1
|
Kuznetsova M, Lopatnikova J, Shevchenko J, Silkov A, Maksyutov A, Sennikov S. Cytotoxic Activity and Memory T Cell Subset Distribution of in vitro-Stimulated CD8 + T Cells Specific for HER2/neu Epitopes. Front Immunol 2019; 10:1017. [PMID: 31143180 PMCID: PMC6520647 DOI: 10.3389/fimmu.2019.01017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Minimal residual disease remaining after resection of primary tumors can lead to tumor recurrence and metastasis, increasing mortality and morbidity rates among cancer patients. Thus, there is a need for new technologies for recognition and elimination of single cancer cells remaining in a patient's body after radiation therapy, chemotherapy, or surgical resection. Effector CD8+ T cells, also commonly known as cytotoxic T lymphocytes (CTLs), play a key role in antitumor cellular immunity and, when properly activated, are able to effectively destroy tumor cells. The aims of this study were to obtain CD8+ CTLs specific for the HER2/neu epitopes E75 and E88 and to assess the cytotoxic activity and composition of these cells in terms of the distribution of memory T-cell subsets. We obtained HER2-specific CD8+ T cells and assessed T cell subset distribution among them including naive T cells (TN), central memory T cells (TCM), effector memory T cells (TEM), stem cell-like memory T cells (TSCM) and terminally-differentiated T cells (TEMRA) via eight-color flow cytometry. HER2-specific CTLs were largely (~40–50%) represented by TSCM cells, a population capable of mounting pronounced antitumor immune responses due to a combination of effector function and self-maintenance. In comparison with activated peripheral blood mononuclear cells (PBMCs) and bulk CD8+ T cells, HER2-specific CTLs exhibited greater cytotoxicity against the HER2-expressing human breast adenocarcinoma cell line MCF-7 and produced higher levels of IFN-γ in response to tumor cells. We also showed the presence of HER2-specific CTLs in healthy individuals and increase in them in HER2-positive breast cancer patients. Collectively, our results suggest that HER2-specific CD8+ T cells isolated using this approach could be used for adoptive T-cell transfer to eliminate tumor cells and prevent metastasis and relapse in patients with HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Maria Kuznetsova
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alexander Silkov
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Amir Maksyutov
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.,State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Ciáurriz M, Zabalza A, Beloki L, Mansilla C, Pérez-Valderrama E, Lachén M, Bandrés E, Olavarría E, Ramírez N. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell Mol Life Sci 2015; 72:4049-62. [PMID: 26174234 PMCID: PMC11113937 DOI: 10.1007/s00018-015-1986-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023]
Abstract
Approximately, up to 70 % of the human population is infected with cytomegalovirus (CMV) that persists for life in a latent state. In healthy people, CMV reactivation induces the expansion of CMV-specific T cells up to 10 % of the entire T cell repertoire. On the contrary, CMV infection is a major opportunistic viral pathogen that remains a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Due to the delayed CMV-specific immune recovery, the incidence of CMV reactivation during post-transplant period is very high. Several methods are currently available for the monitoring of CMV-specific responses that help in clinical monitoring. In this review, essential aspects in the immune recovery against CMV are discussed to improve the better understanding of the immune system relying on CMV infection and, thereby, helping the avoidance of CMV disease or reactivation following hematopoietic stem cell transplantation with severe consequences for the transplanted patients.
Collapse
Affiliation(s)
- Miriam Ciáurriz
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Estela Pérez-Valderrama
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Mercedes Lachén
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Eva Bandrés
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
- Immunity Unit, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hammersmith Hospital-Imperial College Healthcare NHS, London, UK
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
3
|
Beloki L, Ciaurriz M, Mansilla C, Zabalza A, Perez-Valderrama E, Samuel ER, Lowdell MW, Ramirez N, Olavarria E. Assessment of the effector function of CMV-specific CTLs isolated using MHC-multimers from granulocyte-colony stimulating factor mobilized peripheral blood. J Transl Med 2015; 13:165. [PMID: 25990023 PMCID: PMC4458005 DOI: 10.1186/s12967-015-0515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive transfer of CMV-specific T cells has shown promising results in preventing pathological effects caused by opportunistic CMV infection in immunocompromised patients following allogeneic hematopoietic stem cell transplantation. The majority of studies have used steady-state leukapheresis for CMV-reactive product manufacture, a collection obtained prior to or months after G-CSF mobilization, but the procurement of this additional sample is often not available in the unrelated donor setting. If the cellular product for adoptive immunotherapy could be generated from the same G-CSF mobilized collection, the problems associated with the additional harvest could be overcome. Despite the tolerogenic effects associated with G-CSF mobilization, recent studies described that CMV-primed T cells generated from mobilized donors remain functional. METHODS MHC-multimers are potent tools that allow the rapid production of antigen-specific CTLs. Therefore, in the present study we have assessed the feasibility and efficacy of CMV-specific CTL manufacture from G-CSF mobilized apheresis using MHC-multimers. RESULTS CMV-specific CTLs can be efficiently isolated from G-CSF mobilized samples with Streptamers and are able to express activation markers and produce cytokines in response to antigenic stimulation. However, this anti-viral functionality is moderately reduced when compared to non-mobilized products. CONCLUSIONS The translation of Streptamer technology for the isolation of anti-viral CTLs from G-CSF mobilized PBMCs into clinical practice would widen the number of patients that could benefit from this therapeutic strategy, although our results need to be taken into consideration before the infusion of antigen-specific T cells obtained from G-CSF mobilized samples.
Collapse
Affiliation(s)
- Lorea Beloki
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Miriam Ciaurriz
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Estela Perez-Valderrama
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Edward R Samuel
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Mark W Lowdell
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Natalia Ramirez
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Eduardo Olavarria
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain. .,Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA (Navarra's Health Research Institute), Pamplona, Spain.
| |
Collapse
|
4
|
Beloki L, Ciaurriz M, Mansilla C, Zabalza A, Perez-Valderrama E, Samuel ER, Lowdell MW, Ramirez N, Olavarria E. CMV-specific T cell isolation from G-CSF mobilized peripheral blood: depletion of myeloid progenitors eliminates non-specific binding of MHC-multimers. J Transl Med 2014; 12:317. [PMID: 25406933 PMCID: PMC4243324 DOI: 10.1186/s12967-014-0317-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. METHODS In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. RESULTS After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. CONCLUSIONS G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired alloreactive cell infusion.
Collapse
Affiliation(s)
- Lorea Beloki
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Miriam Ciaurriz
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Estela Perez-Valderrama
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Edward R Samuel
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Mark W Lowdell
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Natalia Ramirez
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Eduardo Olavarria
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain. .,Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, Pamplona, Spain.
| |
Collapse
|
5
|
Beloki L, Ramírez N, Olavarría E, Samuel ER, Lowdell MW. Manufacturing of highly functional and specific T cells for adoptive immunotherapy against virus from granulocyte colony-stimulating factor–mobilized donors. Cytotherapy 2014; 16:1390-408. [DOI: 10.1016/j.jcyt.2014.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/08/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|