1
|
Wu Q, Ru G, Xiao W, Wang Q, Li Z. Adverse effects of ovarian cryopreservation and auto-transplantation on ovarian grafts and quality of produced oocytes in a mouse model. Clin Sci (Lond) 2023; 137:1577-1591. [PMID: 37782233 PMCID: PMC10600147 DOI: 10.1042/cs20230483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The process of ovarian cryopreservation and transplantation is the only feasible fertility preservation method for prepubertal girls and female patients with cancer who cannot delay radiotherapy and chemotherapy. However, basic research on this technique is lacking. To better understand ovarian function and oocyte quality after ovarian tissue (OT) transplantation, we characterised the appearance, angiogenesis, and endocrine function of ovarian grafts in a murine model; the mitochondrial function and DNA damage in oocytes isolated from the OT; and the development of embryos after in vitro fertilisation. The results showed a decrease in oocyte numbers in the transplanted OT, abnormal endocrine function of ovarian grafts, as well as dysfunctional mitochondria and DNA damage in the oocytes, which could adversely affect subsequent embryonic development. However, these adverse phenotypes were partially or completely resolved within 21 days of transplantation, suggesting that ovulation induction and assisted pregnancy treatment should not be conducted too soon after OT transfer to ensure optimal patient and offspring outcomes.
Collapse
Affiliation(s)
- Que Wu
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Gaizhen Ru
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Wanfen Xiao
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Qian Wang
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Zhiling Li
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| |
Collapse
|
2
|
Milton CI, Selfe J, Aladowicz E, Man SYK, Bernauer C, Missiaglia E, Walters ZS, Gatz SA, Kelsey A, Generali M, Box G, Valenti M, de Haven‐Brandon A, Galiwango D, Hayes A, Clarke M, Izquierdo E, Gonzalez De Castro D, Raynaud FI, Kirkin V, Shipley JM. FGF7-FGFR2 autocrine signaling increases growth and chemoresistance of fusion-positive rhabdomyosarcomas. Mol Oncol 2022; 16:1272-1289. [PMID: 34850536 PMCID: PMC8936514 DOI: 10.1002/1878-0261.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
Rhabdomyosarcomas are aggressive pediatric soft-tissue sarcomas and include high-risk PAX3-FOXO1 fusion-gene-positive cases. Fibroblast growth factor receptor 4 (FGFR4) is known to contribute to rhabdomyosarcoma progression; here, we sought to investigate the involvement and potential for therapeutic targeting of other FGFRs in this disease. Cell-based screening of FGFR inhibitors with potential for clinical repurposing (NVP-BGJ398, nintedanib, dovitinib, and ponatinib) revealed greater sensitivity of fusion-gene-positive versus fusion-gene-negative rhabdomyosarcoma cell lines and was shown to be correlated with high expression of FGFR2 and its specific ligand, FGF7. Furthermore, patient samples exhibit higher mRNA levels of FGFR2 and FGF7 in fusion-gene-positive versus fusion-gene-negative rhabdomyosarcomas. Sustained intracellular mitogen-activated protein kinase (MAPK) activity and FGF7 secretion into culture media during serum starvation of PAX3-FOXO1 rhabdomyosarcoma cells together with decreased cell viability after genetic silencing of FGFR2 or FGF7 was in keeping with a novel FGF7-FGFR2 autocrine loop. FGFR inhibition with NVP-BGJ398 reduced viability and was synergistic with SN38, the active metabolite of irinotecan. In vivo, NVP-BGJ398 abrogated xenograft growth and warrants further investigation in combination with irinotecan as a therapeutic strategy for fusion-gene-positive rhabdomyosarcomas.
Collapse
Affiliation(s)
- Christopher I. Milton
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
Signal Transduction and Molecular Pharmacology TeamCancer Research UK Cancer Therapeutics UnitThe Institute of Cancer ResearchSuttonUK
| | - Joanna Selfe
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Stella Y. K. Man
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Carolina Bernauer
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Edoardo Missiaglia
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
Department of Molecular PathologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
| | - Zoë S. Walters
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
Translational Epigenomics TeamHuman Development and HealthFaculty of MedicineSouthampton General HospitalUK
| | - Susanne A. Gatz
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Anna Kelsey
- Department of Paediatric HistopathologyManchester University NHS Foundation TrustRoyal Manchester Children’s HospitalUK
| | - Melanie Generali
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
Center for Therapy Development and Good Manufacturing PracticeInstitute for Regenerative Medicine (IREM)University of ZurichSwitzerland
| | - Gary Box
- Cancer Pharmacology and Stress Response TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Melanie Valenti
- Cancer Pharmacology and Stress Response TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Alexis de Haven‐Brandon
- Cancer Pharmacology and Stress Response TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - David Galiwango
- Drug Metabolism and Pharmacokinetics TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Angela Hayes
- Drug Metabolism and Pharmacokinetics TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Matthew Clarke
- Glioma TeamDivision of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | - Elisa Izquierdo
- Glioma TeamDivision of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | - David Gonzalez De Castro
- Molecular HaematologyDivision of Molecular PathologyThe Institute of Cancer ResearchLondonUK
- Present address:
School of MedicineDentistry and Biomedical sciencesQueens University BelfastUK
| | - Florence I. Raynaud
- Drug Metabolism and Pharmacokinetics TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Vladimir Kirkin
- Cancer Pharmacology and Stress Response TeamDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Janet M. Shipley
- Sarcoma Molecular Pathology TeamDivisions of Molecular Pathology and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
3
|
Henderson YC, Mohamed ASR, Maniakas A, Chen Y, Powell RT, Peng S, Cardenas M, Williams MD, Bell D, Zafereo ME, Wang RJ, Scherer SE, Wheeler DA, Cabanillas ME, Hofmann MC, Johnson FM, Stephan CC, Sandulache V, Lai SY. A High-throughput Approach to Identify Effective Systemic Agents for the Treatment of Anaplastic Thyroid Carcinoma. J Clin Endocrinol Metab 2021; 106:2962-2978. [PMID: 34120183 PMCID: PMC8475220 DOI: 10.1210/clinem/dgab424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite the use of aggressive multimodality treatment, most anaplastic thyroid carcinoma (ATC) patients die within a year of diagnosis. Although the combination of BRAF and MEK inhibitors has recently been approved for use in BRAF-mutated ATC, they remain effective in a minority of patients who are likely to develop drug resistance. There remains a critical clinical need for effective systemic agents for ATC with a reasonable toxicity profile to allow for rapid translational development. MATERIAL AND METHODS Twelve human thyroid cancer cell lines with comprehensive genomic characterization were used in a high-throughput screening (HTS) of 257 compounds to select agents with maximal growth inhibition. Cell proliferation, colony formation, orthotopic thyroid models, and patient-derived xenograft (PDX) models were used to validate the selected agents. RESULTS Seventeen compounds were effective, and docetaxel, LBH-589, and pralatrexate were selected for additional in vitro and in vivo analysis as they have been previously approved by the US Food and Drug Administration for other cancers. Significant tumor growth inhibition (TGI) was detected in all tested models treated with LBH-589; pralatrexate demonstrated significant TGI in the orthotopic papillary thyroid carcinoma model and 2 PDX models; and docetaxel demonstrated significant TGI only in the context of mutant TP53. CONCLUSIONS HTS identified classes of systemic agents that demonstrate preferential effectiveness against aggressive thyroid cancers, particularly those with mutant TP53. Preclinical validation in both orthotopic and PDX models, which are accurate in vivo models mimicking tumor microenvironment, may support initiation of early-phase clinical trials in non-BRAF mutated or refractory to BRAF/MEK inhibition ATC.
Collapse
Affiliation(s)
- Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdallah S R Mohamed
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Université de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QB, Canada
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reid T Powell
- IBT High Throughput Screening Core, Texas A&M Health Science Center, Houston, TX, USA
| | - Shaohua Peng
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui Jennifer Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steve E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifford C Stephan
- IBT High Throughput Screening Core, Texas A&M Health Science Center, Houston, TX, USA
| | - Vlad Sandulache
- Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Correspondence: Stephen Y. Lai, MD PhD FACS, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1445, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Schlam‐Babayov S, Bensimon A, Harel M, Geiger T, Aebersold R, Ziv Y, Shiloh Y. Phosphoproteomics reveals novel modes of function and inter-relationships among PIKKs in response to genotoxic stress. EMBO J 2021; 40:e104400. [PMID: 33215756 PMCID: PMC7809795 DOI: 10.15252/embj.2020104400] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.
Collapse
Affiliation(s)
- Sapir Schlam‐Babayov
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michal Harel
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Tamar Geiger
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Yael Ziv
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| |
Collapse
|
5
|
Laperrousaz B, Porte S, Gerbaud S, Härmä V, Kermarrec F, Hourtane V, Bottausci F, Gidrol X, Picollet-D'hahan N. Direct transfection of clonal organoids in Matrigel microbeads: a promising approach toward organoid-based genetic screens. Nucleic Acids Res 2019; 46:e70. [PMID: 29394376 PMCID: PMC6158603 DOI: 10.1093/nar/gky030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/13/2018] [Indexed: 01/01/2023] Open
Abstract
Organoid cultures in 3D matrices are relevant models to mimic the complex in vivo environment that supports cell physiological and pathological behaviors. For instance, 3D epithelial organoids recapitulate numerous features of glandular tissues including the development of fully differentiated acini that maintain apico-basal polarity with hollow lumen. Effective genetic engineering in organoids would bring new insights in organogenesis and carcinogenesis. However, direct 3D transfection on already formed organoids remains challenging. One limitation is that organoids are embedded in extracellular matrix and grow into compact structures that hinder transfection using traditional techniques. To address this issue, we developed an innovative approach for transgene expression in 3D organoids by combining single-cell encapsulation in Matrigel microbeads using a microfluidic device and electroporation. We demonstrate that direct electroporation of encapsulated organoids reaches up to 80% of transfection efficiency. Using this technique and a morphological read-out that recapitulate the different stages of tumor development, we further validate the role of p63 and PTEN as key genes in acinar development in breast and prostate tissues. We believe that the combination of controlled organoid generation and efficient 3D transfection developed here opens new perspectives for flow-based high-throughput genetic screening and functional genomic applications.
Collapse
Affiliation(s)
| | - Stephanie Porte
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | - Sophie Gerbaud
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | - Ville Härmä
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | | | | | | | - Xavier Gidrol
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | | |
Collapse
|
6
|
Inhibition of fibroblast growth factor receptor-signaling sensitizes imatinib-resistant gastrointestinal stromal tumors to low doses of topoisomerase II inhibitors. Anticancer Drugs 2019; 29:549-559. [PMID: 29697413 DOI: 10.1097/cad.0000000000000637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The acquired resistance of gastrointestinal stromal tumors (GISTs) to the targeted-based therapy remains the driving force to identify the novel approaches that are capable of increasing the sensitivity of GISTs to the current therapeutic regimens. Our present data show that BGJ398, a selective fibroblast growth factor receptor (FGFR) inhibitor, sensitizes imatinib (IM)-resistant GIST cells with receptor tyrosine kinase (RTK) switch (loss of c-KIT/gain of pFGFR2a) to the low doses of topoisomerase II inhibitors - doxorubicin (Dox) and etoposide (Eto). Mechanistically, pretreatment of IM-resistant GIST cells with BGJ398 for 12 h markedly enhanced proapoptotic and growth-suppressive effects of Dox (or Eto). Indeed, a significant cleavage of PARP and caspase-3 was observed in GIST cells treated with a combination of FGFR and topoisomerase II inhibitor. In contrast, no signs of apoptosis were detected in IM-resistant GIST cells treated with BGJ398, whereas the low doses of Dox (Eto) exerted the minor proapoptotic effects on GISTs. The mechanism of BGJ398-induced sensitization of GIST to topoisomerase II inhibitors might be because of attenuation of DNA damage signaling and repair. Indeed, we observed a marked decrease in Rad51 expression in GIST cells treated with BGJ398 together with Dox. Similar results were obtained when an overexpressed pFGFR2a was knocked down by corresponding siRNA before Dox (Eto) exposure. Moreover, FGFR inhibition/depletion caused a loss of Rad51 foci in Dox-treated GIST cells, suggesting that FGFR-signaling plays an important regulatory role in homology-mediated DNA repair. Our data show that combined therapy (RTKs inhibitors supplemented with low doses of topoisomerase II inhibitors) might be effective for unresectable and metastatic forms of GISTs. In case of resistance to IM because of RTKs switch indicated above, FGFR inhibitors (e.g. BGJ398) might be potentially useful because of their ability to sensitize tumor cells to topoisomerase II inhibitors and induce tumor cell apoptosis by targeting DNA double-strand breaks repair.
Collapse
|
7
|
Wang J, Zhang Z, Che Y, Yuan Z, Lu Z, Li Y, Wan J, Sun H, Chen Z, Pu J, He J. Rabdocoestin B exhibits antitumor activity by inducing G2/M phase arrest and apoptosis in esophageal squamous cell carcinoma. Cancer Chemother Pharmacol 2018; 81:469-481. [PMID: 29308536 DOI: 10.1007/s00280-017-3507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive squamous cell carcinomas and is generally resistant to chemotherapy. In the present study, the cytotoxic activity of Rabdocoestin B (Rabd-B) against ESCC and the underlying mechanisms were investigated. METHODS The inhibitory effect of Rabd-B on KYSE30 and KYSE450 was evaluated by Cell Counting Kit-8 (CCK8) and colony formation assays in vitro. The cell cycle distribution and apoptosis of cells treated with Rabd-B were determined by flow cytometry. The mechanisms underlying the effects of Rabd-B were systematically examined by Western blot. The in vivo anti-tumor ability of Rabd-B was measured in mouse xenograft models and cisplatin (DDP) was used as positive control. RESULTS Rabd-B efficiently induced G2/M phase arrest in ESCC cells by upregulating the Chk1/Chk2-Cdc25C axis to inhibit the G2→M transition facilitated by Cdc2/Cyclin B1. Furthermore, Rabd-B suppressed ATM/ATR phosphorylation, thereby inhibiting BRCA1-mediated DNA repair, which resulted in mitotic catastrophe and induced cell apoptosis. Rabd-B also decreased the activity of the Akt and NF-κB survival signaling pathways and ultimately initiated the caspase-9-dependent intrinsic apoptotic pathway in ESCC cells. The apoptosis induced by Rabd-B could be partially reversed by a caspase-9-specific inhibitor (Z-LEHD-FMK) and a pan-caspase inhibitor (Z-VAD-FMK). Moreover, Rabd-B effectively suppressed tumor growth in mouse xenografts which was comparable to that of DDP without significant injuries to the mice. CONCLUSION Taken together, these findings indicate that Rabd-B is a promising precursor compound that may be useful as a treatment for ESCC and thus warrants further investigation.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhirong Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zuyang Yuan
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Jianxin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
8
|
Wu Q, Li Z, Huang Y, Qian D, Chen M, Xiao W, Wang B. Oxidative Stress Delays Prometaphase/Metaphase of the First Cleavage in Mouse Zygotes via the MAD2L1-Mediated Spindle Assembly Checkpoint. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2103190. [PMID: 29147457 PMCID: PMC5632912 DOI: 10.1155/2017/2103190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 02/05/2023]
Abstract
In zygotes, DNA damage delays the first cleavage to enable repair. Our previous study found that 0.03 mM hydrogen peroxide (H2O2) was the minimum concentration required for induction of oxidative DNA damage in mouse zygotes and that this represented the most similar situation to the clinical phenomenon. In this study, we quantified the cleavage rates of cells in blastocysts at different developmental stages, followed by immunofluorescence to detect activation of γ-H2A histone family member X (a marker of DNA damage) in zygotes to confirm that oxidative DNA damage was induced in H2O2-treated zygotes. Monitoring H3S10P (phosphorylation of Ser10 on histone H3; a prometaphase/metaphase marker) levels at different hour postinsemination revealed that treatment of zygotes with 0.03 mM H2O2 resulted in a prometaphase/metaphase delay. Furthermore, immunofluorescence staining for mitotic arrest deficient 2-like 1 and the protein kinase TTK, components of the spindle assembly checkpoint (SAC), suggested that this delay possibly involved SAC activation. These studies of the relationships between oxidative stress and SAC can promote the success rate of in vitro fertilization.
Collapse
Affiliation(s)
- Que Wu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yue Huang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Diting Qian
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Man Chen
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Wanfen Xiao
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Bin Wang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
9
|
Zhang Y, Qian D, Li Z, Huang Y, Wu Q, Ru G, Chen M, Wang B. Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2. Cell Stress Chaperones 2016; 21:687-96. [PMID: 27117522 PMCID: PMC4907999 DOI: 10.1007/s12192-016-0693-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/16/2016] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilized (IVF) embryos show both cell cycle and developmental arrest. We previously showed oxidative damage activates the ATM → Chk1 → Cdc25B/Cdc25C cascade to mediate G2/M cell cycle arrest for repair of hydrogen peroxide (H2O2)-induced oxidative damage in sperm. However, the mechanisms underlying the developmental delay of zygotes are unknown. To develop a model of oxidative-damaged zygotes, we treated mouse zygotes with different concentrations of H2O2 (0, 0.01, 0.02, 0.03, 0.04, 0.05 mM), and evaluated in vitro zygote development, BrdU incorporation to detect the duration of S phase. We also examined reactive oxygen species level and used immunofluorescence to detect activation of γH2AX, Cdc2, and Cdc25. Oxidatively damaged zygotes showed a delay in G2/M phase and produced a higher level of ROS. At the same time, γH2AX was detected in oxidatively damaged zygotes as well as phospho-Cdc25B (Ser323), phospho-Cdc25C (Ser216), and phospho-Cdc2 (Tyr15). Our study indicates that oxidative stress-induced DNA damage of mouse zygotes triggers the cell cycle checkpoint, which results in G2/M cell cycle arrest, and that phospho-Cdc25B (Ser323), phospho-Cdc25C (Ser216), and phospho-Cdc2 (Tyr15) participate in activating the G2/M checkpoint.
Collapse
Affiliation(s)
- Yuting Zhang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Diting Qian
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China.
| | - Yue Huang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Que Wu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Gaizhen Ru
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Man Chen
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Bin Wang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Gocek E, Studzinski GP. DNA Repair in Despair-Vitamin D Is Not Fair. J Cell Biochem 2016; 117:1733-44. [PMID: 27122067 DOI: 10.1002/jcb.25552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/06/2023]
Abstract
The role of vitamin D as a treatment option for neoplastic diseases, once considered to have a bright future, remains controversial. The preclinical studies discussed herein show compelling evidence that Vitamin D Derivatives (VDDs) can convert some cancer and leukemia cells to a benign phenotype, by differentiation/maturation, cell cycle arrest, or induction of apoptosis. Furthermore, there is considerable, though still evolving, knowledge of the molecular mechanisms underlying these changes. However, the attempts to clearly document that the treatment outcomes of human neoplastic diseases can be positively influenced by VDDs have been, so far, disappointing. The clinical trials to date of VDDs, alone or combined with other agents, have not shown consistent results. It is our contention, shared by others, that there were limitations in the design or execution of these trials which have not yet been fully addressed. Based on the connection between upregulation of JNK by VDDs and DNA repair, we propose a new avenue of attack on cancer cells by increasing the toxicity of the current, only partially effective, cancer chemotherapeutic drugs by combining them with VDDs. This can impair DNA repair and thus kill the malignant cells, warranting a comprehensive study of this novel concept. J. Cell. Biochem. 117: 1733-1744, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elżbieta Gocek
- Faculty of Biotechnology, Department of Proteins Biotechnology, University of Wrocław, Joliot-Curie 14A Street, Wrocław 50-383, Poland
| | - George P Studzinski
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, 07103, New Jersey, USA
| |
Collapse
|