1
|
Jaing TH, Wang YL, Chiu CC. Antiviral Agents for Preventing Cytomegalovirus Disease in Recipients of Hematopoietic Cell Transplantation. Viruses 2024; 16:1268. [PMID: 39205242 PMCID: PMC11359103 DOI: 10.3390/v16081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review discusses the use of prophylaxis to prevent cytomegalovirus (CMV) infection in recipients who have undergone hematopoietic cell transplantation. It highlights the need for new approaches to control and prevent CMV infection. The approval of the anti-CMV drug letermovir has made antiviral prophylaxis more popular. CMV-specific T cell-mediated immunity tests are effective in identifying patients who have undergone immune reconstitution and predicting disease progression. Maribavir (MBV) has been approved for the treatment of post-transplant CMV infection/disease in adolescents. Adoptive T-cell therapy and the PepVax CMV vaccine show promise in tackling refractory and resistant CMV. However, the effectiveness of PepVax in reducing CMV viremia/disease was not demonstrated in a phase II trial. Cell-mediated immunity assays are valuable for personalized management plans, but more interventional studies are needed. MBV and adoptive T-cell therapy are promising treatments, and trials for CMV vaccines are ongoing.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| |
Collapse
|
2
|
Liang H, Gong S, Gui G, Wang H, Jiang L, Li X, Fan J. Secretion of IFN-γ by specific T cells in HCMV infection. Heliyon 2024; 10:e28177. [PMID: 38533049 PMCID: PMC10963622 DOI: 10.1016/j.heliyon.2024.e28177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
One major risk for recipients undergoing allogeneic hematopoietic stem cell transplants (allo-HSCTs) is infection with the human cytomegalovirus (HCMV). For HCMV treatment, it is especially crucial to be able to differentiate between recipients who are at high risk of reactivation and those who are not. In this study, HCMV-DNA was collected from 60 HLA-A*02 allo-HSCT recipients before and after transplantation. After transplantation, the release of interferon (IFN)-γ by T cells specific to HCMV was assessed using the enzyme-linked immunospot assay (ELISPOT). The results show that the median viral load (VL) was significantly higher in the HCMV persistent-infection group compared to the non-persistent-infection group (p = 0.002), and that the late-infection rate was considerably higher in the high-VL group compared to the low-VL group (p = 0.014). The uninfected group had a considerably higher median IFN-γ spot-forming cell (SFC) count than the persistent-infection group (p = 0.001), and IFN-γ SFC counts correlated negatively and linearly with VLs (r = -0.397, p = 0.002). The immune-response groups showed significantly difference in median VL (p = 0.018), and the high immune response group had a reduced late-infection rate than the no/low immune response groups (p = 0.049). Our study showed that allo-HSCT recipients with a high VL at an early transplantation stage were at high risk for late HCMV infection. Further HCMV reactivation can be prevented by HCMV-specific T cells secreting enough IFN-γ.
Collapse
Affiliation(s)
- Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Lili Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| |
Collapse
|
3
|
Lin MX, Zang D, Liu CG, Han X, Chen J. Immune checkpoint inhibitor-related pneumonitis: research advances in prediction and management. Front Immunol 2024; 15:1266850. [PMID: 38426102 PMCID: PMC10902117 DOI: 10.3389/fimmu.2024.1266850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.
Collapse
Affiliation(s)
| | | | | | | | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Spiertz A, Tsakmaklis A, Farowski F, Knops E, Heger E, Wirtz M, Kaiser R, Holtick U, Vehreschild MJGT, Di Cristanziano V. Torque teno virus-DNA load as individual cytomegalovirus risk assessment parameter upon allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2023; 111:963-969. [PMID: 37772680 DOI: 10.1111/ejh.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Immune recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) decisively influences the occurrence of opportunistic infections, one of the leading causes of death among this group of patients. Yet, today, there are no laboratory parameters mirroring immune function sufficiently. Torque teno virus (TTV) has already proven itself as a functional immune marker in other settings. AIMS In this analysis, we investigated whether monitoring of TTV-DNA load in whole blood is able to provide additional information on the capacity of the immune system to control cytomegalovirus (CMV) replication in allo-HSCT recipients. METHODS Whole blood samples from 59 patients were collected upon allo-HSCT (between Day -7 and +10), on Day +14, +21, +28, +56, +90, and +365 post-transplant. TTV-DNA loads and other relevant clinical information were correlated with the risk of CMV infections or reactivations, defined by evidence of viral replication in blood. RESULTS CMV serostatus of the recipient and a TTV load below 1000 copies/mL upon allo-HSCT were significantly associated with an increased incidence of CMV infection or reactivation. CONCLUSIONS Quantification of TTV load in the early phase of allo-HSCT procedure could provide additional information in order to identify patients at risk for CMV infection or reactivation.
Collapse
Affiliation(s)
- Arlene Spiertz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fedja Farowski
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Camacho-Bydume C, Mauguen A, Rodriguez-Sanchez MI, Klein E, Kernan NA, Prockop S, Boelens JJ, Papanicolaou GA, Cancio M. Time to initiation of pre-emptive therapy for cytomegalovirus impacts overall survival in pediatric hematopoietic stem cell transplant recipients. Cytotherapy 2022; 24:428-436. [PMID: 35042670 PMCID: PMC10019069 DOI: 10.1016/j.jcyt.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AIMS Cytomegalovirus (CMV) reactivation is a significant complication following allogeneic hematopoietic stem cell transplant (HSCT) and affects upwards of 40% of pediatric HSCT patients. Pre-emptive therapy remains the only effective treatment strategy available for pediatric patients following CMV reactivation. Little is known about how the timing of induction treatment following CMV reactivation impacts outcomes in pediatric patients, especially following ex vivo T-cell-depleted (TCD) HSCT. METHODS The authors evaluated how the timing of induction treatment after CMV reactivation impacts overall survival (OS) and CMV disease in pediatric patients undergoing TCD HSCT at a single institution. The authors retrospectively analyzed patients treated on the pediatric service who received an initial ex vivo TCD HSCT at Memorial Sloan Kettering Cancer Center (MSKCC) from January 2010 to June 2018. CMV reactivation was defined as ≥1 CMV polymerase chain reaction >500 copies/mL in whole blood or >137 IU/mL in plasma within the first 180 days after allogeneic HSCT. To analyze the impact of the timing of induction treatment, the authors' primary study outcome was OS and secondary outcome was CMV disease. RESULTS A total of 169 patients who underwent an initial allogeneic TCD HSCT on the pediatric service at MSKCC from January 2010 to June 2018 were included in the analysis. Thirty-seven (22%) patients reactivated CMV during the first 180 days following HSCT. Of those patients who reactivated CMV, CMV donor/recipient (D/R) serostatus was as follows: D+/R+ n = 28 (76%) and D-/R+ n = 9 (24%). There was no CMV reactivation observed among recipients who were CMV-seronegative irrespective of donor serostatus. In those patients who reactivated CMV, the median time from HSCT to CMV reactivation was 24 days (interquartile range, 20-31). Eleven patients ultimately developed CMV disease in addition to CMV viremia, whereas the remaining patients had only CMV viremia. The cumulative incidence of CMV reactivation at 60 days was 45.2% (95% confidence interval [CI], 32.8-57.5) in the D+/R+ subgroup and 31% (95% CI, 14.2-47.9) in the D-/R+ subgroup. For those patients who reactivated CMV, 30 (81%) received induction treatment with ganciclovir or foscarnet. To analyze the impact of the timing of induction treatment on clinical outcomes, the authors restricted the analysis to those patients who reactivated CMV and received induction treatment (n = 30). The timing of induction treatment was significantly associated with OS, with optimal timing of initiation within a week of CMV reactivation (P = 0.02). There was no significant impact on the timing of induction treatment and risk of CMV disease (P = 0.30). CONCLUSIONS In ex vivo TCD HSCT in pediatric patients, early initiation of induction treatment after CMV reactivation is associated with improved OS.
Collapse
Affiliation(s)
- Christine Camacho-Bydume
- General Oncology Service, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - M Irene Rodriguez-Sanchez
- Pediatric Translational Medicine Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth Klein
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nancy A Kernan
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Maria Cancio
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
6
|
Schulze Lammers FC, Bonifacius A, Tischer-Zimmermann S, Goudeva L, Martens J, Lepenies B, von Karpowitz M, Einecke G, Beutel G, Skripuletz T, Blasczyk R, Beier R, Maecker-Kolhoff B, Eiz-Vesper B. Antiviral T-Cell Frequencies in a Healthy Population: Reference Values for Evaluating Antiviral Immune Cell Profiles in Immunocompromised Patients. J Clin Immunol 2022; 42:546-558. [PMID: 34989946 PMCID: PMC9015970 DOI: 10.1007/s10875-021-01205-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Viral infections and reactivations are major causes of morbidity and mortality after hematopoietic stem cell (HSCT) and solid organ transplantation (SOT) as well as in patients with immunodeficiencies. Latent herpesviruses (e.g., cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6), lytic viruses (e.g., adenovirus), and polyomaviruses (e.g., BK virus, JC virus) can cause severe complications. Antiviral drugs form the mainstay of treatment for viral infections and reactivations after transplantation, but they have side effects and cannot achieve complete viral clearance without prior reconstitution of functional antiviral T-cell immunity. The aim of this study was to establish normal ranges for virus-specific T-cell (VST) frequencies in healthy donors. Such data are needed for better interpretation of VST frequencies observed in immunocompromised patients. Therefore, we measured the frequencies of VSTs against 23 viral protein-derived peptide pools from 11 clinically relevant human viruses in blood from healthy donors (n = 151). Specifically, we determined the VST frequencies by interferon-gamma enzyme-linked immunospot assay and classified their distribution according to age and gender to allow for a more specific evaluation and prediction of antiviral immune responses. The reference values established here provide an invaluable tool for immune response evaluation, intensity of therapeutic drugs and treatment decision-making in immunosuppressed patients. This data should make an important contribution to improving the assessment of immune responses in immunocompromised patients.
Collapse
Affiliation(s)
- Friederike C Schulze Lammers
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany
| | - Jörg Martens
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, DE, Germany
| | | | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, DE, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, DE, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover, DE, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany
| | - Rita Beier
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, DE, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, DE, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, DE, Germany.
| |
Collapse
|
7
|
Liang H, Xia J, Zhang R, Yang B, Wu J, Gui G, Huang Y, Chen X, Yang R, Wang H, Gong S, Fan J. ELISPOT assay of interferon-γ secretion for evaluating human cytomegalovirus reactivation risk in allo-HSCT recipients. J Med Virol 2021; 93:6301-6308. [PMID: 34076905 DOI: 10.1002/jmv.27120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 11/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a common cause of significant morbidity and mortality in transplant recipients after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We evaluated interferon-γ (IFN-γ) secretion by HCMV NLV-specific CD8+ T cells in HCMV-reactivated allo-HSCT recipients using an enzyme-linked immunospot (ELISPOT) assay at 3 months post-transplantation. Blood samples from 47 recipients were tested for HCMV DNAemia, HCMV pp65 antigenemia, and anti-HCMV immunoglobulins (IgG/IgM) over 3 months post-transplantation. Of the 47 transplant recipients, 26 were HLA-A*02 positive and 21 were HLA-A*02 negative. The results were essentially consistent between the 47 transplant recipients and the HLA-A*02-positive recipients. HCMV DNAemia was not linearly correlated with IFN-γ spot-forming cells (SFCs) counts; IFN-γ SFCs counts did not differ significantly between the HCMV DNAemia-positive and -negative groups, whereas the HCMV-DNA virus loads were inversely correlated with the IFN-γ SFCs counts. HCMV pp65 antigenemia was not linearly correlated with IFN-γ SFCs counts; IFN-γ SFCs counts in the HCMV pp65 antigenemia-positive and -negative groups were similar. More IFN-γ SFCs counts were detected in transplant recipients with high anti-HCMV-IgG antibody titers than in those with low anti-HCMV-IgG titers pre-transplantation in the 47 recipients. Anti-HCMV-IgG antibody titers were positively linearly correlated with IFN-γ SFCs counts in HLA-A*02-positive recipients. The HCMV infection indicators used to monitor HCMV reactivation had different values in transplant recipients. The use of the IFN-γ SFCs counts measured by ELISPOT to evaluate the risk of HCMV reactivation needs further study.
Collapse
Affiliation(s)
- Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jintao Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Runan Zhang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bing Yang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaping Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoming Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rong Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhou X, Jin N, Chen B. Human cytomegalovirus infection: A considerable issue following allogeneic hematopoietic stem cell transplantation. Oncol Lett 2021; 21:318. [PMID: 33692850 PMCID: PMC7933754 DOI: 10.3892/ol.2021.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is an opportunistic virus, whereby recipients are most susceptible following allogeneic hematopoietic stem cell transplantation (allo-HSCT). With the development of novel immunosuppressive agents and antiviral drugs, accompanied with the widespread application of prophylaxis and preemptive treatment, significant developments have been made in transplant recipients with human (H)CMV infection. However, HCMV remains an important cause of short- and long-term morbidity and mortality in transplant recipients. The present review summarizes the molecular mechanism and risk factors of HCMV reactivation following allo-HSCT, the diagnosis of CMV infection following allo-HSCT, prophylaxis and treatment of HCMV infection, and future perspectives. All relevant literature were retrieved from PubMed and have been reviewed.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nan Jin
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Wagner-Drouet E, Teschner D, Wolschke C, Schäfer-Eckart K, Gärtner J, Mielke S, Schreder M, Kobbe G, Hilgendorf I, Klein S, Verbeek M, Ditschkowski M, Koch M, Lindemann M, Schmidt T, Rascle A, Barabas S, Deml L, Wagner R, Wolff D. Comparison of Cytomegalovirus-Specific Immune Cell Response to Proteins versus Peptides Using an IFN-γ ELISpot Assay after Hematopoietic Stem Cell Transplantation. Diagnostics (Basel) 2021; 11:diagnostics11020312. [PMID: 33671952 PMCID: PMC7919014 DOI: 10.3390/diagnostics11020312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Measuring CMV-specific cellular immunity may improve the risk stratification and management of patients. IFN-γ ELISpot assays, based on the stimulation of peripheral blood mononuclear cells with CMV pp65 and IE-1 proteins or peptides, have been validated in clinical settings. However, it remains unclear to which extend the T-cell response to synthetic peptides reflect that mediated by full-length proteins processed by antigen-presenting cells. We compared the stimulating ability of pp65 and IE-1 proteins and corresponding overlapping peptides in 16 HSCT recipients using a standardized IFN-γ ELISpot assay. Paired qualitative test results showed an overall 74.4% concordance. Discordant results were mainly due to low-response tests, with one exception. One patient with early CMV reactivation and graft-versus-host disease, sustained CMV DNAemia and high CD8+ counts showed successive negative protein-based ELISpot results but a high and sustained response to IE-1 peptides. Our results suggest that the response to exogenous proteins, which involves their uptake and processing by antigen-presenting cells, more closely reflects the physiological response to CMV infection, while the response to exogenous peptides may lead to artificial in vitro T-cell responses, especially in strongly immunosuppressed patients.
Collapse
Affiliation(s)
- Eva Wagner-Drouet
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (E.W.-D.); (D.T.)
| | - Daniel Teschner
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (E.W.-D.); (D.T.)
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Eppendorf, Hamburg, Germany;
| | - Kerstin Schäfer-Eckart
- Medizinische Klinik 5, Klinikum Nürnberg Nord, Paracelsus Medizinische Privatuniversität, 90419 Nürnberg, Germany; (K.S.-E.); (J.G.)
| | - Johannes Gärtner
- Medizinische Klinik 5, Klinikum Nürnberg Nord, Paracelsus Medizinische Privatuniversität, 90419 Nürnberg, Germany; (K.S.-E.); (J.G.)
| | - Stephan Mielke
- Department of Medicine II, University Medical Center Würzburg, 97080 Würzburg, Germany; (S.M.); (M.S.)
- Department of Laboratory Medicine, CAST, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden
| | - Martin Schreder
- Department of Medicine II, University Medical Center Würzburg, 97080 Würzburg, Germany; (S.M.); (M.S.)
| | - Guido Kobbe
- Department of Hematology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany;
| | - Stefan Klein
- Department of Hematology and Oncology, UMM University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| | - Mareike Verbeek
- Medical Department, Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany;
| | - Markus Ditschkowski
- Innere Klinik, Tumorforschung, University Hospital Essen, 45147 Essen, Germany;
| | - Martina Koch
- Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Eppendorf, Hamburg, Germany;
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany;
| | - Traudel Schmidt
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Anne Rascle
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Sascha Barabas
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Ludwig Deml
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Ralf Wagner
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence: (R.W.); (D.W.); Tel.: +49-941-944-6452 (R.W.); +49-941-944-5542 (D.W.)
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Oncology, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence: (R.W.); (D.W.); Tel.: +49-941-944-6452 (R.W.); +49-941-944-5542 (D.W.)
| |
Collapse
|
10
|
Wagner-Drouet E, Teschner D, Wolschke C, Janson D, Schäfer-Eckart K, Gärtner J, Mielke S, Schreder M, Kobbe G, Kondakci M, Hilgendorf I, von Lilienfeld-Toal M, Klein S, Heidenreich D, Kreil S, Verbeek M, Grass S, Ditschkowski M, Gromke T, Koch M, Lindemann M, Hünig T, Schmidt T, Rascle A, Guldan H, Barabas S, Deml L, Wagner R, Wolff D. Standardized monitoring of cytomegalovirus-specific immunity can improve risk stratification of recurrent cytomegalovirus reactivation after hematopoietic stem cell transplantation. Haematologica 2021; 106:363-374. [PMID: 31879324 PMCID: PMC7849569 DOI: 10.3324/haematol.2019.229252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Recurrence of cytomegalovirus reactivation remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation. Monitoring cytomegalovirus-specific cellular immunity using a standardized assay might improve the risk stratification of patients. A prospective multicenter study was conducted in 175 intermediate- and high-risk allogeneic hematopoietic stem cell transplant recipients under preemptive antiviral therapy. Cytomegalovirus-specific cellular immunity was measured using a standardized IFN-γ ELISpot assay (T-Track® CMV). Primary aim was to evaluate the suitability of measuring cytomegalovirus-specific immunity after end of treatment for a first cytomegalovirus reactivation to predict recurrent reactivation. 40/101 (39.6%) patients with a first cytomegalovirus reactivation experienced recurrent reactivations, mainly in the high-risk group (cytomegalovirus-seronegative donor/cytomegalovirus-seropositive recipient). The positive predictive value of T-Track® CMV (patients with a negative test after the first reactivation experienced at least one recurrent reactivation) was 84.2% in high-risk patients. Kaplan-Meier analysis revealed a higher probability of recurrent cytomegalovirus reactivation in high-risk patients with a negative test after the first reactivation (hazard ratio 2.73; p=0.007). Interestingly, a post-hoc analysis considering T-Track® CMV measurements at day 100 post-transplantation, a time point highly relevant for outpatient care, showed a positive predictive value of 90.0% in high-risk patients. Our results indicate that standardized cytomegalovirus-specific cellular immunity monitoring may allow improved risk stratification and management of recurrent cytomegalovirus reactivation after hematopoietic stem cell transplantation. This study was registered at www.clinicaltrials.gov as #NCT02156479.
Collapse
Affiliation(s)
- Eva Wagner-Drouet
- Dpt of Hematology, Medical Oncology, and Pneumology, University Medical Center, Mainz, Germany
| | - Daniel Teschner
- Dpt of Hematology, Medical Oncology, and Pneumology, University Medical Center, Mainz, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Dietlinde Janson
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Kerstin Schäfer-Eckart
- Oncology, Hematology and Bone Marrow Transplantation Unit, Klinikum Nord, Nürnberg, Germany
| | - Johannes Gärtner
- Oncology, Hematology and Bone Marrow Transplantation Unit, Klinikum Nord, Nürnberg, Germany
| | - Stephan Mielke
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Martin Schreder
- First Department of Medicine, Center for Oncology and Hematology, Wilhelminenspital, Vienna, Austria
| | - Guido Kobbe
- Department of Hematology, University Hospital, Heinrich Heine University Düsseldorf, Germany
| | - Mustafa Kondakci
- Department of Hematology, University Hospital, Heinrich Heine University Düsseldorf, Germany
| | - Inken Hilgendorf
- Klinik f. Innere Medizin II, Abt. Haematol. und Internist. Onkologie, Univ.-Klinikum Jena, Germany
| | | | - Stefan Klein
- Dpt of Hematology and Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim,Germany
| | - Daniela Heidenreich
- Dpt of Hematology and Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim,Germany
| | - Sebastian Kreil
- Dpt of Hematology and Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim,Germany
| | - Mareike Verbeek
- III. Medical Department, Hematology and Oncology, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Sandra Grass
- III. Medical Department, Hematology and Oncology, Klinikum rechts der Isar, TUM, Munich, Germany
| | | | - Tanja Gromke
- Innere Klinik, Tumorforschung, University Hospital Essen, Germany
| | - Martina Koch
- Dpt of Transplantation Surgery, University Medical Center of the JGU, Mainz, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, University Medical Center Würzburg, Germany
| | | | | | | | | | | | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Germany
| | - Daniel Wolff
- Dpt of Internal Medicine III, Hematology and Oncology, University Medical Center Regensburg, Germany
| |
Collapse
|
11
|
Peker BO, Tüysüz Kintrup G, Sağlık İ, Can Sarınoğlu R, Güler E, Mutlu D, Küpesiz OA, Çolak D. Follow-up of human adenovirus viral load in pediatric hematopoietic stem cell transplant recipients. Clin Transplant 2021; 35:e14209. [PMID: 33368539 DOI: 10.1111/ctr.14209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The spectrum of human adenovirus (HAdV)-related disease is broad, and the virus acts on many organs and systems in hematopoietic stem cell transplantation (HSCT) recipients. We aimed to evaluate the effect of HAdV-DNA positivity with clinical and laboratory findings 4 months after HSCT. METHODS AND RESULTS We retrospectively investigated HAdV-DNA in 153 HSCT recipients (≤18 years) by quantitative real-time polymerase chain reaction (RealStar; Altona Diagnostics). The results of samples from January 2014 to December 2017 are included. HAdV-DNA was positive for at least one sample type in 50 (32.67%) patients. HAdV-DNA positivity rate was 8.92% (N: 145/1625), 40.25% (N: 64/159), and 25% (N: 2/8) for plasma, stool, and urine samples, respectively. HAdV-DNA was positive in the plasma of 38 (24.83%) patients at a median 16 (range: 1-58 days) days after HSCT. The mortality rate was 23.68% and 6.95% in plasma HAdV-positive and HAdV-negative patients (p = .014). Moreover, HAdV-DNA positivity had an impact on overall survival for allogeneic-HSCT (p = .013), with the cumulative effect including graft-versus-host disease state in multivariate analysis (p = .014). CONCLUSIONS Plasma HAdV-DNA positivity is a potential influencer that decreases survival in the early post-transplant period. Due to the high mortality rates, close monitoring is required of HAdV infections after HSCT with sensitive methods, especially at the early stage.
Collapse
Affiliation(s)
- Bilal Olcay Peker
- Department of Medical Microbiology, Izmir Katip Çelebi University Atatürk Training and Research Hospital, İzmir, Turkey
| | - Gülen Tüysüz Kintrup
- Department of Pediatric Hematology and Oncology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - İmran Sağlık
- Department of Medical Microbiology, Uludağ University Medical Faculty, Bursa, Turkey
| | - Rabia Can Sarınoğlu
- Department of Medical Microbiology, Marmara University Pendik Research and Training Hospital, İstanbul, Turkey
| | - Elif Güler
- Department of Pediatric Hematology and Oncology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Derya Mutlu
- Department of Medical Microbiology, Division of Medical Virology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Osman Alphan Küpesiz
- Department of Pediatric Hematology and Oncology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Dilek Çolak
- Department of Medical Microbiology, Division of Medical Virology, Akdeniz University Medical Faculty, Antalya, Turkey
| |
Collapse
|
12
|
Investigation of Torque Teno Virus (TTV) DNA as an immunological and virological marker in pediatric hematopoietic stem cell transplantation (HSCT) patients. Microb Pathog 2020; 149:104397. [DOI: 10.1016/j.micpath.2020.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
13
|
Cho SY, Lee DG, Kim HJ. Cytomegalovirus Infections after Hematopoietic Stem Cell Transplantation: Current Status and Future Immunotherapy. Int J Mol Sci 2019; 20:ijms20112666. [PMID: 31151230 PMCID: PMC6600658 DOI: 10.3390/ijms20112666] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) infection after hematopoietic stem cell transplantation (HSCT) is one of the critical infectious complications related to host immune recovery. The spectrum of CMV infection is quite extensive, from asymptomatic CMV reactivation presenting mainly as CMV DNAemia to fatal CMV diseases involving gut, liver, lungs, or brain. In addition to organ involvement, CMV reactivation can exert indirect effects such as immunosuppression or graft failure that may result in the development of concurrent infectious complications. Currently, preemptive therapy, which is based on PCR-based monitoring of CMV from blood, is a mainstay enabling improvement in CMV-related outcomes. During the past decades, new antiviral drugs, clinical trials for prophylaxis in high-risk groups, and vaccines for preventing CMV infection have been introduced. In addition, data for immunologic monitoring and adoptive immunotherapy have also been accumulated. Here, we review the current status and recent updates in this field, with future perspectives including immunotherapy in HSCT recipients.
Collapse
Affiliation(s)
- Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Hee-Je Kim
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
14
|
Noroozi-aghideh A, Kheirandish M. Human cord blood-derived viral pathogens as the potential threats to the hematopoietic stem cell transplantation safety: A mini review. World J Stem Cells 2019; 11:73-83. [PMID: 30842806 PMCID: PMC6397803 DOI: 10.4252/wjsc.v11.i2.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) and potential alternative for bone marrow transplantation for patients who lack human leukocyte antigen (HLA)-matched donors. The main practical advantages of UCB over other HSC sources are the immediate availability, lower incidence of graft-versus-host disease, minimal risk to the donor, and lower requirement for HLA compatibility. However, the use of UCB is limited by delayed engraftment and poor immune reconstitution, leading to a high rate of infection-related mortality. Therefore, severe infectious complications, especially due to viral pathogens remain the leading cause of morbidity and mortality during the post-UCB transplantation (UCBT) period. In this context, careful screening and excluding the viral-contaminated UCB units might be an effective policy to reduce the rate of UCBT-related infection and mortality. Taken together, complete prevention of the transmission of donor-derived viral pathogens in stem cell transplantation is not possible. However, having the knowledge of the transmission route and prevalence of viruses will improve the safety of transplantation. To the best of our knowledge, there are few studies that focused on the risk of virus transmission through the UCB transplant compared to other HSC sources. This review summarizes the general aspects concerning the prevalence, characteristics, and risk factors of viral infections with a focus on the impact of viral pathogens on cord blood transplantation safety.
Collapse
Affiliation(s)
- Ali Noroozi-aghideh
- Department of Hematology, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran 14665-1157, Iran
| | - Maryam Kheirandish
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran 14665-1157, Iran
| |
Collapse
|
15
|
Zhang R, Zhang Y, Hu J, Wu W, Chen X, Lu Z, Yang R, Huang Y, Fan J. Specific T-cell receptor gene transfer enhances immune response: A potential therapeutic strategy for the control of human cytomegalovirus infection in immunocompromised patients. Cell Immunol 2019; 336:58-65. [PMID: 30626494 DOI: 10.1016/j.cellimm.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection is a leading cause of morbidity and mortality in immunocompromised patients, but no specific therapeutic strategy is effective clinically, despite recent achievements. HCMV-specific T-cell therapy was thought to be helpful for the management of HCMV infection. To conduct a deep exploration, we investigated the possibility of engineering peripheral blood mononuclear cells (PBMCs) from immunocompetent and immunocompromised subjects with specific T-cell receptor (TCR) genes. CD8-positive T cells that specifically bind to NLV pentamers could be generated by transferring TCR genes to PBMCs from immunocompetent and immunocompromised subjects. The generation of functional T cells varied among transduction of different PBMCs. The numbers of IFN-γ-secreting T cells increased significantly in immunocompetent and immunodeficient PBMCs, but were unchanged in immune-reconstituted PBMCs. TCR gene transfer is a potential therapeutic strategy for controlling HCMV infection in immunocompromised patients. The transfer of TCR genes into immunocompetent and immunodeficient PBMCs would be more meaningful in response to HCMV infection than would the transfer into immune-reconstituted PBMCs.
Collapse
Affiliation(s)
- Runan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Yanyue Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jianhua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Xiaoming Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Zhongjie Lu
- Department of Radiotherapy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Rong Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Yaping Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China.
| |
Collapse
|
16
|
Cytomegalovirus induces HLA-class-II-restricted alloreactivity in an acute myeloid leukemia cell line. PLoS One 2018; 13:e0191482. [PMID: 29377903 PMCID: PMC5788343 DOI: 10.1371/journal.pone.0191482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (HCMV) reactivation is found frequently after allogeneic hematopoietic stem cell transplantation (alloSCT) and is associated with an increased treatment-related mortality. Recent reports suggest a link between HCMV and a reduced risk of cancer progression in patients with acute leukemia or lymphoma after alloSCT. Here we show that HCMV can inhibit the proliferation of the acute myeloid leukemia cell line Kasumi-1 and the promyeloid leukemia cell line NB4. HCMV induced a significant up-regulation of HLA-class-II-molecules, especially HLA-DR expression and an increase of apoptosis, granzyme B, perforin and IFN-γ secretion in Kasumi-1 cells cocultured with peripheral blood mononuclear cells (PBMCs). Indolamin-2,3-dioxygenase on the other hand led only to a significant dose-dependent effect on IFN-γ secretion without effects on proliferation. The addition of CpG-rich oligonucleotides and ganciclovir reversed those antiproliferative effects. We conclude that HCMV can enhance alloreactivity of PBMCs against Kasumi-1 and NB4 cells in vitro. To determine if this phenomenon may be clinically relevant further investigations will be required.
Collapse
|
17
|
Bae S, Jung J, Kim SM, Kang YA, Lee YS, Chong YP, Sung H, Lee SO, Choi SH, Kim YS, Woo JH, Lee JH, Lee JH, Lee KH, Kim SH. The Detailed Kinetics of Cytomegalovirus-specific T cell Responses after Hematopoietic Stem Cell Transplantation: 1 Year Follow-up Data. Immune Netw 2018; 18:e2. [PMID: 29732231 PMCID: PMC5928417 DOI: 10.4110/in.2018.18.e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 12/01/2022] Open
Abstract
The detailed kinetics of the cytomegalovirus (CMV)-specific T cell response in hematopoietic stem cell transplant (HCT) recipients have not yet been fully assessed. We evaluated these kinetics of CMV-specific T cell response and factors associated with high CMV-specific T cell responses 1 year after HCT. In HCT recipients, CMV pp65 and IE1-specific ELISPOT assay were performed before HCT (D0), and at 30 (D30), 90 (D90), 180 (D180), and 360 (D360) days after HCT. Of the 51 HCT recipients with donor-positive (D+)/recipient-positive (R+) serology, 26 (51%) developed CMV infections after HCT. The patterns of post-transplantation reconstitution for CMV-specific T cell response were classified into 4 types: 1) an initial decrease at D30 followed by gradual T cell reconstitution without CMV infection (35%), 2) an initial decrease at D30 followed by gradual T cell reconstitution preceded by CMV infection (35%), 3) failure of gradual or constant T cell reconstitution (26%), and 4) no significant T cell reconstitution (4%). There was no significant difference between ELISPOT counts of D360 and those of D0. High CMV-specific T cell responses at D360 were not associated with high CMV-specific T cell response at D0, CMV infection, ganciclovir therapy, graft versus host disease (GVHD), and immunosuppressant use. In conclusion, there are 4 distinct patterns of reconstitution of the CMV-specific T cell response after HCT. In addition, reconstituted donor-origin CMV-specific T cell responses appeared to be constant until day 360 after HCT, regardless of the level of the pre-transplant CMV-specific T cell response, CMV infection, and immunosuppressant use.
Collapse
Affiliation(s)
- Seongman Bae
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jiwon Jung
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.,Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, Ulsan 44033, Korea
| | - Sun-Mi Kim
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Young-Ah Kang
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Young-Shin Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jung-Hee Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Je-Hwan Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
18
|
Gilles R, Herling M, Holtick U, Heger E, Awerkiew S, Fish I, Höller K, Sierra S, Knops E, Kaiser R, Scheid C, Di Cristanziano V. Dynamics of Torque Teno virus viremia could predict risk of complications after allogeneic hematopoietic stem cell transplantation. Med Microbiol Immunol 2017; 206:355-362. [PMID: 28702856 DOI: 10.1007/s00430-017-0511-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/08/2017] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an established treatment option for several hematological diseases. However, the first year post-transplantation is often complicated by infections and graft-versus-host disease (GVHD). Improvements in immunological monitoring could reduce such post-transplant complications. Torque Teno virus (TTV), a chronically persisting DNA virus, is reported to be a marker for immune function in immunocompromised patients. In the present study, the TTV kinetics were analyzed to investigate the potential role of TTV viremia as immune-competence read-out after allo-HSCT. Twenty-three monocentric allo-HSCT recipients were retrospectively tested for TTV-DNA in whole blood at given day post-transplant. Dynamics of TTV viremia was analyzed with respect to episodes of non-TTV viral reactivations (CMV, EBV, and BKPyV), acute GVHD, and recovery of immune cells. Recipients affected by persisting viral infections and/or GVHD during the first 100 days after allo-HSCT showed a significantly higher median TTV load at day +30 than patients with a less complicated clinical course (p = 0.005). This was also associated with a total lymphocyte count <5.5E+08 cells/L in this high-risk group (p = 0.039). These findings suggest that TTV could represent an additional parameter to identify patients at higher risk for complications in the first 100 days following allo-HSCT. Prospective studies, including the monitoring of lymphocyte subsets, are required to define the potential use of TTV in immunological monitoring after allo-HSCT.
Collapse
Affiliation(s)
- Ramona Gilles
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Marco Herling
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Sabine Awerkiew
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Irina Fish
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Saleta Sierra
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Christof Scheid
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
19
|
Jung J, Lee HJ, Kim SM, Kang YA, Lee YS, Chong YP, Sung H, Lee SO, Choi SH, Kim YS, Woo JH, Lee JH, Lee JH, Lee KH, Kim SH. Diagnostic usefulness of dynamic changes of CMV-specific T-cell responses in predicting CMV infections in HCT recipients. J Clin Virol 2016; 87:5-11. [PMID: 27984766 DOI: 10.1016/j.jcv.2016.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND CMV-specific cell mediated immune responses before and after hematopoietic stem cell transplantation (HCT) can categorize patients as at high or low risk of CMV development. OBJECTIVES We evaluated the usefulness of the CMV-specific T-cell ELISPOT assay for predicting the development of CMV infections after HCT in recipients with donor-positive and recipient-positive CMV serology (D+/R+ ). STUDY DESIGN CMV pp65 and IE1-specific ELISPOT assays were performed before HCT (D0), and at 30 (D30) and 90 (D90) days after HCT. RESULTS Of the 84 HCT recipients with D+/R+, 42 (50%) developed≥1 episode of CMV infection. Thirty-nine (64%) of 61 patients with Δ(D30-D0) pp65<42 developed CMV infections compared with 3 (14%) of 21 patients with Δ(D30-D0) pp65≥42 (P<0.001). Twenty-three (74%) of 31 patients with Δ(D30-D0) IE1<-4 developed CMV infections compared with 19 (37%) of 51 patients with Δ(D30-D0) IE1≥-4 (P=0.001). pp65 Δ(D30-D0) ≥42 had 93% sensitivity for ruling out subsequent CMV infection, and pp65 Δ(D30-D0)<42 followed by Δ(D30-D0) IE1<-4 had 100% specificity for ruling in the subsequent CMV infection. In addition, 10 (53%) of 19 patients with Δ(D90-D30) pp65<23 had relapsing CMV infections, compared with 3 (15%) of 20 patients with Δ(D90-D30) pp65≥23 (P=0.02). The sensitivity and specificity of Δ(D90-D30) pp65 were 77% (95% CI 50-92) and 65% (95% CI, 46-81). CONCLUSION Dynamic change in the CMV-specific ELISPOT assay before versus after HCT appears to predict the subsequent development of CMV infection and relapsing CMV infection.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Hyun-Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Ah Kang
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Shin Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Hee Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Minculescu L, Marquart HV, Friis LS, Petersen SL, Schiødt I, Ryder LP, Andersen NS, Sengeloev H. Early Natural Killer Cell Reconstitution Predicts Overall Survival in T Cell-Replete Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:2187-2193. [PMID: 27664326 DOI: 10.1016/j.bbmt.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/06/2016] [Indexed: 12/27/2022]
Abstract
Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate the clinical impact of early NK cell recovery in T cell-replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome from 2005 to 2013. In multivariate analysis NK cell numbers on day 30 (NK30) > 150 cells/µL were independently associated with superior overall survival (hazard ratio, .79; 95% confidence interval, .66 to .95; P = .01). Cumulative incidence analyses showed that patients with NK30 > 150 cells/µL had significantly less transplant-related mortality (TRM), P = .01. Patients with NK30 > 150 cells/µL experienced significantly lower numbers of life-threatening bacterial infections as well as viral infections, including cytomegalovirus. No association was observed in relation to relapse. These results suggest an independent protective effect of high early NK cell reconstitution on TRM that translates into improved overall survival after T cell-replete HSCT.
Collapse
Affiliation(s)
- Lia Minculescu
- Department of Clinical Immunology, National University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lone Smidstrup Friis
- Hematopoietic Stem Cell Transplant Unit, Department of Hematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Soeren Lykke Petersen
- Hematopoietic Stem Cell Transplant Unit, Department of Hematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Schiødt
- Hematopoietic Stem Cell Transplant Unit, Department of Hematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Peter Ryder
- Department of Clinical Immunology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Smedegaard Andersen
- Hematopoietic Stem Cell Transplant Unit, Department of Hematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeloev
- Hematopoietic Stem Cell Transplant Unit, Department of Hematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
21
|
Koskenvuo M, Rahiala J, Sadeghi M, Waris M, Vuorinen T, Lappalainen M, Norja P, Toppinen M, Saarinen-Pihkala U, Allander T, Söderlund-Venermo M, Hedman K, Ruuskanen O, Vettenranta K. Viremic co-infections in children with allogeneic haematopoietic stem cell transplantation are predominated by human polyomaviruses. Infect Dis (Lond) 2016; 49:35-41. [DOI: 10.1080/23744235.2016.1210821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Maffini E, Giaccone L, Festuccia M, Brunello L, Busca A, Bruno B. Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2016; 9:585-96. [PMID: 27043241 DOI: 10.1080/17474086.2016.1174571] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation.
Collapse
Affiliation(s)
- Enrico Maffini
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Luisa Giaccone
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Moreno Festuccia
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Lucia Brunello
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Alessandro Busca
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy
| | - Benedetto Bruno
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| |
Collapse
|
23
|
Lymphocyte depletion and repopulation after chemotherapy for primary breast cancer. Breast Cancer Res 2016; 18:10. [PMID: 26810608 PMCID: PMC4727393 DOI: 10.1186/s13058-015-0669-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Approximately 30 % of breast cancer patients receive chemotherapy, yet little is known about influences of current regimens on circulating lymphocyte levels and phenotypes. Similarly, clinico-pathological factors that modify these influences, and implications for future immune health remain mainly unexplored. Methods We used flow-cytometry to assess circulating lymphocyte levels and phenotypes in 88 primary breast cancer patients before chemotherapy and at time-points from 2 weeks to 9 months after chemotherapy completion. We examined circulating titres of antibodies against pneumococcal and tetanus antigens using ELISAs. Results Levels of B, T and NK cells were significantly reduced 2 weeks after chemotherapy (p < 0.001). B cells demonstrated particularly dramatic depletion, falling to 5.4 % of pre-chemotherapy levels. Levels of all cells recovered to some extent, although B and CD4+ T cells remained significantly depleted even 9 months post-chemotherapy (p < 0.001). Phenotypes of repopulating B and CD4+ T cells were significantly different from, and showed no sign of returning to pre-chemotherapy profiles. Repopulating B cells were highly depleted in memory cells, with proportions of memory cells falling from 38 % to 10 % (p < 0.001). Conversely, repopulating CD4+ T cells were enriched in memory cells, which increased from 63 % to 75 % (p < 0.001). Differences in chemotherapy regimen and patient smoking were associated with significant differences in depletion extent or repopulation dynamics. Titres of anti-pneumococcal and anti-tetanus antibodies were both significantly reduced post-chemotherapy and did not recover during the study (p < 0.001). Conclusion Breast cancer chemotherapy is associated with long-term changes in immune parameters that should be considered during clinical management. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0669-x) contains supplementary material, which is available to authorized users.
Collapse
|