1
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
2
|
Ferrer-Diaz AI, Sinha G, Petryna A, Gonzalez-Bermejo R, Kenfack Y, Adetayo O, Patel SA, Hooda-Nehra A, Rameshwar P. Revealing role of epigenetic modifiers and DNA oxidation in cell-autonomous regulation of Cancer stem cells. Cell Commun Signal 2024; 22:119. [PMID: 38347590 PMCID: PMC10863086 DOI: 10.1186/s12964-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Breast cancer cells (BCCs) can remain undetected for decades in dormancy. These quiescent cells are similar to cancer stem cells (CSCs); hence their ability to initiate tertiary metastasis. Dormancy can be regulated by components of the tissue microenvironment such as bone marrow mesenchymal stem cells (MSCs) that release exosomes to dedifferentiate BCCs into CSCs. The exosomes cargo includes histone 3, lysine 4 (H3K4) methyltransferases - KMT2B and KMT2D. A less studied mechanism of CSC maintenance is the process of cell-autonomous regulation, leading us to examine the roles for KMT2B and KMT2D in sustaining CSCs, and their potential as drug targets. METHODS Use of pharmacological inhibitor of H3K4 (WDR5-0103), knockdown (KD) of KMT2B or KMT2D in BCCs, real time PCR, western blot, response to chemotherapy, RNA-seq, and flow cytometry for circulating markers of CSCs and DNA hydroxylases in BC patients. In vivo studies using a dormancy model studied the effects of KMT2B/D to chemotherapy. RESULTS H3K4 methyltransferases sustain cell autonomous regulation of CSCs, impart chemoresistance, maintain cycling quiescence, and reduce migration and proliferation of BCCs. In vivo studies validated KMT2's role in dormancy and identified these genes as potential drug targets. DNA methylase (DNMT), predicted within a network with KMT2 to regulate CSCs, was determined to sustain circulating CSC-like in the blood of patients. CONCLUSION H3K4 methyltransferases and DNA methylation mediate cell autonomous regulation to sustain CSC. The findings provide crucial insights into epigenetic regulatory mechanisms underlying BC dormancy with KMT2B and KMT2D as potential therapeutic targets, along with standard care. Stem cell and epigenetic markers in circulating BCCs could monitor treatment response and this could be significant for long BC remission to partly address health disparity.
Collapse
Affiliation(s)
- Alejandra I Ferrer-Diaz
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Andrew Petryna
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | | | - Yannick Kenfack
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | | | - Shyam A Patel
- Division of Hematology and Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA
| | - Anupama Hooda-Nehra
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Al-Zahrani MH, Assidi M, Pushparaj PN, Al-Maghrabi J, Zari A, Abusanad A, Buhmeida A, Abu-Elmagd M. Expression pattern, prognostic value and potential microRNA silencing of FZD8 in breast cancer. Oncol Lett 2023; 26:477. [PMID: 37809047 PMCID: PMC10551865 DOI: 10.3892/ol.2023.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Breast cancer (BC) is one of the most widespread types of cancer affecting females, and therefore, early diagnosis is critical. BC is a complex heterogeneous disease affected by several key pathways. Among these, WNT proteins and their frizzled receptors (FZD) have been demonstrated to be crucial in regulating a number of cellular and molecular events in BC tumorigenesis. The role of the WNT receptor, FZD8, in BC has received minimal attention; for that reason, the present study examined the prognostic value of its protein expression pattern in a BC cohort. FZD8 cytoplasmic expression pattern analysis revealed that ~38% of the primary samples presented with a high expression profile, whereas ~63% of the samples had a low expression profile. Overall, ~46% of the malignant tissues in the lymph node-positive samples exhibited an increased FZD8 cytoplasmic expression, whereas 54% exhibited low expression levels. An increased expression of FZD8 was associated with several clinicopathological characteristics of the patients, including a low survival rate, tumor vascular invasion, tumor size and grade, and molecular subtypes. Affymetrix microarray triple-negative BC datasets were analyzed and compared with healthy breast tissues in order to predict the potential interfering microRNAs (miRNAs) in the WNT/FZD8 signaling pathway. A total of 29 miRNAs with the potential to interact with the WNT/FZD8 signaling pathway were identified, eight of which exhibited a significant prediction score. The target genes for each predicted miRNA were identified. On the whole, the findings of the present study suggest that FZD8 is a potential prognostic marker for BC, shedding some light onto the silencing mechanisms involved in the complex BC signaling.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Ali Zari
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atlal Abusanad
- Department of Medicine, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J, Chen C, Zhan J, Zhang H. Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland. Cell Death Dis 2023; 14:675. [PMID: 37833248 PMCID: PMC10576046 DOI: 10.1038/s41419-023-06184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.
Collapse
Affiliation(s)
- Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Bing Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
- Department of Histology and Embryology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
5
|
Effects of Apatinib Mesylate Monotherapy on the Incidence of Adverse Reactions and Immune Function in Patients with Breast Cancer after Radical Mastectomy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4022282. [PMID: 35990841 PMCID: PMC9385297 DOI: 10.1155/2022/4022282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
Objective To assess the effects of monotherapy with apatinib mesylate on the incidence of adverse events and immune function in breast cancer patients after a radical mastectomy. Methods Between December 2018 and August 2020, 90 patients with breast cancer scheduled for a radical mastectomy in People's Liberation Army Navy 971 Hospital were randomly recruited and assigned at a ratio of 1 : 1 to receive either conventional treatment (conventional group) or apatinib mesylate after radical mastectomy (study group). The primary endpoint was disease control rate (DCR), and the secondary endpoints were adverse events and the immune function of the patients. Results Monotherapy with apatinib mesylate was associated with a higher DCR (86.67%) versus conventional postoperative treatment (42.23%). All patients in the study group had documented adverse events, including 2 (4.45%) cases of headache, 3 (6.67%) cases of dizziness, 9 (20.00%) cases of hypertension, 6 (13.34%) cases of hand-foot syndrome, 3 (6.67%) cases of thrombocytopenia, 1 (2.23%) case of tinnitus, 7 (15.56%) cases of fatigue, 2 (4.45%) cases of anemia, 2 (4.45%) cases of oral pain, and 10 (22.23%) cases of leukopenia. There were 23 cases of intermittent discontinuation due to adverse events during treatment, 15 cases of dose reduction, and 3 cases of discontinuation due to adverse events. The difference in preoperative and postoperative T-cell subsets and natural killer (NK) cells between the two groups did not come up to the statistical standard (P > 0.05). Monotherapy with apatinib mesylate resulted in significantly lower levels of CD4+, CD4+/CD8+, and NK cells and higher CD8+ levels versus conventional treatment at 1 week and 4 weeks postoperatively (P < 0.05). Conclusion Apatinib mesylate monotherapy after radical mastectomy yields a high DCR, a lower incidence of adverse events, and improved immune recovery. Clinical trials are, however, required prior to clinical promotion.
Collapse
|
6
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
8
|
Alfonso-Pérez T, Baonza G, Martin-Belmonte F. Breast cancer has a new metabolic Achilles' heel. Nat Metab 2021; 3:590-592. [PMID: 34031588 DOI: 10.1038/s42255-021-00394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain
| | - Fernando Martin-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain.
| |
Collapse
|
9
|
Mahendralingam MJ, Kim H, McCloskey CW, Aliar K, Casey AE, Tharmapalan P, Pellacani D, Ignatchenko V, Garcia-Valero M, Palomero L, Sinha A, Cruickshank J, Shetty R, Vellanki RN, Koritzinsky M, Stambolic V, Alam M, Schimmer AD, Berman HK, Eaves CJ, Pujana MA, Kislinger T, Khokha R. Mammary epithelial cells have lineage-rooted metabolic identities. Nat Metab 2021; 3:665-681. [PMID: 34031589 DOI: 10.1038/s42255-021-00388-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy.
Collapse
Affiliation(s)
- Mathepan Jeya Mahendralingam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hyeyeon Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Curtis William McCloskey
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Pirashaanthy Tharmapalan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mar Garcia-Valero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Ankit Sinha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ronak Shetty
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Vid Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mina Alam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron David Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hal Kenneth Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Valdés-Mora F, Salomon R, Gloss BS, Law AMK, Venhuizen J, Castillo L, Murphy KJ, Magenau A, Papanicolaou M, Rodriguez de la Fuente L, Roden DL, Colino-Sanguino Y, Kikhtyak Z, Farbehi N, Conway JRW, Sikta N, Oakes SR, Cox TR, O'Donoghue SI, Timpson P, Ormandy CJ, Gallego-Ortega D. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep 2021; 35:108945. [PMID: 33852842 DOI: 10.1016/j.celrep.2021.108945] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/29/2020] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Lineage/genetics
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Female
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/growth & development
- Mammary Tumor Virus, Mouse/pathogenicity
- Matrix Metalloproteinase 3/genetics
- Matrix Metalloproteinase 3/metabolism
- Mice
- Neoplasm Metastasis
- Pregnancy
- Single-Cell Analysis
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Fátima Valdés-Mora
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Robert Salomon
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian Stewart Gloss
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew Man Kit Law
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jeron Venhuizen
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lesley Castillo
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle Joan Murphy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Papanicolaou
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Laura Rodriguez de la Fuente
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel Lee Roden
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Yolanda Colino-Sanguino
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia
| | - Zoya Kikhtyak
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Neblina Sikta
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Samantha Richelle Oakes
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Thomas Robert Cox
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seán Ignatius O'Donoghue
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; CSIRO Data61, Eveleigh, NSW 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Paul Timpson
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Christopher John Ormandy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David Gallego-Ortega
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| |
Collapse
|
11
|
Quinn HM, Vogel R, Popp O, Mertins P, Lan L, Messerschmidt C, Landshammer A, Lisek K, Château-Joubert S, Marangoni E, Koren E, Fuchs Y, Birchmeier W. YAP and β-Catenin Cooperate to Drive Oncogenesis in Basal Breast Cancer. Cancer Res 2021; 81:2116-2127. [PMID: 33574090 DOI: 10.1158/0008-5472.can-20-2801] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
Targeting cancer stem cells (CSC) can serve as an effective approach toward limiting resistance to therapies. While basal-like (triple-negative) breast cancers encompass cells with CSC features, rational therapies remain poorly established. We show here that the receptor tyrosine kinase Met promotes YAP activity in basal-like breast cancer and find enhanced YAP activity within the CSC population. Interfering with YAP activity delayed basal-like cancer formation, prevented luminal to basal transdifferentiation, and reduced CSC. YAP knockout mammary glands revealed a decrease in β-catenin target genes, suggesting that YAP is required for nuclear β-catenin activity. Mechanistically, nuclear YAP interacted with β-catenin and TEAD4 at gene regulatory elements. Proteomic patient data revealed an upregulation of the YAP signature in basal-like breast cancers. Our findings demonstrate that in basal-like breast cancers, β-catenin activity is dependent on YAP signaling and controls the CSC program. These findings suggest that targeting the YAP/TEAD4/β-catenin complex offers a potential therapeutic strategy for eradicating CSCs in basal-like breast cancers. SIGNIFICANCE: These findings show that YAP cooperates with β-catenin in basal-like breast cancer to regulate CSCs and that targeting this interaction may be a novel CSC therapy for patients with basal-like breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2116/F1.large.jpg.
Collapse
Affiliation(s)
- Hazel M Quinn
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Regina Vogel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Oliver Popp
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Philipp Mertins
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Linxiang Lan
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Clemens Messerschmidt
- Computer Science Department, Humboldt-Universität, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Alexandro Landshammer
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kamil Lisek
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | | | | | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
12
|
Tang C, van den Bijgaart RJE, Looman MWG, Triantis V, Nørskov Søndergaard J, Ansems M, Adema GJ. DC-SCRIPT affects mammary organoids branching morphogenesis by modulating the FGFR1-pERK signaling axis. Dev Biol 2020; 463:101-109. [PMID: 32422143 DOI: 10.1016/j.ydbio.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
Loss of expression of the transcription regulator DC-SCRIPT (Zfp366) is a prominent prognostic event in estrogen receptor-positive breast cancer patients. Studying the inherent link between breast morphogenesis and tumorigenesis, we recently reported that DC-SCRIPT affects normal mammary branching morphogenesis and mammary epithelium homeostasis. Here we investigated the molecular mechanism involved in DC-SCRIPT mediated regulation of FGF2 induced mammary branching morphogenesis in a 3D organoid culture system. Our data show that the delayed mammary organoid branching observed in DC-SCRIPT-/- organoids cannot be compensated for by increasing FGF2 levels. Interestingly, FGFR1, the dominant FGF2 receptor, was expressed at a significantly lower level in basal epithelial cells of DC-SCRIPT deficient organoids relative to wildtype organoids. A potential link between DC-SCRIPT and FGFR1 was further supported by the predicted locations of the DC-SCRIPT DNA binding motif at the Fgfr1 gene. Moreover, ERK1/2 phosphorylation downstream of the FGFR1 pathway was decreased in basal epithelial cells of DC-SCRIPT deficient organoids. Altogether, this study shows a relationship between DC-SCRIPT and FGFR1 related pERK signaling in modulating the branching morphogenesis of mammary organoids in vitro.
Collapse
Affiliation(s)
- Chunling Tang
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Maaike W G Looman
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Vassilis Triantis
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Jonas Nørskov Søndergaard
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands; Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Hillers-Ziemer LE, Arendt LM. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2020; 25:115-131. [PMID: 32519090 PMCID: PMC7933979 DOI: 10.1007/s10911-020-09452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is a preventable risk factor for breast cancer following menopause. Regardless of menopausal status, obese women who develop breast cancer have a worsened prognosis. Breast tissue is comprised of mammary epithelial cells organized into ducts and lobules and surrounded by adipose-rich connective tissue. Studies utilizing multiple in vivo models of obesity as well as human breast tissue have contributed to our understanding of how obesity alters mammary tissue. Localized changes in mammary epithelial cell populations, elevated secretion of adipokines and angiogenic mediators, inflammation within mammary adipose tissue, and remodeling of the extracellular matrix may result in an environment conducive to breast cancer growth. Despite these significant alterations caused by obesity within breast tissue, studies have suggested that some, but not all, obesity-induced changes may be mitigated with weight loss. Here, we review our current understanding regarding the impact of obesity on the breast microenvironment, how obesity-induced changes may contribute to breast tumor progression, and the impact of weight loss on the breast microenvironment.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Tocci JM, Felcher CM, García Solá ME, Kordon EC. R-spondin-mediated WNT signaling potentiation in mammary and breast cancer development. IUBMB Life 2020; 72:1546-1559. [PMID: 32233118 DOI: 10.1002/iub.2278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
The mammary gland is a secretory organ, which develops as a network of growing epithelial ducts composed of luminal and basal cells that invade the surrounding adipose tissue through a series of developmental cycles. Mammary stem cells (MaSCs) maintain an accurate tissue homeostasis, and their proliferation and cell fate determination are regulated by multiple hormones and local factors. The WNT pathway plays a critical role in controlling the enormous tissue expansion and remodeling during mammary gland development through the maintenance and differentiation of MaSCs, and its deregulation has been implicated in breast cancer (BC) initiation and progression. The R-spondins (RSPOs) are four secreted proteins that strongly enhance target cell sensitivity to WNT ligands. Moreover, leucine-rich repeat-containing G-protein-coupled receptors (LGRs) 4-6 are considered obligate high-affinity receptors for RSPOs and have been described as stem cell markers. Importantly, elevated RSPO expression has been recently identified in several tumor types from patients, including BC, and it has been reported that they play a significant role in mammary tumor progression in experimental models. In this review, exploring our present knowledge, we summarize the role of the RSPO-LGR axis as a WNT-enhancing signaling cascade in the MaSC compartment and during the normal and neoplastic mammary gland development. In addition, we include an updated expression profile of the RSPOs and their action mediators at the cell membrane, the LGRs, and the ubiquitin-ligases ZNRF3/RNF43, in different BC subtypes. Finally and based on these data, we discuss the significance of tumor-associated alterations of these proteins and their potential use as molecular targets for detection and treatment of BC.
Collapse
Affiliation(s)
- Johanna M Tocci
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla M Felcher
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín E García Solá
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Edith C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Tang C, van den Bijgaart RJ, Looman MW, Tel-Karthaus N, de Graaf AM, Gilfillan S, Colonna M, Ansems M, Adema GJ. DC-SCRIPT deficiency delays mouse mammary gland development and branching morphogenesis. Dev Biol 2019; 455:42-50. [DOI: 10.1016/j.ydbio.2019.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023]
|
16
|
Qiu Y, Wang L, Zhong X, Li L, Chen F, Xiao L, Liu F, Fu B, Zheng H, Ye F, Bu H. A multiple breast cancer stem cell model to predict recurrence of T 1-3, N 0 breast cancer. BMC Cancer 2019; 19:729. [PMID: 31340763 PMCID: PMC6657050 DOI: 10.1186/s12885-019-5941-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Local or distant relapse is the key event for the overall survival of early-stage breast cancer after initial surgery. A small subset of breast cancer cells, which share similar properties with normal stem cells, has been proven to resist to clinical therapy contributing to recurrence. Methods In this study, we aimed to develop a prognostic model to predict recurrence based on the prevalence of breast cancer stem cells (BCSCs) in breast cancer. Immunohistochemistry and dual-immunohistochemistry were performed to quantify the stem cells of the breast cancer patients. The performance of Cox proportional hazard regression model was assessed using the holdout methods, where the dataset was randomly split into two exclusive sets (70% training and 30% testing sets). Additionally, we performed bootstrapping to overcome a possible biased error estimate and obtain confidence intervals (CI). Results Four groups of BCSCs (ALDH1A3, CD44+/CD24−, integrin alpha 6 (ITGA6), and protein C receptor (PROCR)) were identified as associated with relapse-free survival (RFS). The correlated biomarkers were integrated as a prognostic panel to calculate a relapse risk score (RRS) and to classify the patients into different risk groups (high-risk or low-risk). According to RRS, 67.81 and 32.19% of patients were categorized into low-risk and high-risk groups respectively. The relapse rate at 5 years in the low-risk group (2.67, 95% CI: 0.72–4.63%) by Kaplan-Meier method was significantly lower than that of the high-risk group (19.30, 95% CI: 12.34–26.27%) (p < 0.001). In the multiple Cox model, the RRS was proven to be a powerful classifier independent of age at diagnosis or tumour size (p < 0.001). In addition, we found that high RRS score ER-positive patients do not benefit from hormonal therapy treatment (RFS, p = 0.860). Conclusion The RRS model can be applied to predict the relapse risk in early stage breast cancer. As such, high RRS score ER-positive patients do not benefit from hormonal therapy treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5941-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Qiu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liya Wang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaorong Zhong
- Laboratory of Molecular Diagnosis of Cancer & Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Xiao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyu Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Fu
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer & Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Ye
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China. .,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China. .,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Notch Signaling Activation as a Hallmark for Triple-Negative Breast Cancer Subtype. JOURNAL OF ONCOLOGY 2019; 2019:8707053. [PMID: 31379945 PMCID: PMC6657611 DOI: 10.1155/2019/8707053] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subgroup of 15%-20% of diagnosed breast cancer patients. It is generally considered to be the most difficult breast cancer subtype to deal with, due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), which usually direct targeted therapies. In this scenario, the current treatments of TNBC-affected patients rely on tumor excision and conventional chemotherapy. As a result, the prognosis is overall poor. Thus, the identification and characterization of targets for novel therapies are urgently required. The Notch signaling pathway has emerged to act in the pathogenesis and tumor progression of TNBCs. Firstly, Notch receptors are associated with the regulation of tumor-initiating cells (TICs) behavior, as well as with the aetiology of TNBCs. Secondly, there is a strong evidence that Notch pathway is a relevant player in mammary cancer stem cells maintenance and expansion. Finally, Notch receptors expression and activation strongly correlate with the aggressive clinicopathological and biological phenotypes of breast cancer (e.g., invasiveness and chemoresistance), which are relevant characteristics of TNBC subtype. The purpose of this up-to-date review is to provide a detailed overview of the specific role of all four Notch receptors (Notch1, Notch2, Notch3, and Notch4) in TNBCs, thus identifying the Notch signaling pathway deregulation/activation as a pathognomonic feature of this breast cancer subtype. Furthermore, this review will also discuss recent information associated with different therapeutic options related to the four Notch receptors, which may be useful to evaluate prognostic or predictive indicators as well as to develop new therapies aimed at improving the clinical outcome of TNBC patients.
Collapse
|
18
|
Finot L, Chanat E, Dessauge F. Mammary Epithelial Cell Lineage Changes During Cow's Life. J Mammary Gland Biol Neoplasia 2019; 24:185-197. [PMID: 30758700 DOI: 10.1007/s10911-019-09427-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/27/2019] [Indexed: 12/20/2022] Open
Abstract
Milk production is highly dependent on the optimal development of the mammary epithelium. It is therefore essential to better understand mammary epithelial cell growth and maintenance from the related epithelial lineage during the animal life. Here, we characterized the epithelial lineage at puberty, lactation and dry-off in bovine using the cell surface markers CD49f, CD24, and CD10. The pubertal period was characterized by a high proportion of CD49fpos cells corresponding to various epithelial subpopulations, notably the CD24pos subpopulations. The proportion of CD49fpos cells was weaker during lactation and dry-off, and CD24pos cells were relatively few. Of note, the (sub)population profile at dry-off appeared close to that during lactation. Using a targeted gene approach, we associated specific genes with epithelial subpopulations, their expression level varying, or not, according to physiological stages. Caseins were only expressed in the CD49fmedCD24neg subpopulation. Basal marker genes (keratin(KRT)5, KRT14 and αSMA) were found in the CD49fhighCD24neg subpopulations. Luminal gene markers (KRT7, KRT8 and KRT19, CDH1 and the PRLR) were expressed in the CD49flowCD24neg subpopulation. The CD49flowCD24pos subpopulation, only abundant at puberty, expressed luminal gene markers and KI67 at high level. In contrast to others, the CD49fhighCD24pos cells accounted for a small proportion of total cells, decreasing from puberty to dry-off. They were characterized by expression of luminal and basal gene markers and low KI67 level. Interestingly, this subpopulation showed a remarkable stability of gene expression profile throughout physiological stages and bear the hallmark of quiescence that designate them as the potential bovine mammary stem cells.
Collapse
Affiliation(s)
- Laurence Finot
- PEGASE, INRA, Agrocampus Ouest , 35590, Saint-Gilles, France
| | - Eric Chanat
- PEGASE, INRA, Agrocampus Ouest , 35590, Saint-Gilles, France
| | | |
Collapse
|
19
|
Lee E, Piranlioglu R, Wicha MS, Korkaya H. Plasticity and Potency of Mammary Stem Cell Subsets During Mammary Gland Development. Int J Mol Sci 2019; 20:ijms20092357. [PMID: 31085991 PMCID: PMC6539898 DOI: 10.3390/ijms20092357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/04/2019] [Accepted: 05/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is now widely believed that mammary epithelial cell plasticity, an important physiological process during the stages of mammary gland development, is exploited by the malignant cells for their successful disease progression. Normal mammary epithelial cells are heterogeneous and organized in hierarchical fashion, in which the mammary stem cells (MaSC) lie at the apex with regenerative capacity as well as plasticity. Despite the fact that the majority of studies supported the existence of multipotent MaSCs giving rise to both basal and luminal lineages, others proposed lineage restricted unipotent MaSCs. Consistent with the notion, the latest research has suggested that although normal MaSC subsets mainly stay in a quiescent state, they differ in their reconstituting ability, spatial localization, and molecular and epigenetic signatures in response to physiological stimuli within the respective microenvironment during the stages of mammary gland development. In this review, we will focus on current research on the biology of normal mammary stem cells with an emphasis on properties of cellular plasticity, self-renewal and quiescence, as well as the role of the microenvironment in regulating these processes. This will include a discussion of normal breast stem cell heterogeneity, stem cell markers, and lineage tracing studies.
Collapse
Affiliation(s)
- Eunmi Lee
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - Raziye Piranlioglu
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
20
|
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ. Sci Rep 2019; 9:6688. [PMID: 31040372 PMCID: PMC6491486 DOI: 10.1038/s41598-019-43239-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFβ, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFβ and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.
Collapse
|
21
|
Ahn EH, Yang H, Hsieh CY, Sun W, Chang CC, Schroeder JJ. Evaluation of chemotherapeutic and cancer-protective properties of sphingosine and C2-ceramide in a human breast stem cell derived carcinogenesis model. Int J Oncol 2018; 54:655-664. [PMID: 30483770 PMCID: PMC6317677 DOI: 10.3892/ijo.2018.4641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The overall goal of the present study was to evaluate the chemotherapeutic and cancer-protective properties of D-erythro-sphingosine (sphingosine) and C2-ceramide using a human breast epithelial cell (HBEC) culture system, which represents multiple-stages of breast carcinogenesis. The HBEC model includes Type I HBECs (normal stem), Type II HBECs (normal differentiated) and transformed cells (immortal/non-tumorigenic cells and tumorigenic cells, which are transformed from the same parental normal stem cells). The results of the present study indicate that sphingosine preferentially inhibits proliferation and causes death of normal stem cells (Type I), tumorigenic cells, and MCF7 breast cancer cells, but not normal differentiated cells (Type II). In contrast to the selective anti-proliferative effects of sphingosine, C2-ceramide inhibits proliferation of normal differentiated cells as well as normal stem cells, tumorigenic cells, and MCF7 cancer cells with similar potency. Both sphingosine and C2-ceramide induce apoptosis in tumorigenic cells. Among the sphingosine stereoisomers (D-erythro, D-threo, L-erythro, and L-threo) and sphinganine that were tested, L-erythro-sphingosine most potently inhibits proliferation of tumorigenic cells. The inhibition of breast tumorigenic/cancer cell proliferation by sphingosine was accompanied by inhibition of telomerase activity. Sphingosine at non-cytotoxic concentrations, but not C2-ceramide, induces differentiation of normal stem cells (Type I), thereby reducing the number of stem cells that are more susceptible to neoplastic transformation. To the best of our knowledge, the present study demonstrates one of the first results that sphingosine can be a potential chemotherapeutic and cancer-protective agent, whereas C2-ceramide is not an ideal chemotherapeutic and cancer-protective agent due to its anti-proliferative effects on Type II HBECs and its inability to induce the differentiation of Type I to Type II HBECs.
Collapse
Affiliation(s)
- Eun Hyun Ahn
- Department of Pathology and 2Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hong Yang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Ching-Yi Hsieh
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Sun
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Chia-Cheng Chang
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph J Schroeder
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Li B, Chi X, Song J, Tang Y, Du J, He X, Sun X, Bi Z, Wang Y, Zhan J, Zhang H. Integrin-interacting protein Kindlin-2 induces mammary tumors in transgenic mice. SCIENCE CHINA-LIFE SCIENCES 2018; 62:225-234. [PMID: 30460471 DOI: 10.1007/s11427-018-9336-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
Kindlin-2, an integrin-interacting protein, regulates breast cancer progression. However, currently, no animal model to study the role of Kindlin-2 in the carcinogenesis of mammary gland is available. We established a Kindlin-2 transgenic mouse model using a mammary gland-specific promoter, mammary tumor virus (MMTV) long terminal repeat (LTR). Kindlin-2 was overexpressed in the epithelial cells of the transgenic mice. The mammary gland ductal trees were found to grow faster in MMTV-Kindlin-2 transgenic mice than in control mice during puberty. Kindlin-2 promoted mammary gland growth as indicated by more numerous duct branches and larger lumens, and more alveoli were formed in the mammary glands during pregnancy under Kindlin-2 overexpression. Importantly, mammary gland-specific expression of Kindlin-2 induced tumor formation at the age of 55 weeks on average. Additionally, the levels of estrogen receptor and progesterone receptor were decreased, whereas human epidermal growth factor receptor 2 and β-catenin were upregulated in the Kindlin-2-induced mammary tumors. These findings demonstrated that Kindlin-2 induces mammary tumor formation via activation of the Wnt signaling pathway.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Differentiation
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Pregnancy
- Promoter Regions, Genetic
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Wnt Signaling Pathway
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Bing Li
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaochun Chi
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiagui Song
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Tang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Du
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaokun He
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaoran Sun
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenwu Bi
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yunling Wang
- Institute of Cardiovascular Research, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
23
|
ElShamy WM. The protective effect of longer duration of breastfeeding against pregnancy-associated triple negative breast cancer. Oncotarget 2018; 7:53941-53950. [PMID: 27248476 PMCID: PMC5288234 DOI: 10.18632/oncotarget.9690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Parity associated breast cancer (PABC) often diagnosed within the 2-5 years after a full term pregnancy. PABC is usually present with more advanced, poorly differentiated, high-grade cancers that show shorter time to progression and often of the triple negative breast cancer (TNBC) subtype. Data from around the world show that pregnancy-associated TNBC is independently associated with poor survival, underscoring the impact of the pregnant breast microenvironment on the biology and consequently the prognosis of these tumors. Although it is not yet clear, a link between pregnancy-associated TNBCs and lack or shorter duration of breastfeeding (not pregnancy per se) has been proposed. Here, we present epidemiological and experimental evidence for the protective effect of longer duration of lactation against pregnancy-associated TNBCs, and propose a putative molecular mechanism for this protective effect and its effect in eliminating any potential TNBC precursors from the breast by the end of the natural breast involution.
Collapse
Affiliation(s)
- Wael M ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
24
|
Fontelles CC, da Cruz RS, Hilakivi-Clarke L, de Assis S, Ong TP. Developmental Origins of Breast Cancer: A Paternal Perspective. Methods Mol Biol 2018; 1735:91-103. [PMID: 29380308 DOI: 10.1007/978-1-4939-7614-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The developmental origins of breast cancer have been considered predominantly from a maternal perspective. Although accumulating evidence suggests a paternal programming effect on metabolic diseases, the potential impact of fathers' experiences on their daughters' breast cancer risk has received less attention. In this chapter, we focus on the developmental origins of breast cancer and examine the emerging evidence for a role of fathers' experiences.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Sonia de Assis
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Obesity reversibly depletes the basal cell population and enhances mammary epithelial cell estrogen receptor alpha expression and progenitor activity. Breast Cancer Res 2017; 19:128. [PMID: 29187227 PMCID: PMC5707907 DOI: 10.1186/s13058-017-0921-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Obesity is correlated with an increased risk for developing postmenopausal breast cancer. Since obesity rates continue to rise worldwide, it is important to understand how the obese microenvironment influences normal mammary tissue to increase breast cancer risk. We hypothesized that obesity increases the proportion of luminal progenitor cells, which are thought to be the cells of origin for the most common types of breast cancer, potentially leading to an increased risk for breast cancer. Methods To study the obese microenvironment within the mammary gland, we used a high-fat diet mouse model of obesity and human breast tissue from reduction mammoplasty surgery. We identified changes in breast epithelial cell populations using flow cytometry for cell surface markers, in vitro functional assays and expression of markers on breast tissue sections. Results In both obese female mice and women, mammary epithelial cell populations demonstrated significant decreases in basal/myoepithelial cells, using either flow cytometry or cell-type-specific markers (SMA and p63). Estrogen receptor alpha (ERα) expression was significantly increased in luminal cells in obese mammary tissue, compared with control mice or breast tissue from lean women. Functional assays demonstrated significantly enhanced mammary epithelial progenitor activity in obese mammary epithelial cells and elevated numbers of ERα-positive epithelial cells that were co-labeled with markers of proliferation. Weight loss in a group of obese mice reversed increases in progenitor activity and ERα expression observed in obese mammary tissue. Conclusions Obesity enhances ERα-positive epithelial cells, reduces the number of basal/myoepithelial cells, and increases stem/progenitor activity within normal mammary tissue in both women and female mice. These changes in epithelial cell populations induced by obesity are reversible with weight loss. Our findings support further studies to examine how obesity-induced changes in stem/progenitor cells impact breast tumor incidence and histologic tumor types. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0921-7) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Mammary Stem Cells: Premise, Properties, and Perspectives. Trends Cell Biol 2017; 27:556-567. [DOI: 10.1016/j.tcb.2017.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
|
27
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. Molecular Signaling of Progesterone, Growth Hormone, Wnt, and HER in Mammary Glands of Dogs, Rodents, and Humans: New Treatment Target Identification. Front Vet Sci 2017; 4:53. [PMID: 28451590 PMCID: PMC5389977 DOI: 10.3389/fvets.2017.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumors are the most common form of neoplasia in the bitch. Female dogs are protected when they are spayed before the first estrus cycle, but this effect readily disappears and is already absent when dogs are spayed after the second heat. As the ovaries are removed during spaying, ovarian steroids are assumed to play an essential role in tumor development. The sensitivity toward tumor development is already present during early life, which may be caused by early mutations in stem cells during the first estrus cycles. Later on in life, tumors arise that are mostly steroid-receptor positive, although a small subset of tumors overexpressing human epidermal growth factor 2 (HER2) and some lacking estrogen receptor, progesterone receptor (PR), and HER2 (triple negative) are present, as is the situation in humans. Progesterone (P4), acting through PR, is the major steroid involved in outgrowth of mammary tissue. PRs are expressed in two forms, the progesterone receptor A (PRA) and progesterone receptor B (PRB) isoforms derived from splice variants from a single gene. The dog and the whole family of canids have only a functional PRA isoform, whereas the PRB isoform, if expressed at all, is devoid of intrinsic biological activity. In human breast cancer, overexpression of the PRA isoform is related to more aggressive carcinomas making the dog a unique model to study PRA-related mammary cancer. Administration of P4 to adult dogs results in local mammary expression of growth hormone (GH) and wing less-type mouse mammary tumor virus integration site family 4 (Wnt4). Both proteins play a role in activation of mammary stem cells. In this review, we summarize what is known on P4, GH, and Wnt signaling in canine mammary cancer, how the family of HER receptors could interact with this signaling, and what this means for comparative and translational oncological aspects of human breast cancer development.
Collapse
Affiliation(s)
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Law AMK, Lim E, Ormandy CJ, Gallego-Ortega D. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer 2017; 24:R123-R144. [PMID: 28193698 PMCID: PMC5425956 DOI: 10.1530/erc-16-0404] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development GroupThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Cancer Biology LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Elgene Lim
- Connie Johnson Breast Cancer Research LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Christopher J Ormandy
- Cancer Biology LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - David Gallego-Ortega
- Tumour Development GroupThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci 2017; 74:951-966. [PMID: 27530548 PMCID: PMC11107600 DOI: 10.1007/s00018-016-2334-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Breast cancers have been increasingly recognized as malignancies displaying frequent inter- and intra-tumor heterogeneity. This heterogeneity is represented by diverse subtypes and complexity within tumors, and impinges on response to therapy, metastasis, and prognosis. Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal and differentiation capacity, have been suggested to contribute to tumor heterogeneity. The CSC concept posits a hierarchical organization of tumors, at the apex of which are stem cells that drive tumor initiation, progression, and recurrence. In breast cancer, CSCs have been proposed to contribute to malignant progression, suggesting that targeting breast cancer stem cells (BCSCs) may improve treatment efficacy. Currently, several markers have been reported to identify BCSCs. However, there is objective variability with respect to the frequency and phenotype of BCSCs among different breast cancer cell lines and patients, and the regulatory mechanisms of BCSCs remain unclear. In this review, we summarize current literature about the diversity of BCSC markers, the roles of BCSCs in tumor development, and the regulatory mechanisms of BCSCs. We also highlight the most recent advances in BCSC targeting therapies and the challenges in translating the knowledge into clinical practice.
Collapse
Affiliation(s)
- Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lin Tang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
30
|
Jones RA, Robinson TJ, Liu JC, Shrestha M, Voisin V, Ju Y, Chung PED, Pellecchia G, Fell VL, Bae S, Muthuswamy L, Datti A, Egan SE, Jiang Z, Leone G, Bader GD, Schimmer A, Zacksenhaus E. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest 2016; 126:3739-3757. [PMID: 27571409 DOI: 10.1172/jci81568] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/12/2016] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low-like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration-approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC.
Collapse
|
31
|
Callahan R, Chestnut BA, Raafat A. Original Research: Featured Article: Imatinib mesylate (Gleevec) inhibits Notch and c-Myc signaling: Five-day treatment permanently rescues mammary development. Exp Biol Med (Maywood) 2016; 242:53-67. [PMID: 27550925 DOI: 10.1177/1535370216665175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Wap-Int3 transgenic females expressing the Notch4 intracellular domain (designated Int3) from the whey acidic protein promoter exhibit two phenotypes in the mammary gland: blockage of lobuloalveolar development and lactation, and tumor development with 100% penetrance. Previously, we have shown that treatment of Wap-Int3 tumor bearing mice with Imatinib mesylate (Gleevec) is associated with complete regression of the tumor. In the present study, we show that treatment of Wap-Int3 mice during day 1 through day 6 of pregnancy with Gleevec leads to the restoration of their lobuloalveolar development and ability to lactate in subsequent pregnancies in absence of Gleevec treatment. In addition, these mice do not develop mammary tumors. We investigated the mechanism for Gleevec regulation of Notch signaling and found that Gleevec treatment results in a loss of Int3 protein but not of Int3 mRNA in HC11 mouse mammary epithelial cells expressing Int3. The addition of MG-132, a proteasome inhibitor, shows increased ubiquitination of Int3 in the presence of Gleevec. Thus, Gleevec affects the stability of Int3 by promoting the degradation of Int3 via E3 ubiquitin ligases targeting it for the proteasome degradation. Gleevec is a tyrosine kinase inhibitor that acts on c-Kit and PDGFR. Therefore, we investigated the downstream substrate kinase GSK3β to ascertain the possible role that this kinase might play in the stability of Int3. Data show that Gleevec degradation of Int3 is GSK3β dependent. We have expanded our study of the effects Gleevec has on tumorigenesis of other oncogenes. We have found that anchorage-independent growth of HC11-c-Myc cells as well as tumor growth in nude mice is inhibited by Gleevec treatment. As with Int3, Gleevec treatment appears to destabilize the c-Myc protein but not mRNA. These results indicate that Gleevec could be a potential therapeutic drug for patients bearing Notch4 and/or c-Myc positive breast carcinomas.
Collapse
Affiliation(s)
- Robert Callahan
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Barry A Chestnut
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ahmed Raafat
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
32
|
Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol 2016; 416:52-68. [PMID: 27291930 DOI: 10.1016/j.ydbio.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/15/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.
Collapse
|
33
|
Abstract
The cancer stem cell model in solid tumors has evolved significantly from the early paradigm shifting work highlighting parallels between the stem cell hierarchy in hematologic malignancies and solid tumors. Putative stem cells can dedifferentiated, be induced by context, and be the result of accumulated genetic mutations. The simple hypothesis that stem cell therapies will overcome the minority of cells that lead to recurrence has evolved with it. Nevertheless, the body of evidence that this field is clinically relevant in patients and patient care has grown with the complexity of the hypotheses, and numerous clinical strategies to target these cells have been identified. Herein we review this progress and highlight the work still outstanding.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Richard P Hill
- Princess Margaret Cancer Centre, Ontario Cancer Insitute, Toronto, ON, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
34
|
HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR. Oncogene 2015; 35:4244-55. [PMID: 26686087 PMCID: PMC4981873 DOI: 10.1038/onc.2015.489] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492HER2) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492HER2 (D492HER2/EGFR) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492HER2/EGFR xenografts grow slower than the D492HER2 tumors, while overexpression of EGFR alone (D492EGFR) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492HER2 xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.
Collapse
|
35
|
Lin CY, Barry-Holson KQ, Allison KH. Breast cancer stem cells: are we ready to go from bench to bedside? Histopathology 2015; 68:119-37. [DOI: 10.1111/his.12868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology; Stanford University; Stanford CA USA
| | | | | |
Collapse
|
36
|
Honvo-Houéto E, Truchet S. Indirect Immunofluorescence on Frozen Sections of Mouse Mammary Gland. J Vis Exp 2015. [PMID: 26650781 DOI: 10.3791/53179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indirect immunofluorescence is used to detect and locate proteins of interest in a tissue. The protocol presented here describes a complete and simple method for the immune detection of proteins, the mouse lactating mammary gland being taken as an example. A protocol for the preparation of the tissue samples, especially concerning the dissection of mouse mammary gland, tissue fixation and frozen tissue sectioning, are detailed. A standard protocol to perform indirect immunofluorescence, including an optional antigen retrieval step, is also presented. The observation of the labeled tissue sections as well as image acquisition and post-treatments are also stated. This procedure gives a full overview, from the collection of animal tissue to the cellular localization of a protein. Although this general method can be applied to other tissue samples, it should be adapted to each tissue/primary antibody couple studied.
Collapse
|
37
|
Singh R, Parveen M, Basgen JM, Fazel S, Meshesha MF, Thames EC, Moore B, Martinez L, Howard CB, Vergnes L, Reue K, Pervin S. Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res 2015; 14:78-92. [PMID: 26464213 DOI: 10.1158/1541-7786.mcr-15-0151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED The initiation and progression of breast cancer is a complex process that is influenced by heterogeneous cell populations within the tumor microenvironment. Although adipocytes have been shown to promote breast cancer development, adipocyte characteristics involved in this process remain poorly understood. In this study, we demonstrate enrichment of beige/brown adipose markers, contributed from the host as well as tumor cells, in the xenografts from breast cancer cell lines. In addition to uncoupling protein-1 (UCP1) that is exclusively expressed in beige/brown adipocytes, gene expression for classical brown (MYF5, EVA1, and OPLAH) as well as beige (CD137/TNFRSF9 and TBX1) adipocyte markers was also elevated in the xenografts. Enrichment of beige/brown characteristics in the xenografts was independent of the site of implantation of the breast tumor cells. Early stages of xenografts showed an expansion of a subset of mammary cancer stem cells that expressed PRDM16, a master regulator of brown adipocyte differentiation. Depletion of UCP1(+) or Myf5(+) cells significantly reduced tumor development. There was increased COX2 (MT-CO2) expression, which is known to stimulate formation of beige adipocytes in early xenografts and treatment with a COX2 inhibitor (SC236) reduced tumor growth. In contrast, treatment with factors that induce brown adipocyte differentiation in vitro led to larger tumors in vivo. A panel of xenografts derived from established breast tumor cells as well as patient tumor tissues were generated that expressed key brown adipose tissue-related markers and contained cells that morphologically resembled brown adipocytes. IMPLICATIONS This is the first report demonstrating that beige/brown adipocyte characteristics could play an important role in breast tumor development and suggest a potential target for therapeutic drug design.
Collapse
Affiliation(s)
- Rajan Singh
- Charles R. Drew University of Medicine and Science, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Meher Parveen
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - John M Basgen
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Sayeda Fazel
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Meron F Meshesha
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | - Brandis Moore
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Luis Martinez
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shehla Pervin
- Charles R. Drew University of Medicine and Science, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.
| |
Collapse
|
38
|
Dravis C, Spike BT, Harrell JC, Johns C, Trejo CL, Southard-Smith EM, Perou CM, Wahl GM. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells. Cell Rep 2015; 12:2035-48. [PMID: 26365194 DOI: 10.1016/j.celrep.2015.08.040] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/14/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023] Open
Abstract
To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.
Collapse
Affiliation(s)
- Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Benjamin T Spike
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - J Chuck Harrell
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Claire Johns
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christy L Trejo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles M Perou
- Departments of Genetics and Pathology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Tornillo G, Smalley MJ. ERrrr…where are the progenitors? Hormone receptors and mammary cell heterogeneity. J Mammary Gland Biol Neoplasia 2015; 20:63-73. [PMID: 26193872 PMCID: PMC4595529 DOI: 10.1007/s10911-015-9336-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023] Open
Abstract
The mammary epithelium is a highly heterogenous and dynamic tissue that includes a range of cell types with varying levels of proliferative capacity and differentiation potential, from stem to committed progenitor and mature cells. Generation of mature cells through expansion and specification of immature precursors is driven by hormonal and local stimuli. Intriguingly, although circulating hormones can be directly sensed only by a subset of mammary cells, they also regulate the behaviour of cells lacking their cognate receptors through paracrine mechanisms. Thus, mapping the hormonal signalling network on to the emerging mammary cell hierarchy appears to be a difficult task. Nevertheless, a first step towards a better understanding is the characterization of the hormone receptor expression pattern across individual cell types in the mammary epithelium. Here we review the most relevant findings on the cellular distribution of hormone receptors in the mammary gland, taking into account differences between mice and humans, the methods employed to assess receptor expression as well as the variety of approaches used to resolve the mammary cell heterogeneity.
Collapse
Affiliation(s)
- Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff, CF24 4HQ, UK.
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff, CF24 4HQ, UK
| |
Collapse
|
40
|
Sale S, Pavelic K. Mammary lineage tracing: the coming of age. Cell Mol Life Sci 2015; 72:1577-83. [PMID: 25563489 PMCID: PMC11113887 DOI: 10.1007/s00018-014-1817-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Identification and characterization of the normal epithelial lineages in the mammary gland is a fundamental step in understanding both development and cellular origin of cancer. In contrast to other tissues where lineage tracing has been widely accepted as a method of choice for dissecting the stem cell hierarchy, mammary gland has long remained a challenge due to its unique developmental and topological features. Recent advances in high-resolution single-cell imaging, combined with the use of inducible Cre-recombinase and in situ cell ablation, have provided unprecedented insight into mammary epithelial cell composition and function. Here, we briefly summarize and compare different mammary gland lineage tracing strategies, examine associated caveats and discuss future challenges and opportunities.
Collapse
Affiliation(s)
- Sanja Sale
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia,
| | | |
Collapse
|