shivani Malpotra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Jyothi Attem
- School of Medical Sciences, Science Complex, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India or
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India or
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Geeta K. Vemuganti
- School of Medical Sciences, Science Complex, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-40-68102502
| |
Collapse
|